about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/array_api/linalg.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/array_api/linalg.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/array_api/linalg.py466
1 files changed, 466 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/array_api/linalg.py b/.venv/lib/python3.12/site-packages/numpy/array_api/linalg.py
new file mode 100644
index 00000000..c18360f6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/array_api/linalg.py
@@ -0,0 +1,466 @@
+from __future__ import annotations
+
+from ._dtypes import (
+    _floating_dtypes,
+    _numeric_dtypes,
+    float32,
+    float64,
+    complex64,
+    complex128
+)
+from ._manipulation_functions import reshape
+from ._elementwise_functions import conj
+from ._array_object import Array
+
+from ..core.numeric import normalize_axis_tuple
+
+from typing import TYPE_CHECKING
+if TYPE_CHECKING:
+    from ._typing import Literal, Optional, Sequence, Tuple, Union, Dtype
+
+from typing import NamedTuple
+
+import numpy.linalg
+import numpy as np
+
+class EighResult(NamedTuple):
+    eigenvalues: Array
+    eigenvectors: Array
+
+class QRResult(NamedTuple):
+    Q: Array
+    R: Array
+
+class SlogdetResult(NamedTuple):
+    sign: Array
+    logabsdet: Array
+
+class SVDResult(NamedTuple):
+    U: Array
+    S: Array
+    Vh: Array
+
+# Note: the inclusion of the upper keyword is different from
+# np.linalg.cholesky, which does not have it.
+def cholesky(x: Array, /, *, upper: bool = False) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.cholesky <numpy.linalg.cholesky>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.cholesky.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in cholesky')
+    L = np.linalg.cholesky(x._array)
+    if upper:
+        U = Array._new(L).mT
+        if U.dtype in [complex64, complex128]:
+            U = conj(U)
+        return U
+    return Array._new(L)
+
+# Note: cross is the numpy top-level namespace, not np.linalg
+def cross(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.cross <numpy.cross>`.
+
+    See its docstring for more information.
+    """
+    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
+        raise TypeError('Only numeric dtypes are allowed in cross')
+    # Note: this is different from np.cross(), which broadcasts
+    if x1.shape != x2.shape:
+        raise ValueError('x1 and x2 must have the same shape')
+    if x1.ndim == 0:
+        raise ValueError('cross() requires arrays of dimension at least 1')
+    # Note: this is different from np.cross(), which allows dimension 2
+    if x1.shape[axis] != 3:
+        raise ValueError('cross() dimension must equal 3')
+    return Array._new(np.cross(x1._array, x2._array, axis=axis))
+
+def det(x: Array, /) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.det <numpy.linalg.det>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.det.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in det')
+    return Array._new(np.linalg.det(x._array))
+
+# Note: diagonal is the numpy top-level namespace, not np.linalg
+def diagonal(x: Array, /, *, offset: int = 0) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.diagonal <numpy.diagonal>`.
+
+    See its docstring for more information.
+    """
+    # Note: diagonal always operates on the last two axes, whereas np.diagonal
+    # operates on the first two axes by default
+    return Array._new(np.diagonal(x._array, offset=offset, axis1=-2, axis2=-1))
+
+
+def eigh(x: Array, /) -> EighResult:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.eigh <numpy.linalg.eigh>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.eigh.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in eigh')
+
+    # Note: the return type here is a namedtuple, which is different from
+    # np.eigh, which only returns a tuple.
+    return EighResult(*map(Array._new, np.linalg.eigh(x._array)))
+
+
+def eigvalsh(x: Array, /) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.eigvalsh <numpy.linalg.eigvalsh>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.eigvalsh.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in eigvalsh')
+
+    return Array._new(np.linalg.eigvalsh(x._array))
+
+def inv(x: Array, /) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.inv <numpy.linalg.inv>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.inv.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in inv')
+
+    return Array._new(np.linalg.inv(x._array))
+
+
+# Note: matmul is the numpy top-level namespace but not in np.linalg
+def matmul(x1: Array, x2: Array, /) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to numeric dtypes only is different from
+    # np.matmul.
+    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
+        raise TypeError('Only numeric dtypes are allowed in matmul')
+
+    return Array._new(np.matmul(x1._array, x2._array))
+
+
+# Note: the name here is different from norm(). The array API norm is split
+# into matrix_norm and vector_norm().
+
+# The type for ord should be Optional[Union[int, float, Literal[np.inf,
+# -np.inf, 'fro', 'nuc']]], but Literal does not support floating-point
+# literals.
+def matrix_norm(x: Array, /, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.norm.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in matrix_norm')
+
+    return Array._new(np.linalg.norm(x._array, axis=(-2, -1), keepdims=keepdims, ord=ord))
+
+
+def matrix_power(x: Array, n: int, /) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.matrix_power <numpy.matrix_power>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.matrix_power.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed for the first argument of matrix_power')
+
+    # np.matrix_power already checks if n is an integer
+    return Array._new(np.linalg.matrix_power(x._array, n))
+
+# Note: the keyword argument name rtol is different from np.linalg.matrix_rank
+def matrix_rank(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.matrix_rank <numpy.matrix_rank>`.
+
+    See its docstring for more information.
+    """
+    # Note: this is different from np.linalg.matrix_rank, which supports 1
+    # dimensional arrays.
+    if x.ndim < 2:
+        raise np.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
+    S = np.linalg.svd(x._array, compute_uv=False)
+    if rtol is None:
+        tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * np.finfo(S.dtype).eps
+    else:
+        if isinstance(rtol, Array):
+            rtol = rtol._array
+        # Note: this is different from np.linalg.matrix_rank, which does not multiply
+        # the tolerance by the largest singular value.
+        tol = S.max(axis=-1, keepdims=True)*np.asarray(rtol)[..., np.newaxis]
+    return Array._new(np.count_nonzero(S > tol, axis=-1))
+
+
+# Note: this function is new in the array API spec. Unlike transpose, it only
+# transposes the last two axes.
+def matrix_transpose(x: Array, /) -> Array:
+    if x.ndim < 2:
+        raise ValueError("x must be at least 2-dimensional for matrix_transpose")
+    return Array._new(np.swapaxes(x._array, -1, -2))
+
+# Note: outer is the numpy top-level namespace, not np.linalg
+def outer(x1: Array, x2: Array, /) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.outer <numpy.outer>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to numeric dtypes only is different from
+    # np.outer.
+    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
+        raise TypeError('Only numeric dtypes are allowed in outer')
+
+    # Note: the restriction to only 1-dim arrays is different from np.outer
+    if x1.ndim != 1 or x2.ndim != 1:
+        raise ValueError('The input arrays to outer must be 1-dimensional')
+
+    return Array._new(np.outer(x1._array, x2._array))
+
+# Note: the keyword argument name rtol is different from np.linalg.pinv
+def pinv(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.pinv <numpy.linalg.pinv>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.pinv.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in pinv')
+
+    # Note: this is different from np.linalg.pinv, which does not multiply the
+    # default tolerance by max(M, N).
+    if rtol is None:
+        rtol = max(x.shape[-2:]) * np.finfo(x.dtype).eps
+    return Array._new(np.linalg.pinv(x._array, rcond=rtol))
+
+def qr(x: Array, /, *, mode: Literal['reduced', 'complete'] = 'reduced') -> QRResult:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.qr <numpy.linalg.qr>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.qr.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in qr')
+
+    # Note: the return type here is a namedtuple, which is different from
+    # np.linalg.qr, which only returns a tuple.
+    return QRResult(*map(Array._new, np.linalg.qr(x._array, mode=mode)))
+
+def slogdet(x: Array, /) -> SlogdetResult:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.slogdet <numpy.linalg.slogdet>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.slogdet.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in slogdet')
+
+    # Note: the return type here is a namedtuple, which is different from
+    # np.linalg.slogdet, which only returns a tuple.
+    return SlogdetResult(*map(Array._new, np.linalg.slogdet(x._array)))
+
+# Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a
+# vector when it is exactly 1-dimensional. All other cases treat x2 as a stack
+# of matrices. The np.linalg.solve behavior of allowing stacks of both
+# matrices and vectors is ambiguous c.f.
+# https://github.com/numpy/numpy/issues/15349 and
+# https://github.com/data-apis/array-api/issues/285.
+
+# To workaround this, the below is the code from np.linalg.solve except
+# only calling solve1 in the exactly 1D case.
+def _solve(a, b):
+    from ..linalg.linalg import (_makearray, _assert_stacked_2d,
+                                 _assert_stacked_square, _commonType,
+                                 isComplexType, get_linalg_error_extobj,
+                                 _raise_linalgerror_singular)
+    from ..linalg import _umath_linalg
+
+    a, _ = _makearray(a)
+    _assert_stacked_2d(a)
+    _assert_stacked_square(a)
+    b, wrap = _makearray(b)
+    t, result_t = _commonType(a, b)
+
+    # This part is different from np.linalg.solve
+    if b.ndim == 1:
+        gufunc = _umath_linalg.solve1
+    else:
+        gufunc = _umath_linalg.solve
+
+    # This does nothing currently but is left in because it will be relevant
+    # when complex dtype support is added to the spec in 2022.
+    signature = 'DD->D' if isComplexType(t) else 'dd->d'
+    with np.errstate(call=_raise_linalgerror_singular, invalid='call',
+                     over='ignore', divide='ignore', under='ignore'):
+        r = gufunc(a, b, signature=signature)
+
+    return wrap(r.astype(result_t, copy=False))
+
+def solve(x1: Array, x2: Array, /) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.solve <numpy.linalg.solve>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.solve.
+    if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in solve')
+
+    return Array._new(_solve(x1._array, x2._array))
+
+def svd(x: Array, /, *, full_matrices: bool = True) -> SVDResult:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.svd <numpy.linalg.svd>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.svd.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in svd')
+
+    # Note: the return type here is a namedtuple, which is different from
+    # np.svd, which only returns a tuple.
+    return SVDResult(*map(Array._new, np.linalg.svd(x._array, full_matrices=full_matrices)))
+
+# Note: svdvals is not in NumPy (but it is in SciPy). It is equivalent to
+# np.linalg.svd(compute_uv=False).
+def svdvals(x: Array, /) -> Union[Array, Tuple[Array, ...]]:
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in svdvals')
+    return Array._new(np.linalg.svd(x._array, compute_uv=False))
+
+# Note: tensordot is the numpy top-level namespace but not in np.linalg
+
+# Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like.
+def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array:
+    # Note: the restriction to numeric dtypes only is different from
+    # np.tensordot.
+    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
+        raise TypeError('Only numeric dtypes are allowed in tensordot')
+
+    return Array._new(np.tensordot(x1._array, x2._array, axes=axes))
+
+# Note: trace is the numpy top-level namespace, not np.linalg
+def trace(x: Array, /, *, offset: int = 0, dtype: Optional[Dtype] = None) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.trace <numpy.trace>`.
+
+    See its docstring for more information.
+    """
+    if x.dtype not in _numeric_dtypes:
+        raise TypeError('Only numeric dtypes are allowed in trace')
+
+    # Note: trace() works the same as sum() and prod() (see
+    # _statistical_functions.py)
+    if dtype is None:
+        if x.dtype == float32:
+            dtype = float64
+        elif x.dtype == complex64:
+            dtype = complex128
+    # Note: trace always operates on the last two axes, whereas np.trace
+    # operates on the first two axes by default
+    return Array._new(np.asarray(np.trace(x._array, offset=offset, axis1=-2, axis2=-1, dtype=dtype)))
+
+# Note: vecdot is not in NumPy
+def vecdot(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
+    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
+        raise TypeError('Only numeric dtypes are allowed in vecdot')
+    ndim = max(x1.ndim, x2.ndim)
+    x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
+    x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
+    if x1_shape[axis] != x2_shape[axis]:
+        raise ValueError("x1 and x2 must have the same size along the given axis")
+
+    x1_, x2_ = np.broadcast_arrays(x1._array, x2._array)
+    x1_ = np.moveaxis(x1_, axis, -1)
+    x2_ = np.moveaxis(x2_, axis, -1)
+
+    res = x1_[..., None, :] @ x2_[..., None]
+    return Array._new(res[..., 0, 0])
+
+
+# Note: the name here is different from norm(). The array API norm is split
+# into matrix_norm and vector_norm().
+
+# The type for ord should be Optional[Union[int, float, Literal[np.inf,
+# -np.inf]]] but Literal does not support floating-point literals.
+def vector_norm(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> Array:
+    """
+    Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
+
+    See its docstring for more information.
+    """
+    # Note: the restriction to floating-point dtypes only is different from
+    # np.linalg.norm.
+    if x.dtype not in _floating_dtypes:
+        raise TypeError('Only floating-point dtypes are allowed in norm')
+
+    # np.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
+    # when axis=None and the input is 2-D, so to force a vector norm, we make
+    # it so the input is 1-D (for axis=None), or reshape so that norm is done
+    # on a single dimension.
+    a = x._array
+    if axis is None:
+        # Note: np.linalg.norm() doesn't handle 0-D arrays
+        a = a.ravel()
+        _axis = 0
+    elif isinstance(axis, tuple):
+        # Note: The axis argument supports any number of axes, whereas
+        # np.linalg.norm() only supports a single axis for vector norm.
+        normalized_axis = normalize_axis_tuple(axis, x.ndim)
+        rest = tuple(i for i in range(a.ndim) if i not in normalized_axis)
+        newshape = axis + rest
+        a = np.transpose(a, newshape).reshape(
+            (np.prod([a.shape[i] for i in axis], dtype=int), *[a.shape[i] for i in rest]))
+        _axis = 0
+    else:
+        _axis = axis
+
+    res = Array._new(np.linalg.norm(a, axis=_axis, ord=ord))
+
+    if keepdims:
+        # We can't reuse np.linalg.norm(keepdims) because of the reshape hacks
+        # above to avoid matrix norm logic.
+        shape = list(x.shape)
+        _axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
+        for i in _axis:
+            shape[i] = 1
+        res = reshape(res, tuple(shape))
+
+    return res
+
+__all__ = ['cholesky', 'cross', 'det', 'diagonal', 'eigh', 'eigvalsh', 'inv', 'matmul', 'matrix_norm', 'matrix_power', 'matrix_rank', 'matrix_transpose', 'outer', 'pinv', 'qr', 'slogdet', 'solve', 'svd', 'svdvals', 'tensordot', 'trace', 'vecdot', 'vector_norm']