about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt135
1 files changed, 135 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt b/.venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt
new file mode 100644
index 00000000..a3d792a1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt
@@ -0,0 +1,135 @@
+.. -*- rest -*-
+
+==================================================
+API changes in the new masked array implementation
+==================================================
+
+Masked arrays are subclasses of ndarray
+---------------------------------------
+
+Contrary to the original implementation, masked arrays are now regular
+ndarrays::
+
+  >>> x = masked_array([1,2,3],mask=[0,0,1])
+  >>> print isinstance(x, numpy.ndarray)
+  True
+
+
+``_data`` returns a view of the masked array
+--------------------------------------------
+
+Masked arrays are composed of a ``_data`` part and a ``_mask``. Accessing the
+``_data`` part will return a regular ndarray or any of its subclass, depending
+on the initial data::
+
+  >>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]])
+  >>> print x._data
+  [[1 2]
+   [3 4]]
+  >>> print type(x._data)
+  <class 'numpy.matrixlib.defmatrix.matrix'>
+
+
+In practice, ``_data`` is implemented as a property, not as an attribute.
+Therefore, you cannot access it directly, and some simple tests such as the
+following one will fail::
+
+  >>>x._data is x._data
+  False
+
+
+``filled(x)`` can return a subclass of ndarray
+----------------------------------------------
+The function ``filled(a)`` returns an array of the same type as ``a._data``::
+
+  >>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]])
+  >>> y = filled(x)
+  >>> print type(y)
+  <class 'numpy.matrixlib.defmatrix.matrix'>
+  >>> print y
+  matrix([[     1,      2],
+          [     3, 999999]])
+
+
+``put``, ``putmask`` behave like their ndarray counterparts
+-----------------------------------------------------------
+
+Previously, ``putmask`` was used like this::
+
+  mask = [False,True,True]
+  x = array([1,4,7],mask=mask)
+  putmask(x,mask,[3])
+
+which translated to::
+
+  x[~mask] = [3]
+
+(Note that a ``True``-value in a mask suppresses a value.)
+
+In other words, the mask had the same length as ``x``, whereas
+``values`` had ``sum(~mask)`` elements.
+
+Now, the behaviour is similar to that of ``ndarray.putmask``, where
+the mask and the values are both the same length as ``x``, i.e.
+
+::
+
+  putmask(x,mask,[3,0,0])
+
+
+``fill_value`` is a property
+----------------------------
+
+``fill_value`` is no longer a method, but a property::
+
+  >>> print x.fill_value
+  999999
+
+``cumsum`` and ``cumprod`` ignore missing values
+------------------------------------------------
+
+Missing values are assumed to be the identity element, i.e. 0 for
+``cumsum`` and 1 for ``cumprod``::
+
+  >>> x = N.ma.array([1,2,3,4],mask=[False,True,False,False])
+  >>> print x
+  [1 -- 3 4]
+  >>> print x.cumsum()
+  [1 -- 4 8]
+  >> print x.cumprod()
+  [1 -- 3 12]
+
+``bool(x)`` raises a ValueError
+-------------------------------
+
+Masked arrays now behave like regular ``ndarrays``, in that they cannot be
+converted to booleans:
+
+::
+
+  >>> x = N.ma.array([1,2,3])
+  >>> bool(x)
+  Traceback (most recent call last):
+    File "<stdin>", line 1, in <module>
+  ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
+
+
+==================================
+New features (non exhaustive list)
+==================================
+
+``mr_``
+-------
+
+``mr_`` mimics the behavior of ``r_`` for masked arrays::
+
+  >>> np.ma.mr_[3,4,5]
+  masked_array(data = [3 4 5],
+        mask = False,
+        fill_value=999999)
+
+
+``anom``
+--------
+
+The ``anom`` method returns the deviations from the average (anomalies).