diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_symbolic.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_symbolic.py | 494 |
1 files changed, 494 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_symbolic.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_symbolic.py new file mode 100644 index 00000000..84527831 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_symbolic.py @@ -0,0 +1,494 @@ +import pytest + +from numpy.f2py.symbolic import ( + Expr, + Op, + ArithOp, + Language, + as_symbol, + as_number, + as_string, + as_array, + as_complex, + as_terms, + as_factors, + eliminate_quotes, + insert_quotes, + fromstring, + as_expr, + as_apply, + as_numer_denom, + as_ternary, + as_ref, + as_deref, + normalize, + as_eq, + as_ne, + as_lt, + as_gt, + as_le, + as_ge, +) +from . import util + + +class TestSymbolic(util.F2PyTest): + def test_eliminate_quotes(self): + def worker(s): + r, d = eliminate_quotes(s) + s1 = insert_quotes(r, d) + assert s1 == s + + for kind in ["", "mykind_"]: + worker(kind + '"1234" // "ABCD"') + worker(kind + '"1234" // ' + kind + '"ABCD"') + worker(kind + "\"1234\" // 'ABCD'") + worker(kind + '"1234" // ' + kind + "'ABCD'") + worker(kind + '"1\\"2\'AB\'34"') + worker("a = " + kind + "'1\\'2\"AB\"34'") + + def test_sanity(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + + assert x.op == Op.SYMBOL + assert repr(x) == "Expr(Op.SYMBOL, 'x')" + assert x == x + assert x != y + assert hash(x) is not None + + n = as_number(123) + m = as_number(456) + assert n.op == Op.INTEGER + assert repr(n) == "Expr(Op.INTEGER, (123, 4))" + assert n == n + assert n != m + assert hash(n) is not None + + fn = as_number(12.3) + fm = as_number(45.6) + assert fn.op == Op.REAL + assert repr(fn) == "Expr(Op.REAL, (12.3, 4))" + assert fn == fn + assert fn != fm + assert hash(fn) is not None + + c = as_complex(1, 2) + c2 = as_complex(3, 4) + assert c.op == Op.COMPLEX + assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4))," + " Expr(Op.INTEGER, (2, 4))))") + assert c == c + assert c != c2 + assert hash(c) is not None + + s = as_string("'123'") + s2 = as_string('"ABC"') + assert s.op == Op.STRING + assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s) + assert s == s + assert s != s2 + + a = as_array((n, m)) + b = as_array((n, )) + assert a.op == Op.ARRAY + assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4))," + " Expr(Op.INTEGER, (456, 4))))") + assert a == a + assert a != b + + t = as_terms(x) + u = as_terms(y) + assert t.op == Op.TERMS + assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})" + assert t == t + assert t != u + assert hash(t) is not None + + v = as_factors(x) + w = as_factors(y) + assert v.op == Op.FACTORS + assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})" + assert v == v + assert w != v + assert hash(v) is not None + + t = as_ternary(x, y, z) + u = as_ternary(x, z, y) + assert t.op == Op.TERNARY + assert t == t + assert t != u + assert hash(t) is not None + + e = as_eq(x, y) + f = as_lt(x, y) + assert e.op == Op.RELATIONAL + assert e == e + assert e != f + assert hash(e) is not None + + def test_tostring_fortran(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + n = as_number(123) + m = as_number(456) + a = as_array((n, m)) + c = as_complex(n, m) + + assert str(x) == "x" + assert str(n) == "123" + assert str(a) == "[123, 456]" + assert str(c) == "(123, 456)" + + assert str(Expr(Op.TERMS, {x: 1})) == "x" + assert str(Expr(Op.TERMS, {x: 2})) == "2 * x" + assert str(Expr(Op.TERMS, {x: -1})) == "-x" + assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x" + assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y" + assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y" + assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y" + assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y" + assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y" + + assert str(Expr(Op.FACTORS, {x: 1})) == "x" + assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2" + assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1" + assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2" + assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y" + assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3" + + v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3}) + assert str(v) == "x ** 2 * (x + y) ** 3", str(v) + v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3}) + assert str(v) == "x ** 2 * (x * y) ** 3", str(v) + + assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()" + assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)" + assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)" + assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]" + + assert str(as_ternary(x, y, z)) == "merge(y, z, x)" + assert str(as_eq(x, y)) == "x .eq. y" + assert str(as_ne(x, y)) == "x .ne. y" + assert str(as_lt(x, y)) == "x .lt. y" + assert str(as_le(x, y)) == "x .le. y" + assert str(as_gt(x, y)) == "x .gt. y" + assert str(as_ge(x, y)) == "x .ge. y" + + def test_tostring_c(self): + language = Language.C + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + n = as_number(123) + + assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x" + assert (Expr(Op.FACTORS, { + x + y: 2 + }).tostring(language=language) == "(x + y) * (x + y)") + assert Expr(Op.FACTORS, { + x: 12 + }).tostring(language=language) == "pow(x, 12)" + + assert as_apply(ArithOp.DIV, x, + y).tostring(language=language) == "x / y" + assert (as_apply(ArithOp.DIV, x, + x + y).tostring(language=language) == "x / (x + y)") + assert (as_apply(ArithOp.DIV, x - y, x + + y).tostring(language=language) == "(x - y) / (x + y)") + assert (x + (x - y) / (x + y) + + n).tostring(language=language) == "123 + x + (x - y) / (x + y)" + + assert as_ternary(x, y, z).tostring(language=language) == "(x?y:z)" + assert as_eq(x, y).tostring(language=language) == "x == y" + assert as_ne(x, y).tostring(language=language) == "x != y" + assert as_lt(x, y).tostring(language=language) == "x < y" + assert as_le(x, y).tostring(language=language) == "x <= y" + assert as_gt(x, y).tostring(language=language) == "x > y" + assert as_ge(x, y).tostring(language=language) == "x >= y" + + def test_operations(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + + assert x + x == Expr(Op.TERMS, {x: 2}) + assert x - x == Expr(Op.INTEGER, (0, 4)) + assert x + y == Expr(Op.TERMS, {x: 1, y: 1}) + assert x - y == Expr(Op.TERMS, {x: 1, y: -1}) + assert x * x == Expr(Op.FACTORS, {x: 2}) + assert x * y == Expr(Op.FACTORS, {x: 1, y: 1}) + + assert +x == x + assert -x == Expr(Op.TERMS, {x: -1}), repr(-x) + assert 2 * x == Expr(Op.TERMS, {x: 2}) + assert 2 + x == Expr(Op.TERMS, {x: 1, as_number(1): 2}) + assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3}) + assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2}) + + assert x**2 == Expr(Op.FACTORS, {x: 2}) + assert (x + y)**2 == Expr( + Op.TERMS, + { + Expr(Op.FACTORS, {x: 2}): 1, + Expr(Op.FACTORS, {y: 2}): 1, + Expr(Op.FACTORS, { + x: 1, + y: 1 + }): 2, + }, + ) + assert (x + y) * x == x**2 + x * y + assert (x + y)**2 == x**2 + 2 * x * y + y**2 + assert (x + y)**2 + (x - y)**2 == 2 * x**2 + 2 * y**2 + assert (x + y) * z == x * z + y * z + assert z * (x + y) == x * z + y * z + + assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2)) + assert (2 * x / 2) == x + assert (3 * x / 2) == as_apply(ArithOp.DIV, 3 * x, as_number(2)) + assert (4 * x / 2) == 2 * x + assert (5 * x / 2) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) + assert (6 * x / 2) == 3 * x + assert ((3 * 5) * x / 6) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) + assert (30 * x**2 * y**4 / (24 * x**3 * y**3)) == as_apply( + ArithOp.DIV, 5 * y, 4 * x) + assert ((15 * x / 6) / 5) == as_apply(ArithOp.DIV, x, + as_number(2)), (15 * x / 6) / 5 + assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5)) + + assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5}) + + s = as_string('"ABC"') + t = as_string('"123"') + + assert s // t == Expr(Op.STRING, ('"ABC123"', 1)) + assert s // x == Expr(Op.CONCAT, (s, x)) + assert x // s == Expr(Op.CONCAT, (x, s)) + + c = as_complex(1.0, 2.0) + assert -c == as_complex(-1.0, -2.0) + assert c + c == as_expr((1 + 2j) * 2) + assert c * c == as_expr((1 + 2j)**2) + + def test_substitute(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + a = as_array((x, y)) + + assert x.substitute({x: y}) == y + assert (x + y).substitute({x: z}) == y + z + assert (x * y).substitute({x: z}) == y * z + assert (x**4).substitute({x: z}) == z**4 + assert (x / y).substitute({x: z}) == z / y + assert x.substitute({x: y + z}) == y + z + assert a.substitute({x: y + z}) == as_array((y + z, y)) + + assert as_ternary(x, y, + z).substitute({x: y + z}) == as_ternary(y + z, y, z) + assert as_eq(x, y).substitute({x: y + z}) == as_eq(y + z, y) + + def test_fromstring(self): + + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + f = as_symbol("f") + s = as_string('"ABC"') + t = as_string('"123"') + a = as_array((x, y)) + + assert fromstring("x") == x + assert fromstring("+ x") == x + assert fromstring("- x") == -x + assert fromstring("x + y") == x + y + assert fromstring("x + 1") == x + 1 + assert fromstring("x * y") == x * y + assert fromstring("x * 2") == x * 2 + assert fromstring("x / y") == x / y + assert fromstring("x ** 2", language=Language.Python) == x**2 + assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3 + assert fromstring("(x + y) * z") == (x + y) * z + + assert fromstring("f(x)") == f(x) + assert fromstring("f(x,y)") == f(x, y) + assert fromstring("f[x]") == f[x] + assert fromstring("f[x][y]") == f[x][y] + + assert fromstring('"ABC"') == s + assert (normalize( + fromstring('"ABC" // "123" ', + language=Language.Fortran)) == s // t) + assert fromstring('f("ABC")') == f(s) + assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND") + + assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)") + assert fromstring("f((/x, y/))") == f(a) + assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, )) + + assert fromstring("123") == as_number(123) + assert fromstring("123_2") == as_number(123, 2) + assert fromstring("123_myintkind") == as_number(123, "myintkind") + + assert fromstring("123.0") == as_number(123.0, 4) + assert fromstring("123.0_4") == as_number(123.0, 4) + assert fromstring("123.0_8") == as_number(123.0, 8) + assert fromstring("123.0e0") == as_number(123.0, 4) + assert fromstring("123.0d0") == as_number(123.0, 8) + assert fromstring("123d0") == as_number(123.0, 8) + assert fromstring("123e-0") == as_number(123.0, 4) + assert fromstring("123d+0") == as_number(123.0, 8) + assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind") + assert fromstring("3E4") == as_number(30000.0, 4) + + assert fromstring("(1, 2)") == as_complex(1, 2) + assert fromstring("(1e2, PI)") == as_complex(as_number(100.0), + as_symbol("PI")) + + assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2))) + + assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"), + x, + y=as_number(1)) + assert fromstring( + 'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply( + as_symbol("PERSON"), + name=as_string('"John"'), + age=as_number(50), + shape=as_array((as_number(34), as_number(23))), + ) + + assert fromstring("x?y:z") == as_ternary(x, y, z) + + assert fromstring("*x") == as_deref(x) + assert fromstring("**x") == as_deref(as_deref(x)) + assert fromstring("&x") == as_ref(x) + assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y) + assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y) + assert fromstring("*x * *y") == as_deref(x) * as_deref(y) + assert fromstring("*x**y") == as_deref(x) * as_deref(y) + + assert fromstring("x == y") == as_eq(x, y) + assert fromstring("x != y") == as_ne(x, y) + assert fromstring("x < y") == as_lt(x, y) + assert fromstring("x > y") == as_gt(x, y) + assert fromstring("x <= y") == as_le(x, y) + assert fromstring("x >= y") == as_ge(x, y) + + assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y) + assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y) + assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y) + assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y) + assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y) + assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y) + + def test_traverse(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + f = as_symbol("f") + + # Use traverse to substitute a symbol + def replace_visit(s, r=z): + if s == x: + return r + + assert x.traverse(replace_visit) == z + assert y.traverse(replace_visit) == y + assert z.traverse(replace_visit) == z + assert (f(y)).traverse(replace_visit) == f(y) + assert (f(x)).traverse(replace_visit) == f(z) + assert (f[y]).traverse(replace_visit) == f[y] + assert (f[z]).traverse(replace_visit) == f[z] + assert (x + y + z).traverse(replace_visit) == (2 * z + y) + assert (x + + f(y, x - z)).traverse(replace_visit) == (z + + f(y, as_number(0))) + assert as_eq(x, y).traverse(replace_visit) == as_eq(z, y) + + # Use traverse to collect symbols, method 1 + function_symbols = set() + symbols = set() + + def collect_symbols(s): + if s.op is Op.APPLY: + oper = s.data[0] + function_symbols.add(oper) + if oper in symbols: + symbols.remove(oper) + elif s.op is Op.SYMBOL and s not in function_symbols: + symbols.add(s) + + (x + f(y, x - z)).traverse(collect_symbols) + assert function_symbols == {f} + assert symbols == {x, y, z} + + # Use traverse to collect symbols, method 2 + def collect_symbols2(expr, symbols): + if expr.op is Op.SYMBOL: + symbols.add(expr) + + symbols = set() + (x + f(y, x - z)).traverse(collect_symbols2, symbols) + assert symbols == {x, y, z, f} + + # Use traverse to partially collect symbols + def collect_symbols3(expr, symbols): + if expr.op is Op.APPLY: + # skip traversing function calls + return expr + if expr.op is Op.SYMBOL: + symbols.add(expr) + + symbols = set() + (x + f(y, x - z)).traverse(collect_symbols3, symbols) + assert symbols == {x} + + def test_linear_solve(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + + assert x.linear_solve(x) == (as_number(1), as_number(0)) + assert (x + 1).linear_solve(x) == (as_number(1), as_number(1)) + assert (2 * x).linear_solve(x) == (as_number(2), as_number(0)) + assert (2 * x + 3).linear_solve(x) == (as_number(2), as_number(3)) + assert as_number(3).linear_solve(x) == (as_number(0), as_number(3)) + assert y.linear_solve(x) == (as_number(0), y) + assert (y * z).linear_solve(x) == (as_number(0), y * z) + + assert (x + y).linear_solve(x) == (as_number(1), y) + assert (z * x + y).linear_solve(x) == (z, y) + assert ((z + y) * x + y).linear_solve(x) == (z + y, y) + assert (z * y * x + y).linear_solve(x) == (z * y, y) + + pytest.raises(RuntimeError, lambda: (x * x).linear_solve(x)) + + def test_as_numer_denom(self): + x = as_symbol("x") + y = as_symbol("y") + n = as_number(123) + + assert as_numer_denom(x) == (x, as_number(1)) + assert as_numer_denom(x / n) == (x, n) + assert as_numer_denom(n / x) == (n, x) + assert as_numer_denom(x / y) == (x, y) + assert as_numer_denom(x * y) == (x * y, as_number(1)) + assert as_numer_denom(n + x / y) == (x + n * y, y) + assert as_numer_denom(n + x / (y - x / n)) == (y * n**2, y * n - x) + + def test_polynomial_atoms(self): + x = as_symbol("x") + y = as_symbol("y") + n = as_number(123) + + assert x.polynomial_atoms() == {x} + assert n.polynomial_atoms() == set() + assert (y[x]).polynomial_atoms() == {y[x]} + assert (y(x)).polynomial_atoms() == {y(x)} + assert (y(x) + x).polynomial_atoms() == {y(x), x} + assert (y(x) * x[y]).polynomial_atoms() == {y(x), x[y]} + assert (y(x)**x).polynomial_atoms() == {y(x)} |