aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi297
1 files changed, 297 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi b/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi
new file mode 100644
index 00000000..c0b2f29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi
@@ -0,0 +1,297 @@
+from collections.abc import Iterable
+from typing import (
+ Literal as L,
+ overload,
+ TypeVar,
+ Any,
+ SupportsIndex,
+ SupportsInt,
+ NamedTuple,
+ Generic,
+)
+
+from numpy import (
+ generic,
+ floating,
+ complexfloating,
+ int32,
+ float64,
+ complex128,
+)
+
+from numpy.linalg import LinAlgError as LinAlgError
+
+from numpy._typing import (
+ NDArray,
+ ArrayLike,
+ _ArrayLikeInt_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeTD64_co,
+ _ArrayLikeObject_co,
+)
+
+_T = TypeVar("_T")
+_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
+_SCT = TypeVar("_SCT", bound=generic, covariant=True)
+_SCT2 = TypeVar("_SCT2", bound=generic, covariant=True)
+
+_2Tuple = tuple[_T, _T]
+_ModeKind = L["reduced", "complete", "r", "raw"]
+
+__all__: list[str]
+
+class EigResult(NamedTuple):
+ eigenvalues: NDArray[Any]
+ eigenvectors: NDArray[Any]
+
+class EighResult(NamedTuple):
+ eigenvalues: NDArray[Any]
+ eigenvectors: NDArray[Any]
+
+class QRResult(NamedTuple):
+ Q: NDArray[Any]
+ R: NDArray[Any]
+
+class SlogdetResult(NamedTuple):
+ # TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
+ # a `(x.ndim - 2)`` dimensionl arrays otherwise
+ sign: Any
+ logabsdet: Any
+
+class SVDResult(NamedTuple):
+ U: NDArray[Any]
+ S: NDArray[Any]
+ Vh: NDArray[Any]
+
+@overload
+def tensorsolve(
+ a: _ArrayLikeInt_co,
+ b: _ArrayLikeInt_co,
+ axes: None | Iterable[int] =...,
+) -> NDArray[float64]: ...
+@overload
+def tensorsolve(
+ a: _ArrayLikeFloat_co,
+ b: _ArrayLikeFloat_co,
+ axes: None | Iterable[int] =...,
+) -> NDArray[floating[Any]]: ...
+@overload
+def tensorsolve(
+ a: _ArrayLikeComplex_co,
+ b: _ArrayLikeComplex_co,
+ axes: None | Iterable[int] =...,
+) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def solve(
+ a: _ArrayLikeInt_co,
+ b: _ArrayLikeInt_co,
+) -> NDArray[float64]: ...
+@overload
+def solve(
+ a: _ArrayLikeFloat_co,
+ b: _ArrayLikeFloat_co,
+) -> NDArray[floating[Any]]: ...
+@overload
+def solve(
+ a: _ArrayLikeComplex_co,
+ b: _ArrayLikeComplex_co,
+) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def tensorinv(
+ a: _ArrayLikeInt_co,
+ ind: int = ...,
+) -> NDArray[float64]: ...
+@overload
+def tensorinv(
+ a: _ArrayLikeFloat_co,
+ ind: int = ...,
+) -> NDArray[floating[Any]]: ...
+@overload
+def tensorinv(
+ a: _ArrayLikeComplex_co,
+ ind: int = ...,
+) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
+@overload
+def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
+@overload
+def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+
+# TODO: The supported input and output dtypes are dependent on the value of `n`.
+# For example: `n < 0` always casts integer types to float64
+def matrix_power(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ n: SupportsIndex,
+) -> NDArray[Any]: ...
+
+@overload
+def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
+@overload
+def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
+@overload
+def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
+@overload
+def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
+@overload
+def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
+
+@overload
+def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
+@overload
+def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]: ...
+@overload
+def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
+@overload
+def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ...
+
+@overload
+def eig(a: _ArrayLikeInt_co) -> EigResult: ...
+@overload
+def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
+@overload
+def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
+
+@overload
+def eigh(
+ a: _ArrayLikeInt_co,
+ UPLO: L["L", "U", "l", "u"] = ...,
+) -> EighResult: ...
+@overload
+def eigh(
+ a: _ArrayLikeFloat_co,
+ UPLO: L["L", "U", "l", "u"] = ...,
+) -> EighResult: ...
+@overload
+def eigh(
+ a: _ArrayLikeComplex_co,
+ UPLO: L["L", "U", "l", "u"] = ...,
+) -> EighResult: ...
+
+@overload
+def svd(
+ a: _ArrayLikeInt_co,
+ full_matrices: bool = ...,
+ compute_uv: L[True] = ...,
+ hermitian: bool = ...,
+) -> SVDResult: ...
+@overload
+def svd(
+ a: _ArrayLikeFloat_co,
+ full_matrices: bool = ...,
+ compute_uv: L[True] = ...,
+ hermitian: bool = ...,
+) -> SVDResult: ...
+@overload
+def svd(
+ a: _ArrayLikeComplex_co,
+ full_matrices: bool = ...,
+ compute_uv: L[True] = ...,
+ hermitian: bool = ...,
+) -> SVDResult: ...
+@overload
+def svd(
+ a: _ArrayLikeInt_co,
+ full_matrices: bool = ...,
+ compute_uv: L[False] = ...,
+ hermitian: bool = ...,
+) -> NDArray[float64]: ...
+@overload
+def svd(
+ a: _ArrayLikeComplex_co,
+ full_matrices: bool = ...,
+ compute_uv: L[False] = ...,
+ hermitian: bool = ...,
+) -> NDArray[floating[Any]]: ...
+
+# TODO: Returns a scalar for 2D arrays and
+# a `(x.ndim - 2)`` dimensionl array otherwise
+def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ...
+
+# TODO: Returns `int` for <2D arrays and `intp` otherwise
+def matrix_rank(
+ A: _ArrayLikeComplex_co,
+ tol: None | _ArrayLikeFloat_co = ...,
+ hermitian: bool = ...,
+) -> Any: ...
+
+@overload
+def pinv(
+ a: _ArrayLikeInt_co,
+ rcond: _ArrayLikeFloat_co = ...,
+ hermitian: bool = ...,
+) -> NDArray[float64]: ...
+@overload
+def pinv(
+ a: _ArrayLikeFloat_co,
+ rcond: _ArrayLikeFloat_co = ...,
+ hermitian: bool = ...,
+) -> NDArray[floating[Any]]: ...
+@overload
+def pinv(
+ a: _ArrayLikeComplex_co,
+ rcond: _ArrayLikeFloat_co = ...,
+ hermitian: bool = ...,
+) -> NDArray[complexfloating[Any, Any]]: ...
+
+# TODO: Returns a 2-tuple of scalars for 2D arrays and
+# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
+def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
+
+# TODO: Returns a 2-tuple of scalars for 2D arrays and
+# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
+def det(a: _ArrayLikeComplex_co) -> Any: ...
+
+@overload
+def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> tuple[
+ NDArray[float64],
+ NDArray[float64],
+ int32,
+ NDArray[float64],
+]: ...
+@overload
+def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> tuple[
+ NDArray[floating[Any]],
+ NDArray[floating[Any]],
+ int32,
+ NDArray[floating[Any]],
+]: ...
+@overload
+def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> tuple[
+ NDArray[complexfloating[Any, Any]],
+ NDArray[floating[Any]],
+ int32,
+ NDArray[floating[Any]],
+]: ...
+
+@overload
+def norm(
+ x: ArrayLike,
+ ord: None | float | L["fro", "nuc"] = ...,
+ axis: None = ...,
+ keepdims: bool = ...,
+) -> floating[Any]: ...
+@overload
+def norm(
+ x: ArrayLike,
+ ord: None | float | L["fro", "nuc"] = ...,
+ axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+
+# TODO: Returns a scalar or array
+def multi_dot(
+ arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
+ *,
+ out: None | NDArray[Any] = ...,
+) -> Any: ...