aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/__init__.pyi
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/__init__.pyi')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/__init__.pyi4422
1 files changed, 4422 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/__init__.pyi
new file mode 100644
index 00000000..a185bfe7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/__init__.pyi
@@ -0,0 +1,4422 @@
+import builtins
+import sys
+import os
+import mmap
+import ctypes as ct
+import array as _array
+import datetime as dt
+import enum
+from abc import abstractmethod
+from types import TracebackType, MappingProxyType, GenericAlias
+from contextlib import ContextDecorator
+from contextlib import contextmanager
+
+from numpy._pytesttester import PytestTester
+from numpy.core._internal import _ctypes
+
+from numpy._typing import (
+ # Arrays
+ ArrayLike,
+ NDArray,
+ _SupportsArray,
+ _NestedSequence,
+ _FiniteNestedSequence,
+ _SupportsArray,
+ _ArrayLikeBool_co,
+ _ArrayLikeUInt_co,
+ _ArrayLikeInt_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeNumber_co,
+ _ArrayLikeTD64_co,
+ _ArrayLikeDT64_co,
+ _ArrayLikeObject_co,
+ _ArrayLikeStr_co,
+ _ArrayLikeBytes_co,
+ _ArrayLikeUnknown,
+ _UnknownType,
+
+ # DTypes
+ DTypeLike,
+ _DTypeLike,
+ _DTypeLikeVoid,
+ _SupportsDType,
+ _VoidDTypeLike,
+
+ # Shapes
+ _Shape,
+ _ShapeLike,
+
+ # Scalars
+ _CharLike_co,
+ _BoolLike_co,
+ _IntLike_co,
+ _FloatLike_co,
+ _ComplexLike_co,
+ _TD64Like_co,
+ _NumberLike_co,
+ _ScalarLike_co,
+
+ # `number` precision
+ NBitBase,
+ _256Bit,
+ _128Bit,
+ _96Bit,
+ _80Bit,
+ _64Bit,
+ _32Bit,
+ _16Bit,
+ _8Bit,
+ _NBitByte,
+ _NBitShort,
+ _NBitIntC,
+ _NBitIntP,
+ _NBitInt,
+ _NBitLongLong,
+ _NBitHalf,
+ _NBitSingle,
+ _NBitDouble,
+ _NBitLongDouble,
+
+ # Character codes
+ _BoolCodes,
+ _UInt8Codes,
+ _UInt16Codes,
+ _UInt32Codes,
+ _UInt64Codes,
+ _Int8Codes,
+ _Int16Codes,
+ _Int32Codes,
+ _Int64Codes,
+ _Float16Codes,
+ _Float32Codes,
+ _Float64Codes,
+ _Complex64Codes,
+ _Complex128Codes,
+ _ByteCodes,
+ _ShortCodes,
+ _IntCCodes,
+ _IntPCodes,
+ _IntCodes,
+ _LongLongCodes,
+ _UByteCodes,
+ _UShortCodes,
+ _UIntCCodes,
+ _UIntPCodes,
+ _UIntCodes,
+ _ULongLongCodes,
+ _HalfCodes,
+ _SingleCodes,
+ _DoubleCodes,
+ _LongDoubleCodes,
+ _CSingleCodes,
+ _CDoubleCodes,
+ _CLongDoubleCodes,
+ _DT64Codes,
+ _TD64Codes,
+ _StrCodes,
+ _BytesCodes,
+ _VoidCodes,
+ _ObjectCodes,
+
+ # Ufuncs
+ _UFunc_Nin1_Nout1,
+ _UFunc_Nin2_Nout1,
+ _UFunc_Nin1_Nout2,
+ _UFunc_Nin2_Nout2,
+ _GUFunc_Nin2_Nout1,
+)
+
+from numpy._typing._callable import (
+ _BoolOp,
+ _BoolBitOp,
+ _BoolSub,
+ _BoolTrueDiv,
+ _BoolMod,
+ _BoolDivMod,
+ _TD64Div,
+ _IntTrueDiv,
+ _UnsignedIntOp,
+ _UnsignedIntBitOp,
+ _UnsignedIntMod,
+ _UnsignedIntDivMod,
+ _SignedIntOp,
+ _SignedIntBitOp,
+ _SignedIntMod,
+ _SignedIntDivMod,
+ _FloatOp,
+ _FloatMod,
+ _FloatDivMod,
+ _ComplexOp,
+ _NumberOp,
+ _ComparisonOp,
+)
+
+# NOTE: Numpy's mypy plugin is used for removing the types unavailable
+# to the specific platform
+from numpy._typing._extended_precision import (
+ uint128 as uint128,
+ uint256 as uint256,
+ int128 as int128,
+ int256 as int256,
+ float80 as float80,
+ float96 as float96,
+ float128 as float128,
+ float256 as float256,
+ complex160 as complex160,
+ complex192 as complex192,
+ complex256 as complex256,
+ complex512 as complex512,
+)
+
+from collections.abc import (
+ Callable,
+ Container,
+ Iterable,
+ Iterator,
+ Mapping,
+ Sequence,
+ Sized,
+)
+from typing import (
+ Literal as L,
+ Any,
+ Generator,
+ Generic,
+ IO,
+ NoReturn,
+ overload,
+ SupportsComplex,
+ SupportsFloat,
+ SupportsInt,
+ TypeVar,
+ Union,
+ Protocol,
+ SupportsIndex,
+ Final,
+ final,
+ ClassVar,
+)
+
+# Ensures that the stubs are picked up
+from numpy import (
+ ctypeslib as ctypeslib,
+ exceptions as exceptions,
+ fft as fft,
+ lib as lib,
+ linalg as linalg,
+ ma as ma,
+ polynomial as polynomial,
+ random as random,
+ testing as testing,
+ version as version,
+ exceptions as exceptions,
+ dtypes as dtypes,
+)
+
+from numpy.core import defchararray, records
+char = defchararray
+rec = records
+
+from numpy.core.function_base import (
+ linspace as linspace,
+ logspace as logspace,
+ geomspace as geomspace,
+)
+
+from numpy.core.fromnumeric import (
+ take as take,
+ reshape as reshape,
+ choose as choose,
+ repeat as repeat,
+ put as put,
+ swapaxes as swapaxes,
+ transpose as transpose,
+ partition as partition,
+ argpartition as argpartition,
+ sort as sort,
+ argsort as argsort,
+ argmax as argmax,
+ argmin as argmin,
+ searchsorted as searchsorted,
+ resize as resize,
+ squeeze as squeeze,
+ diagonal as diagonal,
+ trace as trace,
+ ravel as ravel,
+ nonzero as nonzero,
+ shape as shape,
+ compress as compress,
+ clip as clip,
+ sum as sum,
+ all as all,
+ any as any,
+ cumsum as cumsum,
+ ptp as ptp,
+ max as max,
+ min as min,
+ amax as amax,
+ amin as amin,
+ prod as prod,
+ cumprod as cumprod,
+ ndim as ndim,
+ size as size,
+ around as around,
+ round as round,
+ mean as mean,
+ std as std,
+ var as var,
+)
+
+from numpy.core._asarray import (
+ require as require,
+)
+
+from numpy.core._type_aliases import (
+ sctypes as sctypes,
+ sctypeDict as sctypeDict,
+)
+
+from numpy.core._ufunc_config import (
+ seterr as seterr,
+ geterr as geterr,
+ setbufsize as setbufsize,
+ getbufsize as getbufsize,
+ seterrcall as seterrcall,
+ geterrcall as geterrcall,
+ _ErrKind,
+ _ErrFunc,
+ _ErrDictOptional,
+)
+
+from numpy.core.arrayprint import (
+ set_printoptions as set_printoptions,
+ get_printoptions as get_printoptions,
+ array2string as array2string,
+ format_float_scientific as format_float_scientific,
+ format_float_positional as format_float_positional,
+ array_repr as array_repr,
+ array_str as array_str,
+ set_string_function as set_string_function,
+ printoptions as printoptions,
+)
+
+from numpy.core.einsumfunc import (
+ einsum as einsum,
+ einsum_path as einsum_path,
+)
+
+from numpy.core.multiarray import (
+ ALLOW_THREADS as ALLOW_THREADS,
+ BUFSIZE as BUFSIZE,
+ CLIP as CLIP,
+ MAXDIMS as MAXDIMS,
+ MAY_SHARE_BOUNDS as MAY_SHARE_BOUNDS,
+ MAY_SHARE_EXACT as MAY_SHARE_EXACT,
+ RAISE as RAISE,
+ WRAP as WRAP,
+ tracemalloc_domain as tracemalloc_domain,
+ array as array,
+ empty_like as empty_like,
+ empty as empty,
+ zeros as zeros,
+ concatenate as concatenate,
+ inner as inner,
+ where as where,
+ lexsort as lexsort,
+ can_cast as can_cast,
+ min_scalar_type as min_scalar_type,
+ result_type as result_type,
+ dot as dot,
+ vdot as vdot,
+ bincount as bincount,
+ copyto as copyto,
+ putmask as putmask,
+ packbits as packbits,
+ unpackbits as unpackbits,
+ shares_memory as shares_memory,
+ may_share_memory as may_share_memory,
+ asarray as asarray,
+ asanyarray as asanyarray,
+ ascontiguousarray as ascontiguousarray,
+ asfortranarray as asfortranarray,
+ arange as arange,
+ busday_count as busday_count,
+ busday_offset as busday_offset,
+ compare_chararrays as compare_chararrays,
+ datetime_as_string as datetime_as_string,
+ datetime_data as datetime_data,
+ frombuffer as frombuffer,
+ fromfile as fromfile,
+ fromiter as fromiter,
+ is_busday as is_busday,
+ promote_types as promote_types,
+ seterrobj as seterrobj,
+ geterrobj as geterrobj,
+ fromstring as fromstring,
+ frompyfunc as frompyfunc,
+ nested_iters as nested_iters,
+ flagsobj,
+)
+
+from numpy.core.numeric import (
+ zeros_like as zeros_like,
+ ones as ones,
+ ones_like as ones_like,
+ full as full,
+ full_like as full_like,
+ count_nonzero as count_nonzero,
+ isfortran as isfortran,
+ argwhere as argwhere,
+ flatnonzero as flatnonzero,
+ correlate as correlate,
+ convolve as convolve,
+ outer as outer,
+ tensordot as tensordot,
+ roll as roll,
+ rollaxis as rollaxis,
+ moveaxis as moveaxis,
+ cross as cross,
+ indices as indices,
+ fromfunction as fromfunction,
+ isscalar as isscalar,
+ binary_repr as binary_repr,
+ base_repr as base_repr,
+ identity as identity,
+ allclose as allclose,
+ isclose as isclose,
+ array_equal as array_equal,
+ array_equiv as array_equiv,
+)
+
+from numpy.core.numerictypes import (
+ maximum_sctype as maximum_sctype,
+ issctype as issctype,
+ obj2sctype as obj2sctype,
+ issubclass_ as issubclass_,
+ issubsctype as issubsctype,
+ issubdtype as issubdtype,
+ sctype2char as sctype2char,
+ nbytes as nbytes,
+ cast as cast,
+ ScalarType as ScalarType,
+ typecodes as typecodes,
+)
+
+from numpy.core.shape_base import (
+ atleast_1d as atleast_1d,
+ atleast_2d as atleast_2d,
+ atleast_3d as atleast_3d,
+ block as block,
+ hstack as hstack,
+ stack as stack,
+ vstack as vstack,
+)
+
+from numpy.exceptions import (
+ ComplexWarning as ComplexWarning,
+ ModuleDeprecationWarning as ModuleDeprecationWarning,
+ VisibleDeprecationWarning as VisibleDeprecationWarning,
+ TooHardError as TooHardError,
+ DTypePromotionError as DTypePromotionError,
+ AxisError as AxisError,
+)
+
+from numpy.lib import (
+ emath as emath,
+)
+
+from numpy.lib.arraypad import (
+ pad as pad,
+)
+
+from numpy.lib.arraysetops import (
+ ediff1d as ediff1d,
+ intersect1d as intersect1d,
+ setxor1d as setxor1d,
+ union1d as union1d,
+ setdiff1d as setdiff1d,
+ unique as unique,
+ in1d as in1d,
+ isin as isin,
+)
+
+from numpy.lib.arrayterator import (
+ Arrayterator as Arrayterator,
+)
+
+from numpy.lib.function_base import (
+ select as select,
+ piecewise as piecewise,
+ trim_zeros as trim_zeros,
+ copy as copy,
+ iterable as iterable,
+ percentile as percentile,
+ diff as diff,
+ gradient as gradient,
+ angle as angle,
+ unwrap as unwrap,
+ sort_complex as sort_complex,
+ disp as disp,
+ flip as flip,
+ rot90 as rot90,
+ extract as extract,
+ place as place,
+ asarray_chkfinite as asarray_chkfinite,
+ average as average,
+ bincount as bincount,
+ digitize as digitize,
+ cov as cov,
+ corrcoef as corrcoef,
+ median as median,
+ sinc as sinc,
+ hamming as hamming,
+ hanning as hanning,
+ bartlett as bartlett,
+ blackman as blackman,
+ kaiser as kaiser,
+ trapz as trapz,
+ i0 as i0,
+ add_newdoc as add_newdoc,
+ add_docstring as add_docstring,
+ meshgrid as meshgrid,
+ delete as delete,
+ insert as insert,
+ append as append,
+ interp as interp,
+ add_newdoc_ufunc as add_newdoc_ufunc,
+ quantile as quantile,
+)
+
+from numpy.lib.histograms import (
+ histogram_bin_edges as histogram_bin_edges,
+ histogram as histogram,
+ histogramdd as histogramdd,
+)
+
+from numpy.lib.index_tricks import (
+ ravel_multi_index as ravel_multi_index,
+ unravel_index as unravel_index,
+ mgrid as mgrid,
+ ogrid as ogrid,
+ r_ as r_,
+ c_ as c_,
+ s_ as s_,
+ index_exp as index_exp,
+ ix_ as ix_,
+ fill_diagonal as fill_diagonal,
+ diag_indices as diag_indices,
+ diag_indices_from as diag_indices_from,
+)
+
+from numpy.lib.nanfunctions import (
+ nansum as nansum,
+ nanmax as nanmax,
+ nanmin as nanmin,
+ nanargmax as nanargmax,
+ nanargmin as nanargmin,
+ nanmean as nanmean,
+ nanmedian as nanmedian,
+ nanpercentile as nanpercentile,
+ nanvar as nanvar,
+ nanstd as nanstd,
+ nanprod as nanprod,
+ nancumsum as nancumsum,
+ nancumprod as nancumprod,
+ nanquantile as nanquantile,
+)
+
+from numpy.lib.npyio import (
+ savetxt as savetxt,
+ loadtxt as loadtxt,
+ genfromtxt as genfromtxt,
+ recfromtxt as recfromtxt,
+ recfromcsv as recfromcsv,
+ load as load,
+ save as save,
+ savez as savez,
+ savez_compressed as savez_compressed,
+ packbits as packbits,
+ unpackbits as unpackbits,
+ fromregex as fromregex,
+)
+
+from numpy.lib.polynomial import (
+ poly as poly,
+ roots as roots,
+ polyint as polyint,
+ polyder as polyder,
+ polyadd as polyadd,
+ polysub as polysub,
+ polymul as polymul,
+ polydiv as polydiv,
+ polyval as polyval,
+ polyfit as polyfit,
+)
+
+from numpy.lib.shape_base import (
+ column_stack as column_stack,
+ row_stack as row_stack,
+ dstack as dstack,
+ array_split as array_split,
+ split as split,
+ hsplit as hsplit,
+ vsplit as vsplit,
+ dsplit as dsplit,
+ apply_over_axes as apply_over_axes,
+ expand_dims as expand_dims,
+ apply_along_axis as apply_along_axis,
+ kron as kron,
+ tile as tile,
+ get_array_wrap as get_array_wrap,
+ take_along_axis as take_along_axis,
+ put_along_axis as put_along_axis,
+)
+
+from numpy.lib.stride_tricks import (
+ broadcast_to as broadcast_to,
+ broadcast_arrays as broadcast_arrays,
+ broadcast_shapes as broadcast_shapes,
+)
+
+from numpy.lib.twodim_base import (
+ diag as diag,
+ diagflat as diagflat,
+ eye as eye,
+ fliplr as fliplr,
+ flipud as flipud,
+ tri as tri,
+ triu as triu,
+ tril as tril,
+ vander as vander,
+ histogram2d as histogram2d,
+ mask_indices as mask_indices,
+ tril_indices as tril_indices,
+ tril_indices_from as tril_indices_from,
+ triu_indices as triu_indices,
+ triu_indices_from as triu_indices_from,
+)
+
+from numpy.lib.type_check import (
+ mintypecode as mintypecode,
+ asfarray as asfarray,
+ real as real,
+ imag as imag,
+ iscomplex as iscomplex,
+ isreal as isreal,
+ iscomplexobj as iscomplexobj,
+ isrealobj as isrealobj,
+ nan_to_num as nan_to_num,
+ real_if_close as real_if_close,
+ typename as typename,
+ common_type as common_type,
+)
+
+from numpy.lib.ufunclike import (
+ fix as fix,
+ isposinf as isposinf,
+ isneginf as isneginf,
+)
+
+from numpy.lib.utils import (
+ issubclass_ as issubclass_,
+ issubsctype as issubsctype,
+ issubdtype as issubdtype,
+ deprecate as deprecate,
+ deprecate_with_doc as deprecate_with_doc,
+ get_include as get_include,
+ info as info,
+ source as source,
+ who as who,
+ lookfor as lookfor,
+ byte_bounds as byte_bounds,
+ safe_eval as safe_eval,
+ show_runtime as show_runtime,
+)
+
+from numpy.matrixlib import (
+ asmatrix as asmatrix,
+ mat as mat,
+ bmat as bmat,
+)
+
+_AnyStr_contra = TypeVar("_AnyStr_contra", str, bytes, contravariant=True)
+
+# Protocol for representing file-like-objects accepted
+# by `ndarray.tofile` and `fromfile`
+class _IOProtocol(Protocol):
+ def flush(self) -> object: ...
+ def fileno(self) -> int: ...
+ def tell(self) -> SupportsIndex: ...
+ def seek(self, offset: int, whence: int, /) -> object: ...
+
+# NOTE: `seek`, `write` and `flush` are technically only required
+# for `readwrite`/`write` modes
+class _MemMapIOProtocol(Protocol):
+ def flush(self) -> object: ...
+ def fileno(self) -> SupportsIndex: ...
+ def tell(self) -> int: ...
+ def seek(self, offset: int, whence: int, /) -> object: ...
+ def write(self, s: bytes, /) -> object: ...
+ @property
+ def read(self) -> object: ...
+
+class _SupportsWrite(Protocol[_AnyStr_contra]):
+ def write(self, s: _AnyStr_contra, /) -> object: ...
+
+__all__: list[str]
+__path__: list[str]
+__version__: str
+test: PytestTester
+
+# TODO: Move placeholders to their respective module once
+# their annotations are properly implemented
+#
+# Placeholders for classes
+
+def show_config() -> None: ...
+
+_NdArraySubClass = TypeVar("_NdArraySubClass", bound=ndarray[Any, Any])
+_DTypeScalar_co = TypeVar("_DTypeScalar_co", covariant=True, bound=generic)
+_ByteOrder = L["S", "<", ">", "=", "|", "L", "B", "N", "I"]
+
+@final
+class dtype(Generic[_DTypeScalar_co]):
+ names: None | tuple[builtins.str, ...]
+ def __hash__(self) -> int: ...
+ # Overload for subclass of generic
+ @overload
+ def __new__(
+ cls,
+ dtype: type[_DTypeScalar_co],
+ align: bool = ...,
+ copy: bool = ...,
+ metadata: dict[builtins.str, Any] = ...,
+ ) -> dtype[_DTypeScalar_co]: ...
+ # Overloads for string aliases, Python types, and some assorted
+ # other special cases. Order is sometimes important because of the
+ # subtype relationships
+ #
+ # bool < int < float < complex < object
+ #
+ # so we have to make sure the overloads for the narrowest type is
+ # first.
+ # Builtin types
+ @overload
+ def __new__(cls, dtype: type[bool], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bool_]: ...
+ @overload
+ def __new__(cls, dtype: type[int], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int_]: ...
+ @overload
+ def __new__(cls, dtype: None | type[float], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float_]: ...
+ @overload
+ def __new__(cls, dtype: type[complex], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex_]: ...
+ @overload
+ def __new__(cls, dtype: type[builtins.str], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ...
+ @overload
+ def __new__(cls, dtype: type[bytes], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ...
+
+ # `unsignedinteger` string-based representations and ctypes
+ @overload
+ def __new__(cls, dtype: _UInt8Codes | type[ct.c_uint8], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint8]: ...
+ @overload
+ def __new__(cls, dtype: _UInt16Codes | type[ct.c_uint16], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint16]: ...
+ @overload
+ def __new__(cls, dtype: _UInt32Codes | type[ct.c_uint32], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint32]: ...
+ @overload
+ def __new__(cls, dtype: _UInt64Codes | type[ct.c_uint64], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint64]: ...
+ @overload
+ def __new__(cls, dtype: _UByteCodes | type[ct.c_ubyte], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ubyte]: ...
+ @overload
+ def __new__(cls, dtype: _UShortCodes | type[ct.c_ushort], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ushort]: ...
+ @overload
+ def __new__(cls, dtype: _UIntCCodes | type[ct.c_uint], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintc]: ...
+
+ # NOTE: We're assuming here that `uint_ptr_t == size_t`,
+ # an assumption that does not hold in rare cases (same for `ssize_t`)
+ @overload
+ def __new__(cls, dtype: _UIntPCodes | type[ct.c_void_p] | type[ct.c_size_t], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintp]: ...
+ @overload
+ def __new__(cls, dtype: _UIntCodes | type[ct.c_ulong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint]: ...
+ @overload
+ def __new__(cls, dtype: _ULongLongCodes | type[ct.c_ulonglong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ulonglong]: ...
+
+ # `signedinteger` string-based representations and ctypes
+ @overload
+ def __new__(cls, dtype: _Int8Codes | type[ct.c_int8], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int8]: ...
+ @overload
+ def __new__(cls, dtype: _Int16Codes | type[ct.c_int16], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int16]: ...
+ @overload
+ def __new__(cls, dtype: _Int32Codes | type[ct.c_int32], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int32]: ...
+ @overload
+ def __new__(cls, dtype: _Int64Codes | type[ct.c_int64], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int64]: ...
+ @overload
+ def __new__(cls, dtype: _ByteCodes | type[ct.c_byte], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[byte]: ...
+ @overload
+ def __new__(cls, dtype: _ShortCodes | type[ct.c_short], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[short]: ...
+ @overload
+ def __new__(cls, dtype: _IntCCodes | type[ct.c_int], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intc]: ...
+ @overload
+ def __new__(cls, dtype: _IntPCodes | type[ct.c_ssize_t], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intp]: ...
+ @overload
+ def __new__(cls, dtype: _IntCodes | type[ct.c_long], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int_]: ...
+ @overload
+ def __new__(cls, dtype: _LongLongCodes | type[ct.c_longlong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longlong]: ...
+
+ # `floating` string-based representations and ctypes
+ @overload
+ def __new__(cls, dtype: _Float16Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float16]: ...
+ @overload
+ def __new__(cls, dtype: _Float32Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float32]: ...
+ @overload
+ def __new__(cls, dtype: _Float64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float64]: ...
+ @overload
+ def __new__(cls, dtype: _HalfCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[half]: ...
+ @overload
+ def __new__(cls, dtype: _SingleCodes | type[ct.c_float], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[single]: ...
+ @overload
+ def __new__(cls, dtype: _DoubleCodes | type[ct.c_double], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[double]: ...
+ @overload
+ def __new__(cls, dtype: _LongDoubleCodes | type[ct.c_longdouble], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longdouble]: ...
+
+ # `complexfloating` string-based representations
+ @overload
+ def __new__(cls, dtype: _Complex64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex64]: ...
+ @overload
+ def __new__(cls, dtype: _Complex128Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex128]: ...
+ @overload
+ def __new__(cls, dtype: _CSingleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[csingle]: ...
+ @overload
+ def __new__(cls, dtype: _CDoubleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[cdouble]: ...
+ @overload
+ def __new__(cls, dtype: _CLongDoubleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[clongdouble]: ...
+
+ # Miscellaneous string-based representations and ctypes
+ @overload
+ def __new__(cls, dtype: _BoolCodes | type[ct.c_bool], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bool_]: ...
+ @overload
+ def __new__(cls, dtype: _TD64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[timedelta64]: ...
+ @overload
+ def __new__(cls, dtype: _DT64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[datetime64]: ...
+ @overload
+ def __new__(cls, dtype: _StrCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ...
+ @overload
+ def __new__(cls, dtype: _BytesCodes | type[ct.c_char], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ...
+ @overload
+ def __new__(cls, dtype: _VoidCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[void]: ...
+ @overload
+ def __new__(cls, dtype: _ObjectCodes | type[ct.py_object[Any]], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[object_]: ...
+
+ # dtype of a dtype is the same dtype
+ @overload
+ def __new__(
+ cls,
+ dtype: dtype[_DTypeScalar_co],
+ align: bool = ...,
+ copy: bool = ...,
+ metadata: dict[builtins.str, Any] = ...,
+ ) -> dtype[_DTypeScalar_co]: ...
+ @overload
+ def __new__(
+ cls,
+ dtype: _SupportsDType[dtype[_DTypeScalar_co]],
+ align: bool = ...,
+ copy: bool = ...,
+ metadata: dict[builtins.str, Any] = ...,
+ ) -> dtype[_DTypeScalar_co]: ...
+ # Handle strings that can't be expressed as literals; i.e. s1, s2, ...
+ @overload
+ def __new__(
+ cls,
+ dtype: builtins.str,
+ align: bool = ...,
+ copy: bool = ...,
+ metadata: dict[builtins.str, Any] = ...,
+ ) -> dtype[Any]: ...
+ # Catchall overload for void-likes
+ @overload
+ def __new__(
+ cls,
+ dtype: _VoidDTypeLike,
+ align: bool = ...,
+ copy: bool = ...,
+ metadata: dict[builtins.str, Any] = ...,
+ ) -> dtype[void]: ...
+ # Catchall overload for object-likes
+ @overload
+ def __new__(
+ cls,
+ dtype: type[object],
+ align: bool = ...,
+ copy: bool = ...,
+ metadata: dict[builtins.str, Any] = ...,
+ ) -> dtype[object_]: ...
+
+ def __class_getitem__(self, item: Any) -> GenericAlias: ...
+
+ @overload
+ def __getitem__(self: dtype[void], key: list[builtins.str]) -> dtype[void]: ...
+ @overload
+ def __getitem__(self: dtype[void], key: builtins.str | SupportsIndex) -> dtype[Any]: ...
+
+ # NOTE: In the future 1-based multiplications will also yield `flexible` dtypes
+ @overload
+ def __mul__(self: _DType, value: L[1]) -> _DType: ...
+ @overload
+ def __mul__(self: _FlexDType, value: SupportsIndex) -> _FlexDType: ...
+ @overload
+ def __mul__(self, value: SupportsIndex) -> dtype[void]: ...
+
+ # NOTE: `__rmul__` seems to be broken when used in combination with
+ # literals as of mypy 0.902. Set the return-type to `dtype[Any]` for
+ # now for non-flexible dtypes.
+ @overload
+ def __rmul__(self: _FlexDType, value: SupportsIndex) -> _FlexDType: ...
+ @overload
+ def __rmul__(self, value: SupportsIndex) -> dtype[Any]: ...
+
+ def __gt__(self, other: DTypeLike) -> bool: ...
+ def __ge__(self, other: DTypeLike) -> bool: ...
+ def __lt__(self, other: DTypeLike) -> bool: ...
+ def __le__(self, other: DTypeLike) -> bool: ...
+
+ # Explicitly defined `__eq__` and `__ne__` to get around mypy's
+ # `strict_equality` option; even though their signatures are
+ # identical to their `object`-based counterpart
+ def __eq__(self, other: Any) -> bool: ...
+ def __ne__(self, other: Any) -> bool: ...
+
+ @property
+ def alignment(self) -> int: ...
+ @property
+ def base(self) -> dtype[Any]: ...
+ @property
+ def byteorder(self) -> builtins.str: ...
+ @property
+ def char(self) -> builtins.str: ...
+ @property
+ def descr(self) -> list[tuple[builtins.str, builtins.str] | tuple[builtins.str, builtins.str, _Shape]]: ...
+ @property
+ def fields(
+ self,
+ ) -> None | MappingProxyType[builtins.str, tuple[dtype[Any], int] | tuple[dtype[Any], int, Any]]: ...
+ @property
+ def flags(self) -> int: ...
+ @property
+ def hasobject(self) -> bool: ...
+ @property
+ def isbuiltin(self) -> int: ...
+ @property
+ def isnative(self) -> bool: ...
+ @property
+ def isalignedstruct(self) -> bool: ...
+ @property
+ def itemsize(self) -> int: ...
+ @property
+ def kind(self) -> builtins.str: ...
+ @property
+ def metadata(self) -> None | MappingProxyType[builtins.str, Any]: ...
+ @property
+ def name(self) -> builtins.str: ...
+ @property
+ def num(self) -> int: ...
+ @property
+ def shape(self) -> _Shape: ...
+ @property
+ def ndim(self) -> int: ...
+ @property
+ def subdtype(self) -> None | tuple[dtype[Any], _Shape]: ...
+ def newbyteorder(self: _DType, __new_order: _ByteOrder = ...) -> _DType: ...
+ @property
+ def str(self) -> builtins.str: ...
+ @property
+ def type(self) -> type[_DTypeScalar_co]: ...
+
+_ArrayLikeInt = Union[
+ int,
+ integer[Any],
+ Sequence[Union[int, integer[Any]]],
+ Sequence[Sequence[Any]], # TODO: wait for support for recursive types
+ ndarray[Any, Any]
+]
+
+_FlatIterSelf = TypeVar("_FlatIterSelf", bound=flatiter[Any])
+
+@final
+class flatiter(Generic[_NdArraySubClass]):
+ __hash__: ClassVar[None]
+ @property
+ def base(self) -> _NdArraySubClass: ...
+ @property
+ def coords(self) -> _Shape: ...
+ @property
+ def index(self) -> int: ...
+ def copy(self) -> _NdArraySubClass: ...
+ def __iter__(self: _FlatIterSelf) -> _FlatIterSelf: ...
+ def __next__(self: flatiter[ndarray[Any, dtype[_ScalarType]]]) -> _ScalarType: ...
+ def __len__(self) -> int: ...
+ @overload
+ def __getitem__(
+ self: flatiter[ndarray[Any, dtype[_ScalarType]]],
+ key: int | integer[Any] | tuple[int | integer[Any]],
+ ) -> _ScalarType: ...
+ @overload
+ def __getitem__(
+ self,
+ key: _ArrayLikeInt | slice | ellipsis | tuple[_ArrayLikeInt | slice | ellipsis],
+ ) -> _NdArraySubClass: ...
+ # TODO: `__setitem__` operates via `unsafe` casting rules, and can
+ # thus accept any type accepted by the relevant underlying `np.generic`
+ # constructor.
+ # This means that `value` must in reality be a supertype of `npt.ArrayLike`.
+ def __setitem__(
+ self,
+ key: _ArrayLikeInt | slice | ellipsis | tuple[_ArrayLikeInt | slice | ellipsis],
+ value: Any,
+ ) -> None: ...
+ @overload
+ def __array__(self: flatiter[ndarray[Any, _DType]], dtype: None = ..., /) -> ndarray[Any, _DType]: ...
+ @overload
+ def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ...
+
+_OrderKACF = L[None, "K", "A", "C", "F"]
+_OrderACF = L[None, "A", "C", "F"]
+_OrderCF = L[None, "C", "F"]
+
+_ModeKind = L["raise", "wrap", "clip"]
+_PartitionKind = L["introselect"]
+_SortKind = L["quicksort", "mergesort", "heapsort", "stable"]
+_SortSide = L["left", "right"]
+
+_ArraySelf = TypeVar("_ArraySelf", bound=_ArrayOrScalarCommon)
+
+class _ArrayOrScalarCommon:
+ @property
+ def T(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def data(self) -> memoryview: ...
+ @property
+ def flags(self) -> flagsobj: ...
+ @property
+ def itemsize(self) -> int: ...
+ @property
+ def nbytes(self) -> int: ...
+ def __bool__(self) -> bool: ...
+ def __bytes__(self) -> bytes: ...
+ def __str__(self) -> str: ...
+ def __repr__(self) -> str: ...
+ def __copy__(self: _ArraySelf) -> _ArraySelf: ...
+ def __deepcopy__(self: _ArraySelf, memo: None | dict[int, Any], /) -> _ArraySelf: ...
+
+ # TODO: How to deal with the non-commutative nature of `==` and `!=`?
+ # xref numpy/numpy#17368
+ def __eq__(self, other: Any) -> Any: ...
+ def __ne__(self, other: Any) -> Any: ...
+ def copy(self: _ArraySelf, order: _OrderKACF = ...) -> _ArraySelf: ...
+ def dump(self, file: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _SupportsWrite[bytes]) -> None: ...
+ def dumps(self) -> bytes: ...
+ def tobytes(self, order: _OrderKACF = ...) -> bytes: ...
+ # NOTE: `tostring()` is deprecated and therefore excluded
+ # def tostring(self, order=...): ...
+ def tofile(
+ self,
+ fid: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _IOProtocol,
+ sep: str = ...,
+ format: str = ...,
+ ) -> None: ...
+ # generics and 0d arrays return builtin scalars
+ def tolist(self) -> Any: ...
+
+ @property
+ def __array_interface__(self) -> dict[str, Any]: ...
+ @property
+ def __array_priority__(self) -> float: ...
+ @property
+ def __array_struct__(self) -> Any: ... # builtins.PyCapsule
+ def __setstate__(self, state: tuple[
+ SupportsIndex, # version
+ _ShapeLike, # Shape
+ _DType_co, # DType
+ bool, # F-continuous
+ bytes | list[Any], # Data
+ ], /) -> None: ...
+ # a `bool_` is returned when `keepdims=True` and `self` is a 0d array
+
+ @overload
+ def all(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ keepdims: L[False] = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> bool_: ...
+ @overload
+ def all(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def all(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def any(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ keepdims: L[False] = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> bool_: ...
+ @overload
+ def any(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def any(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def argmax(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ *,
+ keepdims: L[False] = ...,
+ ) -> intp: ...
+ @overload
+ def argmax(
+ self,
+ axis: SupportsIndex = ...,
+ out: None = ...,
+ *,
+ keepdims: bool = ...,
+ ) -> Any: ...
+ @overload
+ def argmax(
+ self,
+ axis: None | SupportsIndex = ...,
+ out: _NdArraySubClass = ...,
+ *,
+ keepdims: bool = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def argmin(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ *,
+ keepdims: L[False] = ...,
+ ) -> intp: ...
+ @overload
+ def argmin(
+ self,
+ axis: SupportsIndex = ...,
+ out: None = ...,
+ *,
+ keepdims: bool = ...,
+ ) -> Any: ...
+ @overload
+ def argmin(
+ self,
+ axis: None | SupportsIndex = ...,
+ out: _NdArraySubClass = ...,
+ *,
+ keepdims: bool = ...,
+ ) -> _NdArraySubClass: ...
+
+ def argsort(
+ self,
+ axis: None | SupportsIndex = ...,
+ kind: None | _SortKind = ...,
+ order: None | str | Sequence[str] = ...,
+ ) -> ndarray[Any, Any]: ...
+
+ @overload
+ def choose(
+ self,
+ choices: ArrayLike,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> ndarray[Any, Any]: ...
+ @overload
+ def choose(
+ self,
+ choices: ArrayLike,
+ out: _NdArraySubClass = ...,
+ mode: _ModeKind = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def clip(
+ self,
+ min: ArrayLike = ...,
+ max: None | ArrayLike = ...,
+ out: None = ...,
+ **kwargs: Any,
+ ) -> ndarray[Any, Any]: ...
+ @overload
+ def clip(
+ self,
+ min: None = ...,
+ max: ArrayLike = ...,
+ out: None = ...,
+ **kwargs: Any,
+ ) -> ndarray[Any, Any]: ...
+ @overload
+ def clip(
+ self,
+ min: ArrayLike = ...,
+ max: None | ArrayLike = ...,
+ out: _NdArraySubClass = ...,
+ **kwargs: Any,
+ ) -> _NdArraySubClass: ...
+ @overload
+ def clip(
+ self,
+ min: None = ...,
+ max: ArrayLike = ...,
+ out: _NdArraySubClass = ...,
+ **kwargs: Any,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def compress(
+ self,
+ a: ArrayLike,
+ axis: None | SupportsIndex = ...,
+ out: None = ...,
+ ) -> ndarray[Any, Any]: ...
+ @overload
+ def compress(
+ self,
+ a: ArrayLike,
+ axis: None | SupportsIndex = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ def conj(self: _ArraySelf) -> _ArraySelf: ...
+
+ def conjugate(self: _ArraySelf) -> _ArraySelf: ...
+
+ @overload
+ def cumprod(
+ self,
+ axis: None | SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ) -> ndarray[Any, Any]: ...
+ @overload
+ def cumprod(
+ self,
+ axis: None | SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def cumsum(
+ self,
+ axis: None | SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ) -> ndarray[Any, Any]: ...
+ @overload
+ def cumsum(
+ self,
+ axis: None | SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def max(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def max(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def mean(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def mean(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def min(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def min(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ def newbyteorder(
+ self: _ArraySelf,
+ __new_order: _ByteOrder = ...,
+ ) -> _ArraySelf: ...
+
+ @overload
+ def prod(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def prod(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def ptp(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
+ @overload
+ def ptp(
+ self,
+ axis: None | _ShapeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def round(
+ self: _ArraySelf,
+ decimals: SupportsIndex = ...,
+ out: None = ...,
+ ) -> _ArraySelf: ...
+ @overload
+ def round(
+ self,
+ decimals: SupportsIndex = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def std(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def std(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def sum(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def sum(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def var(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def var(
+ self,
+ axis: None | _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+_DType = TypeVar("_DType", bound=dtype[Any])
+_DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any])
+_FlexDType = TypeVar("_FlexDType", bound=dtype[flexible])
+
+# TODO: Set the `bound` to something more suitable once we
+# have proper shape support
+_ShapeType = TypeVar("_ShapeType", bound=Any)
+_ShapeType2 = TypeVar("_ShapeType2", bound=Any)
+_NumberType = TypeVar("_NumberType", bound=number[Any])
+
+if sys.version_info >= (3, 12):
+ from collections.abc import Buffer as _SupportsBuffer
+else:
+ _SupportsBuffer = (
+ bytes
+ | bytearray
+ | memoryview
+ | _array.array[Any]
+ | mmap.mmap
+ | NDArray[Any]
+ | generic
+ )
+
+_T = TypeVar("_T")
+_T_co = TypeVar("_T_co", covariant=True)
+_T_contra = TypeVar("_T_contra", contravariant=True)
+_2Tuple = tuple[_T, _T]
+_CastingKind = L["no", "equiv", "safe", "same_kind", "unsafe"]
+
+_ArrayUInt_co = NDArray[Union[bool_, unsignedinteger[Any]]]
+_ArrayInt_co = NDArray[Union[bool_, integer[Any]]]
+_ArrayFloat_co = NDArray[Union[bool_, integer[Any], floating[Any]]]
+_ArrayComplex_co = NDArray[Union[bool_, integer[Any], floating[Any], complexfloating[Any, Any]]]
+_ArrayNumber_co = NDArray[Union[bool_, number[Any]]]
+_ArrayTD64_co = NDArray[Union[bool_, integer[Any], timedelta64]]
+
+# Introduce an alias for `dtype` to avoid naming conflicts.
+_dtype = dtype
+
+# `builtins.PyCapsule` unfortunately lacks annotations as of the moment;
+# use `Any` as a stopgap measure
+_PyCapsule = Any
+
+class _SupportsItem(Protocol[_T_co]):
+ def item(self, args: Any, /) -> _T_co: ...
+
+class _SupportsReal(Protocol[_T_co]):
+ @property
+ def real(self) -> _T_co: ...
+
+class _SupportsImag(Protocol[_T_co]):
+ @property
+ def imag(self) -> _T_co: ...
+
+class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
+ __hash__: ClassVar[None]
+ @property
+ def base(self) -> None | ndarray[Any, Any]: ...
+ @property
+ def ndim(self) -> int: ...
+ @property
+ def size(self) -> int: ...
+ @property
+ def real(
+ self: ndarray[_ShapeType, dtype[_SupportsReal[_ScalarType]]], # type: ignore[type-var]
+ ) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ...
+ @real.setter
+ def real(self, value: ArrayLike) -> None: ...
+ @property
+ def imag(
+ self: ndarray[_ShapeType, dtype[_SupportsImag[_ScalarType]]], # type: ignore[type-var]
+ ) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ...
+ @imag.setter
+ def imag(self, value: ArrayLike) -> None: ...
+ def __new__(
+ cls: type[_ArraySelf],
+ shape: _ShapeLike,
+ dtype: DTypeLike = ...,
+ buffer: None | _SupportsBuffer = ...,
+ offset: SupportsIndex = ...,
+ strides: None | _ShapeLike = ...,
+ order: _OrderKACF = ...,
+ ) -> _ArraySelf: ...
+
+ if sys.version_info >= (3, 12):
+ def __buffer__(self, flags: int, /) -> memoryview: ...
+
+ def __class_getitem__(self, item: Any) -> GenericAlias: ...
+
+ @overload
+ def __array__(self, dtype: None = ..., /) -> ndarray[Any, _DType_co]: ...
+ @overload
+ def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ...
+
+ def __array_ufunc__(
+ self,
+ ufunc: ufunc,
+ method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"],
+ *inputs: Any,
+ **kwargs: Any,
+ ) -> Any: ...
+
+ def __array_function__(
+ self,
+ func: Callable[..., Any],
+ types: Iterable[type],
+ args: Iterable[Any],
+ kwargs: Mapping[str, Any],
+ ) -> Any: ...
+
+ # NOTE: In practice any object is accepted by `obj`, but as `__array_finalize__`
+ # is a pseudo-abstract method the type has been narrowed down in order to
+ # grant subclasses a bit more flexibility
+ def __array_finalize__(self, obj: None | NDArray[Any], /) -> None: ...
+
+ def __array_wrap__(
+ self,
+ array: ndarray[_ShapeType2, _DType],
+ context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
+ /,
+ ) -> ndarray[_ShapeType2, _DType]: ...
+
+ def __array_prepare__(
+ self,
+ array: ndarray[_ShapeType2, _DType],
+ context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
+ /,
+ ) -> ndarray[_ShapeType2, _DType]: ...
+
+ @overload
+ def __getitem__(self, key: (
+ NDArray[integer[Any]]
+ | NDArray[bool_]
+ | tuple[NDArray[integer[Any]] | NDArray[bool_], ...]
+ )) -> ndarray[Any, _DType_co]: ...
+ @overload
+ def __getitem__(self, key: SupportsIndex | tuple[SupportsIndex, ...]) -> Any: ...
+ @overload
+ def __getitem__(self, key: (
+ None
+ | slice
+ | ellipsis
+ | SupportsIndex
+ | _ArrayLikeInt_co
+ | tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...]
+ )) -> ndarray[Any, _DType_co]: ...
+ @overload
+ def __getitem__(self: NDArray[void], key: str) -> NDArray[Any]: ...
+ @overload
+ def __getitem__(self: NDArray[void], key: list[str]) -> ndarray[_ShapeType, _dtype[void]]: ...
+
+ @property
+ def ctypes(self) -> _ctypes[int]: ...
+ @property
+ def shape(self) -> _Shape: ...
+ @shape.setter
+ def shape(self, value: _ShapeLike) -> None: ...
+ @property
+ def strides(self) -> _Shape: ...
+ @strides.setter
+ def strides(self, value: _ShapeLike) -> None: ...
+ def byteswap(self: _ArraySelf, inplace: bool = ...) -> _ArraySelf: ...
+ def fill(self, value: Any) -> None: ...
+ @property
+ def flat(self: _NdArraySubClass) -> flatiter[_NdArraySubClass]: ...
+
+ # Use the same output type as that of the underlying `generic`
+ @overload
+ def item(
+ self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var]
+ *args: SupportsIndex,
+ ) -> _T: ...
+ @overload
+ def item(
+ self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var]
+ args: tuple[SupportsIndex, ...],
+ /,
+ ) -> _T: ...
+
+ @overload
+ def itemset(self, value: Any, /) -> None: ...
+ @overload
+ def itemset(self, item: _ShapeLike, value: Any, /) -> None: ...
+
+ @overload
+ def resize(self, new_shape: _ShapeLike, /, *, refcheck: bool = ...) -> None: ...
+ @overload
+ def resize(self, *new_shape: SupportsIndex, refcheck: bool = ...) -> None: ...
+
+ def setflags(
+ self, write: bool = ..., align: bool = ..., uic: bool = ...
+ ) -> None: ...
+
+ def squeeze(
+ self,
+ axis: None | SupportsIndex | tuple[SupportsIndex, ...] = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ def swapaxes(
+ self,
+ axis1: SupportsIndex,
+ axis2: SupportsIndex,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ @overload
+ def transpose(self: _ArraySelf, axes: None | _ShapeLike, /) -> _ArraySelf: ...
+ @overload
+ def transpose(self: _ArraySelf, *axes: SupportsIndex) -> _ArraySelf: ...
+
+ def argpartition(
+ self,
+ kth: _ArrayLikeInt_co,
+ axis: None | SupportsIndex = ...,
+ kind: _PartitionKind = ...,
+ order: None | str | Sequence[str] = ...,
+ ) -> ndarray[Any, _dtype[intp]]: ...
+
+ def diagonal(
+ self,
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ # 1D + 1D returns a scalar;
+ # all other with at least 1 non-0D array return an ndarray.
+ @overload
+ def dot(self, b: _ScalarLike_co, out: None = ...) -> ndarray[Any, Any]: ...
+ @overload
+ def dot(self, b: ArrayLike, out: None = ...) -> Any: ... # type: ignore[misc]
+ @overload
+ def dot(self, b: ArrayLike, out: _NdArraySubClass) -> _NdArraySubClass: ...
+
+ # `nonzero()` is deprecated for 0d arrays/generics
+ def nonzero(self) -> tuple[ndarray[Any, _dtype[intp]], ...]: ...
+
+ def partition(
+ self,
+ kth: _ArrayLikeInt_co,
+ axis: SupportsIndex = ...,
+ kind: _PartitionKind = ...,
+ order: None | str | Sequence[str] = ...,
+ ) -> None: ...
+
+ # `put` is technically available to `generic`,
+ # but is pointless as `generic`s are immutable
+ def put(
+ self,
+ ind: _ArrayLikeInt_co,
+ v: ArrayLike,
+ mode: _ModeKind = ...,
+ ) -> None: ...
+
+ @overload
+ def searchsorted( # type: ignore[misc]
+ self, # >= 1D array
+ v: _ScalarLike_co, # 0D array-like
+ side: _SortSide = ...,
+ sorter: None | _ArrayLikeInt_co = ...,
+ ) -> intp: ...
+ @overload
+ def searchsorted(
+ self, # >= 1D array
+ v: ArrayLike,
+ side: _SortSide = ...,
+ sorter: None | _ArrayLikeInt_co = ...,
+ ) -> ndarray[Any, _dtype[intp]]: ...
+
+ def setfield(
+ self,
+ val: ArrayLike,
+ dtype: DTypeLike,
+ offset: SupportsIndex = ...,
+ ) -> None: ...
+
+ def sort(
+ self,
+ axis: SupportsIndex = ...,
+ kind: None | _SortKind = ...,
+ order: None | str | Sequence[str] = ...,
+ ) -> None: ...
+
+ @overload
+ def trace(
+ self, # >= 2D array
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ) -> Any: ...
+ @overload
+ def trace(
+ self, # >= 2D array
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def take( # type: ignore[misc]
+ self: ndarray[Any, _dtype[_ScalarType]],
+ indices: _IntLike_co,
+ axis: None | SupportsIndex = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def take( # type: ignore[misc]
+ self,
+ indices: _ArrayLikeInt_co,
+ axis: None | SupportsIndex = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+ @overload
+ def take(
+ self,
+ indices: _ArrayLikeInt_co,
+ axis: None | SupportsIndex = ...,
+ out: _NdArraySubClass = ...,
+ mode: _ModeKind = ...,
+ ) -> _NdArraySubClass: ...
+
+ def repeat(
+ self,
+ repeats: _ArrayLikeInt_co,
+ axis: None | SupportsIndex = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ def flatten(
+ self,
+ order: _OrderKACF = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ def ravel(
+ self,
+ order: _OrderKACF = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ @overload
+ def reshape(
+ self, shape: _ShapeLike, /, *, order: _OrderACF = ...
+ ) -> ndarray[Any, _DType_co]: ...
+ @overload
+ def reshape(
+ self, *shape: SupportsIndex, order: _OrderACF = ...
+ ) -> ndarray[Any, _DType_co]: ...
+
+ @overload
+ def astype(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ order: _OrderKACF = ...,
+ casting: _CastingKind = ...,
+ subok: bool = ...,
+ copy: bool | _CopyMode = ...,
+ ) -> NDArray[_ScalarType]: ...
+ @overload
+ def astype(
+ self,
+ dtype: DTypeLike,
+ order: _OrderKACF = ...,
+ casting: _CastingKind = ...,
+ subok: bool = ...,
+ copy: bool | _CopyMode = ...,
+ ) -> NDArray[Any]: ...
+
+ @overload
+ def view(self: _ArraySelf) -> _ArraySelf: ...
+ @overload
+ def view(self, type: type[_NdArraySubClass]) -> _NdArraySubClass: ...
+ @overload
+ def view(self, dtype: _DTypeLike[_ScalarType]) -> NDArray[_ScalarType]: ...
+ @overload
+ def view(self, dtype: DTypeLike) -> NDArray[Any]: ...
+ @overload
+ def view(
+ self,
+ dtype: DTypeLike,
+ type: type[_NdArraySubClass],
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def getfield(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ offset: SupportsIndex = ...
+ ) -> NDArray[_ScalarType]: ...
+ @overload
+ def getfield(
+ self,
+ dtype: DTypeLike,
+ offset: SupportsIndex = ...
+ ) -> NDArray[Any]: ...
+
+ # Dispatch to the underlying `generic` via protocols
+ def __int__(
+ self: ndarray[Any, _dtype[SupportsInt]], # type: ignore[type-var]
+ ) -> int: ...
+
+ def __float__(
+ self: ndarray[Any, _dtype[SupportsFloat]], # type: ignore[type-var]
+ ) -> float: ...
+
+ def __complex__(
+ self: ndarray[Any, _dtype[SupportsComplex]], # type: ignore[type-var]
+ ) -> complex: ...
+
+ def __index__(
+ self: ndarray[Any, _dtype[SupportsIndex]], # type: ignore[type-var]
+ ) -> int: ...
+
+ def __len__(self) -> int: ...
+ def __setitem__(self, key, value): ...
+ def __iter__(self) -> Any: ...
+ def __contains__(self, key) -> bool: ...
+
+ # The last overload is for catching recursive objects whose
+ # nesting is too deep.
+ # The first overload is for catching `bytes` (as they are a subtype of
+ # `Sequence[int]`) and `str`. As `str` is a recursive sequence of
+ # strings, it will pass through the final overload otherwise
+
+ @overload
+ def __lt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
+
+ @overload
+ def __le__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
+ @overload
+ def __le__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
+ @overload
+ def __le__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
+ @overload
+ def __le__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
+ @overload
+ def __le__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
+
+ @overload
+ def __gt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
+
+ @overload
+ def __ge__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
+
+ # Unary ops
+ @overload
+ def __abs__(self: NDArray[bool_]) -> NDArray[bool_]: ...
+ @overload
+ def __abs__(self: NDArray[complexfloating[_NBit1, _NBit1]]) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __abs__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ...
+ @overload
+ def __abs__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ...
+ @overload
+ def __abs__(self: NDArray[object_]) -> Any: ...
+
+ @overload
+ def __invert__(self: NDArray[bool_]) -> NDArray[bool_]: ...
+ @overload
+ def __invert__(self: NDArray[_IntType]) -> NDArray[_IntType]: ...
+ @overload
+ def __invert__(self: NDArray[object_]) -> Any: ...
+
+ @overload
+ def __pos__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ...
+ @overload
+ def __pos__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ...
+ @overload
+ def __pos__(self: NDArray[object_]) -> Any: ...
+
+ @overload
+ def __neg__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ...
+ @overload
+ def __neg__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ...
+ @overload
+ def __neg__(self: NDArray[object_]) -> Any: ...
+
+ # Binary ops
+ @overload
+ def __matmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __matmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __matmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __matmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __matmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+ @overload
+ def __matmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __matmul__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __matmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rmatmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __rmatmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmatmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmatmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmatmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+ @overload
+ def __rmatmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __rmatmul__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rmatmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __mod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __mod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ...
+ @overload
+ def __mod__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __mod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ...
+ @overload
+ def __rmod__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rmod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __divmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc]
+ @overload
+ def __divmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __divmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __divmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __divmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> tuple[NDArray[int64], NDArray[timedelta64]]: ...
+
+ @overload
+ def __rdivmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc]
+ @overload
+ def __rdivmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __rdivmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __rdivmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __rdivmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> tuple[NDArray[int64], NDArray[timedelta64]]: ...
+
+ @overload
+ def __add__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __add__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __add__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __add__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __add__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __radd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __radd__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __radd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __radd__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __radd__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __sub__(self: NDArray[_UnknownType], other: _ArrayLikeUnknown) -> NDArray[Any]: ...
+ @overload
+ def __sub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __sub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __sub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __sub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __sub__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __sub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rsub__(self: NDArray[_UnknownType], other: _ArrayLikeUnknown) -> NDArray[Any]: ...
+ @overload
+ def __rsub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __rsub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rsub__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rsub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __mul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __mul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __mul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __mul__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __mul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __rmul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rmul__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __floordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __floordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __floordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __floordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ...
+ @overload
+ def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __floordiv__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __floordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rfloordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rfloordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rfloordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ...
+ @overload
+ def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ...
+ @overload
+ def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rfloordiv__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rfloordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __pow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __pow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __pow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __pow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __pow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+ @overload
+ def __pow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __pow__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __pow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rpow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rpow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rpow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rpow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rpow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+ @overload
+ def __rpow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __rpow__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rpow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __truediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc]
+ @overload
+ def __truediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __truediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __truediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __truediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ...
+ @overload
+ def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __truediv__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __truediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rtruediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc]
+ @overload
+ def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rtruediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __rtruediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
+ @overload
+ def __rtruediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ...
+ @overload
+ def __rtruediv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ...
+ @overload
+ def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rtruediv__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rtruediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __lshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __lshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __lshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __lshift__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __lshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rlshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rlshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rlshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rlshift__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rlshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rshift__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rrshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rrshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rrshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rrshift__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rrshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __and__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __and__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __and__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __and__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __and__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __rand__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rand__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rand__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rand__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __xor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __xor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __xor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __xor__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __xor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __rxor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __rxor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rxor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rxor__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rxor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __or__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __or__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __or__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __or__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __or__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ @overload
+ def __ror__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __ror__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __ror__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __ror__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __ror__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+
+ # `np.generic` does not support inplace operations
+
+ # NOTE: Inplace ops generally use "same_kind" casting w.r.t. to the left
+ # operand. An exception to this rule are unsigned integers though, which
+ # also accepts a signed integer for the right operand as long it is a 0D
+ # object and its value is >= 0
+ @overload
+ def __iadd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __iadd__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __iadd__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __iadd__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __iadd__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __iadd__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __iadd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __iadd__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __isub__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __isub__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __isub__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __isub__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __isub__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __isub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __isub__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __imul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __imul__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __imul__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __imul__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __imul__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __imul__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __imul__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __itruediv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __itruediv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __itruediv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __ifloordiv__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __ipow__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ipow__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ipow__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __ipow__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __ipow__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __imod__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __imod__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __imod__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __imod__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ...
+ @overload
+ def __imod__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __ilshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ilshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ilshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __irshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __irshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __irshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __iand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __iand__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __iand__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __iand__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __ixor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __ixor__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ixor__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ixor__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __ior__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __ior__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ior__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ior__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ @overload
+ def __imatmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __imatmul__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __imatmul__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __imatmul__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __imatmul__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __imatmul__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+
+ def __dlpack__(self: NDArray[number[Any]], *, stream: None = ...) -> _PyCapsule: ...
+ def __dlpack_device__(self) -> tuple[int, L[0]]: ...
+
+ # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
+ @property
+ def dtype(self) -> _DType_co: ...
+
+# NOTE: while `np.generic` is not technically an instance of `ABCMeta`,
+# the `@abstractmethod` decorator is herein used to (forcefully) deny
+# the creation of `np.generic` instances.
+# The `# type: ignore` comments are necessary to silence mypy errors regarding
+# the missing `ABCMeta` metaclass.
+
+# See https://github.com/numpy/numpy-stubs/pull/80 for more details.
+
+_ScalarType = TypeVar("_ScalarType", bound=generic)
+_NBit1 = TypeVar("_NBit1", bound=NBitBase)
+_NBit2 = TypeVar("_NBit2", bound=NBitBase)
+
+class generic(_ArrayOrScalarCommon):
+ @abstractmethod
+ def __init__(self, *args: Any, **kwargs: Any) -> None: ...
+ @overload
+ def __array__(self: _ScalarType, dtype: None = ..., /) -> ndarray[Any, _dtype[_ScalarType]]: ...
+ @overload
+ def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ...
+ def __hash__(self) -> int: ...
+ @property
+ def base(self) -> None: ...
+ @property
+ def ndim(self) -> L[0]: ...
+ @property
+ def size(self) -> L[1]: ...
+ @property
+ def shape(self) -> tuple[()]: ...
+ @property
+ def strides(self) -> tuple[()]: ...
+ def byteswap(self: _ScalarType, inplace: L[False] = ...) -> _ScalarType: ...
+ @property
+ def flat(self: _ScalarType) -> flatiter[ndarray[Any, _dtype[_ScalarType]]]: ...
+
+ if sys.version_info >= (3, 12):
+ def __buffer__(self, flags: int, /) -> memoryview: ...
+
+ @overload
+ def astype(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ order: _OrderKACF = ...,
+ casting: _CastingKind = ...,
+ subok: bool = ...,
+ copy: bool | _CopyMode = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def astype(
+ self,
+ dtype: DTypeLike,
+ order: _OrderKACF = ...,
+ casting: _CastingKind = ...,
+ subok: bool = ...,
+ copy: bool | _CopyMode = ...,
+ ) -> Any: ...
+
+ # NOTE: `view` will perform a 0D->scalar cast,
+ # thus the array `type` is irrelevant to the output type
+ @overload
+ def view(
+ self: _ScalarType,
+ type: type[ndarray[Any, Any]] = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def view(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ type: type[ndarray[Any, Any]] = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def view(
+ self,
+ dtype: DTypeLike,
+ type: type[ndarray[Any, Any]] = ...,
+ ) -> Any: ...
+
+ @overload
+ def getfield(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ offset: SupportsIndex = ...
+ ) -> _ScalarType: ...
+ @overload
+ def getfield(
+ self,
+ dtype: DTypeLike,
+ offset: SupportsIndex = ...
+ ) -> Any: ...
+
+ def item(
+ self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
+ ) -> Any: ...
+
+ @overload
+ def take( # type: ignore[misc]
+ self: _ScalarType,
+ indices: _IntLike_co,
+ axis: None | SupportsIndex = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def take( # type: ignore[misc]
+ self: _ScalarType,
+ indices: _ArrayLikeInt_co,
+ axis: None | SupportsIndex = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+ @overload
+ def take(
+ self,
+ indices: _ArrayLikeInt_co,
+ axis: None | SupportsIndex = ...,
+ out: _NdArraySubClass = ...,
+ mode: _ModeKind = ...,
+ ) -> _NdArraySubClass: ...
+
+ def repeat(
+ self: _ScalarType,
+ repeats: _ArrayLikeInt_co,
+ axis: None | SupportsIndex = ...,
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+
+ def flatten(
+ self: _ScalarType,
+ order: _OrderKACF = ...,
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+
+ def ravel(
+ self: _ScalarType,
+ order: _OrderKACF = ...,
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+
+ @overload
+ def reshape(
+ self: _ScalarType, shape: _ShapeLike, /, *, order: _OrderACF = ...
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+ @overload
+ def reshape(
+ self: _ScalarType, *shape: SupportsIndex, order: _OrderACF = ...
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+
+ def squeeze(
+ self: _ScalarType, axis: None | L[0] | tuple[()] = ...
+ ) -> _ScalarType: ...
+ def transpose(self: _ScalarType, axes: None | tuple[()] = ..., /) -> _ScalarType: ...
+ # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
+ @property
+ def dtype(self: _ScalarType) -> _dtype[_ScalarType]: ...
+
+class number(generic, Generic[_NBit1]): # type: ignore
+ @property
+ def real(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def imag(self: _ArraySelf) -> _ArraySelf: ...
+ def __class_getitem__(self, item: Any) -> GenericAlias: ...
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+ def __complex__(self) -> complex: ...
+ def __neg__(self: _ArraySelf) -> _ArraySelf: ...
+ def __pos__(self: _ArraySelf) -> _ArraySelf: ...
+ def __abs__(self: _ArraySelf) -> _ArraySelf: ...
+ # Ensure that objects annotated as `number` support arithmetic operations
+ __add__: _NumberOp
+ __radd__: _NumberOp
+ __sub__: _NumberOp
+ __rsub__: _NumberOp
+ __mul__: _NumberOp
+ __rmul__: _NumberOp
+ __floordiv__: _NumberOp
+ __rfloordiv__: _NumberOp
+ __pow__: _NumberOp
+ __rpow__: _NumberOp
+ __truediv__: _NumberOp
+ __rtruediv__: _NumberOp
+ __lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+
+class bool_(generic):
+ def __init__(self, value: object = ..., /) -> None: ...
+ def item(
+ self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
+ ) -> bool: ...
+ def tolist(self) -> bool: ...
+ @property
+ def real(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def imag(self: _ArraySelf) -> _ArraySelf: ...
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+ def __complex__(self) -> complex: ...
+ def __abs__(self: _ArraySelf) -> _ArraySelf: ...
+ __add__: _BoolOp[bool_]
+ __radd__: _BoolOp[bool_]
+ __sub__: _BoolSub
+ __rsub__: _BoolSub
+ __mul__: _BoolOp[bool_]
+ __rmul__: _BoolOp[bool_]
+ __floordiv__: _BoolOp[int8]
+ __rfloordiv__: _BoolOp[int8]
+ __pow__: _BoolOp[int8]
+ __rpow__: _BoolOp[int8]
+ __truediv__: _BoolTrueDiv
+ __rtruediv__: _BoolTrueDiv
+ def __invert__(self) -> bool_: ...
+ __lshift__: _BoolBitOp[int8]
+ __rlshift__: _BoolBitOp[int8]
+ __rshift__: _BoolBitOp[int8]
+ __rrshift__: _BoolBitOp[int8]
+ __and__: _BoolBitOp[bool_]
+ __rand__: _BoolBitOp[bool_]
+ __xor__: _BoolBitOp[bool_]
+ __rxor__: _BoolBitOp[bool_]
+ __or__: _BoolBitOp[bool_]
+ __ror__: _BoolBitOp[bool_]
+ __mod__: _BoolMod
+ __rmod__: _BoolMod
+ __divmod__: _BoolDivMod
+ __rdivmod__: _BoolDivMod
+ __lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+
+class object_(generic):
+ def __init__(self, value: object = ..., /) -> None: ...
+ @property
+ def real(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def imag(self: _ArraySelf) -> _ArraySelf: ...
+ # The 3 protocols below may or may not raise,
+ # depending on the underlying object
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+ def __complex__(self) -> complex: ...
+
+ if sys.version_info >= (3, 12):
+ def __release_buffer__(self, buffer: memoryview, /) -> None: ...
+
+# The `datetime64` constructors requires an object with the three attributes below,
+# and thus supports datetime duck typing
+class _DatetimeScalar(Protocol):
+ @property
+ def day(self) -> int: ...
+ @property
+ def month(self) -> int: ...
+ @property
+ def year(self) -> int: ...
+
+# TODO: `item`/`tolist` returns either `dt.date`, `dt.datetime` or `int`
+# depending on the unit
+class datetime64(generic):
+ @overload
+ def __init__(
+ self,
+ value: None | datetime64 | _CharLike_co | _DatetimeScalar = ...,
+ format: _CharLike_co | tuple[_CharLike_co, _IntLike_co] = ...,
+ /,
+ ) -> None: ...
+ @overload
+ def __init__(
+ self,
+ value: int,
+ format: _CharLike_co | tuple[_CharLike_co, _IntLike_co],
+ /,
+ ) -> None: ...
+ def __add__(self, other: _TD64Like_co) -> datetime64: ...
+ def __radd__(self, other: _TD64Like_co) -> datetime64: ...
+ @overload
+ def __sub__(self, other: datetime64) -> timedelta64: ...
+ @overload
+ def __sub__(self, other: _TD64Like_co) -> datetime64: ...
+ def __rsub__(self, other: datetime64) -> timedelta64: ...
+ __lt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
+ __le__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
+ __gt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
+ __ge__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
+
+_IntValue = Union[SupportsInt, _CharLike_co, SupportsIndex]
+_FloatValue = Union[None, _CharLike_co, SupportsFloat, SupportsIndex]
+_ComplexValue = Union[
+ None,
+ _CharLike_co,
+ SupportsFloat,
+ SupportsComplex,
+ SupportsIndex,
+ complex, # `complex` is not a subtype of `SupportsComplex`
+]
+
+class integer(number[_NBit1]): # type: ignore
+ @property
+ def numerator(self: _ScalarType) -> _ScalarType: ...
+ @property
+ def denominator(self) -> L[1]: ...
+ @overload
+ def __round__(self, ndigits: None = ...) -> int: ...
+ @overload
+ def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ...
+
+ # NOTE: `__index__` is technically defined in the bottom-most
+ # sub-classes (`int64`, `uint32`, etc)
+ def item(
+ self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
+ ) -> int: ...
+ def tolist(self) -> int: ...
+ def is_integer(self) -> L[True]: ...
+ def bit_count(self: _ScalarType) -> int: ...
+ def __index__(self) -> int: ...
+ __truediv__: _IntTrueDiv[_NBit1]
+ __rtruediv__: _IntTrueDiv[_NBit1]
+ def __mod__(self, value: _IntLike_co) -> integer[Any]: ...
+ def __rmod__(self, value: _IntLike_co) -> integer[Any]: ...
+ def __invert__(self: _IntType) -> _IntType: ...
+ # Ensure that objects annotated as `integer` support bit-wise operations
+ def __lshift__(self, other: _IntLike_co) -> integer[Any]: ...
+ def __rlshift__(self, other: _IntLike_co) -> integer[Any]: ...
+ def __rshift__(self, other: _IntLike_co) -> integer[Any]: ...
+ def __rrshift__(self, other: _IntLike_co) -> integer[Any]: ...
+ def __and__(self, other: _IntLike_co) -> integer[Any]: ...
+ def __rand__(self, other: _IntLike_co) -> integer[Any]: ...
+ def __or__(self, other: _IntLike_co) -> integer[Any]: ...
+ def __ror__(self, other: _IntLike_co) -> integer[Any]: ...
+ def __xor__(self, other: _IntLike_co) -> integer[Any]: ...
+ def __rxor__(self, other: _IntLike_co) -> integer[Any]: ...
+
+class signedinteger(integer[_NBit1]):
+ def __init__(self, value: _IntValue = ..., /) -> None: ...
+ __add__: _SignedIntOp[_NBit1]
+ __radd__: _SignedIntOp[_NBit1]
+ __sub__: _SignedIntOp[_NBit1]
+ __rsub__: _SignedIntOp[_NBit1]
+ __mul__: _SignedIntOp[_NBit1]
+ __rmul__: _SignedIntOp[_NBit1]
+ __floordiv__: _SignedIntOp[_NBit1]
+ __rfloordiv__: _SignedIntOp[_NBit1]
+ __pow__: _SignedIntOp[_NBit1]
+ __rpow__: _SignedIntOp[_NBit1]
+ __lshift__: _SignedIntBitOp[_NBit1]
+ __rlshift__: _SignedIntBitOp[_NBit1]
+ __rshift__: _SignedIntBitOp[_NBit1]
+ __rrshift__: _SignedIntBitOp[_NBit1]
+ __and__: _SignedIntBitOp[_NBit1]
+ __rand__: _SignedIntBitOp[_NBit1]
+ __xor__: _SignedIntBitOp[_NBit1]
+ __rxor__: _SignedIntBitOp[_NBit1]
+ __or__: _SignedIntBitOp[_NBit1]
+ __ror__: _SignedIntBitOp[_NBit1]
+ __mod__: _SignedIntMod[_NBit1]
+ __rmod__: _SignedIntMod[_NBit1]
+ __divmod__: _SignedIntDivMod[_NBit1]
+ __rdivmod__: _SignedIntDivMod[_NBit1]
+
+int8 = signedinteger[_8Bit]
+int16 = signedinteger[_16Bit]
+int32 = signedinteger[_32Bit]
+int64 = signedinteger[_64Bit]
+
+byte = signedinteger[_NBitByte]
+short = signedinteger[_NBitShort]
+intc = signedinteger[_NBitIntC]
+intp = signedinteger[_NBitIntP]
+int_ = signedinteger[_NBitInt]
+longlong = signedinteger[_NBitLongLong]
+
+# TODO: `item`/`tolist` returns either `dt.timedelta` or `int`
+# depending on the unit
+class timedelta64(generic):
+ def __init__(
+ self,
+ value: None | int | _CharLike_co | dt.timedelta | timedelta64 = ...,
+ format: _CharLike_co | tuple[_CharLike_co, _IntLike_co] = ...,
+ /,
+ ) -> None: ...
+ @property
+ def numerator(self: _ScalarType) -> _ScalarType: ...
+ @property
+ def denominator(self) -> L[1]: ...
+
+ # NOTE: Only a limited number of units support conversion
+ # to builtin scalar types: `Y`, `M`, `ns`, `ps`, `fs`, `as`
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+ def __complex__(self) -> complex: ...
+ def __neg__(self: _ArraySelf) -> _ArraySelf: ...
+ def __pos__(self: _ArraySelf) -> _ArraySelf: ...
+ def __abs__(self: _ArraySelf) -> _ArraySelf: ...
+ def __add__(self, other: _TD64Like_co) -> timedelta64: ...
+ def __radd__(self, other: _TD64Like_co) -> timedelta64: ...
+ def __sub__(self, other: _TD64Like_co) -> timedelta64: ...
+ def __rsub__(self, other: _TD64Like_co) -> timedelta64: ...
+ def __mul__(self, other: _FloatLike_co) -> timedelta64: ...
+ def __rmul__(self, other: _FloatLike_co) -> timedelta64: ...
+ __truediv__: _TD64Div[float64]
+ __floordiv__: _TD64Div[int64]
+ def __rtruediv__(self, other: timedelta64) -> float64: ...
+ def __rfloordiv__(self, other: timedelta64) -> int64: ...
+ def __mod__(self, other: timedelta64) -> timedelta64: ...
+ def __rmod__(self, other: timedelta64) -> timedelta64: ...
+ def __divmod__(self, other: timedelta64) -> tuple[int64, timedelta64]: ...
+ def __rdivmod__(self, other: timedelta64) -> tuple[int64, timedelta64]: ...
+ __lt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
+ __le__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
+ __gt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
+ __ge__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
+
+class unsignedinteger(integer[_NBit1]):
+ # NOTE: `uint64 + signedinteger -> float64`
+ def __init__(self, value: _IntValue = ..., /) -> None: ...
+ __add__: _UnsignedIntOp[_NBit1]
+ __radd__: _UnsignedIntOp[_NBit1]
+ __sub__: _UnsignedIntOp[_NBit1]
+ __rsub__: _UnsignedIntOp[_NBit1]
+ __mul__: _UnsignedIntOp[_NBit1]
+ __rmul__: _UnsignedIntOp[_NBit1]
+ __floordiv__: _UnsignedIntOp[_NBit1]
+ __rfloordiv__: _UnsignedIntOp[_NBit1]
+ __pow__: _UnsignedIntOp[_NBit1]
+ __rpow__: _UnsignedIntOp[_NBit1]
+ __lshift__: _UnsignedIntBitOp[_NBit1]
+ __rlshift__: _UnsignedIntBitOp[_NBit1]
+ __rshift__: _UnsignedIntBitOp[_NBit1]
+ __rrshift__: _UnsignedIntBitOp[_NBit1]
+ __and__: _UnsignedIntBitOp[_NBit1]
+ __rand__: _UnsignedIntBitOp[_NBit1]
+ __xor__: _UnsignedIntBitOp[_NBit1]
+ __rxor__: _UnsignedIntBitOp[_NBit1]
+ __or__: _UnsignedIntBitOp[_NBit1]
+ __ror__: _UnsignedIntBitOp[_NBit1]
+ __mod__: _UnsignedIntMod[_NBit1]
+ __rmod__: _UnsignedIntMod[_NBit1]
+ __divmod__: _UnsignedIntDivMod[_NBit1]
+ __rdivmod__: _UnsignedIntDivMod[_NBit1]
+
+uint8 = unsignedinteger[_8Bit]
+uint16 = unsignedinteger[_16Bit]
+uint32 = unsignedinteger[_32Bit]
+uint64 = unsignedinteger[_64Bit]
+
+ubyte = unsignedinteger[_NBitByte]
+ushort = unsignedinteger[_NBitShort]
+uintc = unsignedinteger[_NBitIntC]
+uintp = unsignedinteger[_NBitIntP]
+uint = unsignedinteger[_NBitInt]
+ulonglong = unsignedinteger[_NBitLongLong]
+
+class inexact(number[_NBit1]): # type: ignore
+ def __getnewargs__(self: inexact[_64Bit]) -> tuple[float, ...]: ...
+
+_IntType = TypeVar("_IntType", bound=integer[Any])
+_FloatType = TypeVar('_FloatType', bound=floating[Any])
+
+class floating(inexact[_NBit1]):
+ def __init__(self, value: _FloatValue = ..., /) -> None: ...
+ def item(
+ self, args: L[0] | tuple[()] | tuple[L[0]] = ...,
+ /,
+ ) -> float: ...
+ def tolist(self) -> float: ...
+ def is_integer(self) -> bool: ...
+ def hex(self: float64) -> str: ...
+ @classmethod
+ def fromhex(cls: type[float64], string: str, /) -> float64: ...
+ def as_integer_ratio(self) -> tuple[int, int]: ...
+ def __ceil__(self: float64) -> int: ...
+ def __floor__(self: float64) -> int: ...
+ def __trunc__(self: float64) -> int: ...
+ def __getnewargs__(self: float64) -> tuple[float]: ...
+ def __getformat__(self: float64, typestr: L["double", "float"], /) -> str: ...
+ @overload
+ def __round__(self, ndigits: None = ...) -> int: ...
+ @overload
+ def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ...
+ __add__: _FloatOp[_NBit1]
+ __radd__: _FloatOp[_NBit1]
+ __sub__: _FloatOp[_NBit1]
+ __rsub__: _FloatOp[_NBit1]
+ __mul__: _FloatOp[_NBit1]
+ __rmul__: _FloatOp[_NBit1]
+ __truediv__: _FloatOp[_NBit1]
+ __rtruediv__: _FloatOp[_NBit1]
+ __floordiv__: _FloatOp[_NBit1]
+ __rfloordiv__: _FloatOp[_NBit1]
+ __pow__: _FloatOp[_NBit1]
+ __rpow__: _FloatOp[_NBit1]
+ __mod__: _FloatMod[_NBit1]
+ __rmod__: _FloatMod[_NBit1]
+ __divmod__: _FloatDivMod[_NBit1]
+ __rdivmod__: _FloatDivMod[_NBit1]
+
+float16 = floating[_16Bit]
+float32 = floating[_32Bit]
+float64 = floating[_64Bit]
+
+half = floating[_NBitHalf]
+single = floating[_NBitSingle]
+double = floating[_NBitDouble]
+float_ = floating[_NBitDouble]
+longdouble = floating[_NBitLongDouble]
+longfloat = floating[_NBitLongDouble]
+
+# The main reason for `complexfloating` having two typevars is cosmetic.
+# It is used to clarify why `complex128`s precision is `_64Bit`, the latter
+# describing the two 64 bit floats representing its real and imaginary component
+
+class complexfloating(inexact[_NBit1], Generic[_NBit1, _NBit2]):
+ def __init__(self, value: _ComplexValue = ..., /) -> None: ...
+ def item(
+ self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
+ ) -> complex: ...
+ def tolist(self) -> complex: ...
+ @property
+ def real(self) -> floating[_NBit1]: ... # type: ignore[override]
+ @property
+ def imag(self) -> floating[_NBit2]: ... # type: ignore[override]
+ def __abs__(self) -> floating[_NBit1]: ... # type: ignore[override]
+ def __getnewargs__(self: complex128) -> tuple[float, float]: ...
+ # NOTE: Deprecated
+ # def __round__(self, ndigits=...): ...
+ __add__: _ComplexOp[_NBit1]
+ __radd__: _ComplexOp[_NBit1]
+ __sub__: _ComplexOp[_NBit1]
+ __rsub__: _ComplexOp[_NBit1]
+ __mul__: _ComplexOp[_NBit1]
+ __rmul__: _ComplexOp[_NBit1]
+ __truediv__: _ComplexOp[_NBit1]
+ __rtruediv__: _ComplexOp[_NBit1]
+ __pow__: _ComplexOp[_NBit1]
+ __rpow__: _ComplexOp[_NBit1]
+
+complex64 = complexfloating[_32Bit, _32Bit]
+complex128 = complexfloating[_64Bit, _64Bit]
+
+csingle = complexfloating[_NBitSingle, _NBitSingle]
+singlecomplex = complexfloating[_NBitSingle, _NBitSingle]
+cdouble = complexfloating[_NBitDouble, _NBitDouble]
+complex_ = complexfloating[_NBitDouble, _NBitDouble]
+cfloat = complexfloating[_NBitDouble, _NBitDouble]
+clongdouble = complexfloating[_NBitLongDouble, _NBitLongDouble]
+clongfloat = complexfloating[_NBitLongDouble, _NBitLongDouble]
+longcomplex = complexfloating[_NBitLongDouble, _NBitLongDouble]
+
+class flexible(generic): ... # type: ignore
+
+# TODO: `item`/`tolist` returns either `bytes` or `tuple`
+# depending on whether or not it's used as an opaque bytes sequence
+# or a structure
+class void(flexible):
+ @overload
+ def __init__(self, value: _IntLike_co | bytes, /, dtype : None = ...) -> None: ...
+ @overload
+ def __init__(self, value: Any, /, dtype: _DTypeLikeVoid) -> None: ...
+ @property
+ def real(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def imag(self: _ArraySelf) -> _ArraySelf: ...
+ def setfield(
+ self, val: ArrayLike, dtype: DTypeLike, offset: int = ...
+ ) -> None: ...
+ @overload
+ def __getitem__(self, key: str | SupportsIndex) -> Any: ...
+ @overload
+ def __getitem__(self, key: list[str]) -> void: ...
+ def __setitem__(
+ self,
+ key: str | list[str] | SupportsIndex,
+ value: ArrayLike,
+ ) -> None: ...
+
+class character(flexible): # type: ignore
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+
+# NOTE: Most `np.bytes_` / `np.str_` methods return their
+# builtin `bytes` / `str` counterpart
+
+class bytes_(character, bytes):
+ @overload
+ def __init__(self, value: object = ..., /) -> None: ...
+ @overload
+ def __init__(
+ self, value: str, /, encoding: str = ..., errors: str = ...
+ ) -> None: ...
+ def item(
+ self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
+ ) -> bytes: ...
+ def tolist(self) -> bytes: ...
+
+string_ = bytes_
+
+class str_(character, str):
+ @overload
+ def __init__(self, value: object = ..., /) -> None: ...
+ @overload
+ def __init__(
+ self, value: bytes, /, encoding: str = ..., errors: str = ...
+ ) -> None: ...
+ def item(
+ self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
+ ) -> str: ...
+ def tolist(self) -> str: ...
+
+unicode_ = str_
+
+#
+# Constants
+#
+
+Inf: Final[float]
+Infinity: Final[float]
+NAN: Final[float]
+NINF: Final[float]
+NZERO: Final[float]
+NaN: Final[float]
+PINF: Final[float]
+PZERO: Final[float]
+e: Final[float]
+euler_gamma: Final[float]
+inf: Final[float]
+infty: Final[float]
+nan: Final[float]
+pi: Final[float]
+
+ERR_IGNORE: L[0]
+ERR_WARN: L[1]
+ERR_RAISE: L[2]
+ERR_CALL: L[3]
+ERR_PRINT: L[4]
+ERR_LOG: L[5]
+ERR_DEFAULT: L[521]
+
+SHIFT_DIVIDEBYZERO: L[0]
+SHIFT_OVERFLOW: L[3]
+SHIFT_UNDERFLOW: L[6]
+SHIFT_INVALID: L[9]
+
+FPE_DIVIDEBYZERO: L[1]
+FPE_OVERFLOW: L[2]
+FPE_UNDERFLOW: L[4]
+FPE_INVALID: L[8]
+
+FLOATING_POINT_SUPPORT: L[1]
+UFUNC_BUFSIZE_DEFAULT = BUFSIZE
+
+little_endian: Final[bool]
+True_: Final[bool_]
+False_: Final[bool_]
+
+UFUNC_PYVALS_NAME: L["UFUNC_PYVALS"]
+
+newaxis: None
+
+# See `numpy._typing._ufunc` for more concrete nin-/nout-specific stubs
+@final
+class ufunc:
+ @property
+ def __name__(self) -> str: ...
+ @property
+ def __doc__(self) -> str: ...
+ __call__: Callable[..., Any]
+ @property
+ def nin(self) -> int: ...
+ @property
+ def nout(self) -> int: ...
+ @property
+ def nargs(self) -> int: ...
+ @property
+ def ntypes(self) -> int: ...
+ @property
+ def types(self) -> list[str]: ...
+ # Broad return type because it has to encompass things like
+ #
+ # >>> np.logical_and.identity is True
+ # True
+ # >>> np.add.identity is 0
+ # True
+ # >>> np.sin.identity is None
+ # True
+ #
+ # and any user-defined ufuncs.
+ @property
+ def identity(self) -> Any: ...
+ # This is None for ufuncs and a string for gufuncs.
+ @property
+ def signature(self) -> None | str: ...
+ # The next four methods will always exist, but they will just
+ # raise a ValueError ufuncs with that don't accept two input
+ # arguments and return one output argument. Because of that we
+ # can't type them very precisely.
+ reduce: Any
+ accumulate: Any
+ reduceat: Any
+ outer: Any
+ # Similarly at won't be defined for ufuncs that return multiple
+ # outputs, so we can't type it very precisely.
+ at: Any
+
+# Parameters: `__name__`, `ntypes` and `identity`
+absolute: _UFunc_Nin1_Nout1[L['absolute'], L[20], None]
+add: _UFunc_Nin2_Nout1[L['add'], L[22], L[0]]
+arccos: _UFunc_Nin1_Nout1[L['arccos'], L[8], None]
+arccosh: _UFunc_Nin1_Nout1[L['arccosh'], L[8], None]
+arcsin: _UFunc_Nin1_Nout1[L['arcsin'], L[8], None]
+arcsinh: _UFunc_Nin1_Nout1[L['arcsinh'], L[8], None]
+arctan2: _UFunc_Nin2_Nout1[L['arctan2'], L[5], None]
+arctan: _UFunc_Nin1_Nout1[L['arctan'], L[8], None]
+arctanh: _UFunc_Nin1_Nout1[L['arctanh'], L[8], None]
+bitwise_and: _UFunc_Nin2_Nout1[L['bitwise_and'], L[12], L[-1]]
+bitwise_not: _UFunc_Nin1_Nout1[L['invert'], L[12], None]
+bitwise_or: _UFunc_Nin2_Nout1[L['bitwise_or'], L[12], L[0]]
+bitwise_xor: _UFunc_Nin2_Nout1[L['bitwise_xor'], L[12], L[0]]
+cbrt: _UFunc_Nin1_Nout1[L['cbrt'], L[5], None]
+ceil: _UFunc_Nin1_Nout1[L['ceil'], L[7], None]
+conj: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None]
+conjugate: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None]
+copysign: _UFunc_Nin2_Nout1[L['copysign'], L[4], None]
+cos: _UFunc_Nin1_Nout1[L['cos'], L[9], None]
+cosh: _UFunc_Nin1_Nout1[L['cosh'], L[8], None]
+deg2rad: _UFunc_Nin1_Nout1[L['deg2rad'], L[5], None]
+degrees: _UFunc_Nin1_Nout1[L['degrees'], L[5], None]
+divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None]
+divmod: _UFunc_Nin2_Nout2[L['divmod'], L[15], None]
+equal: _UFunc_Nin2_Nout1[L['equal'], L[23], None]
+exp2: _UFunc_Nin1_Nout1[L['exp2'], L[8], None]
+exp: _UFunc_Nin1_Nout1[L['exp'], L[10], None]
+expm1: _UFunc_Nin1_Nout1[L['expm1'], L[8], None]
+fabs: _UFunc_Nin1_Nout1[L['fabs'], L[5], None]
+float_power: _UFunc_Nin2_Nout1[L['float_power'], L[4], None]
+floor: _UFunc_Nin1_Nout1[L['floor'], L[7], None]
+floor_divide: _UFunc_Nin2_Nout1[L['floor_divide'], L[21], None]
+fmax: _UFunc_Nin2_Nout1[L['fmax'], L[21], None]
+fmin: _UFunc_Nin2_Nout1[L['fmin'], L[21], None]
+fmod: _UFunc_Nin2_Nout1[L['fmod'], L[15], None]
+frexp: _UFunc_Nin1_Nout2[L['frexp'], L[4], None]
+gcd: _UFunc_Nin2_Nout1[L['gcd'], L[11], L[0]]
+greater: _UFunc_Nin2_Nout1[L['greater'], L[23], None]
+greater_equal: _UFunc_Nin2_Nout1[L['greater_equal'], L[23], None]
+heaviside: _UFunc_Nin2_Nout1[L['heaviside'], L[4], None]
+hypot: _UFunc_Nin2_Nout1[L['hypot'], L[5], L[0]]
+invert: _UFunc_Nin1_Nout1[L['invert'], L[12], None]
+isfinite: _UFunc_Nin1_Nout1[L['isfinite'], L[20], None]
+isinf: _UFunc_Nin1_Nout1[L['isinf'], L[20], None]
+isnan: _UFunc_Nin1_Nout1[L['isnan'], L[20], None]
+isnat: _UFunc_Nin1_Nout1[L['isnat'], L[2], None]
+lcm: _UFunc_Nin2_Nout1[L['lcm'], L[11], None]
+ldexp: _UFunc_Nin2_Nout1[L['ldexp'], L[8], None]
+left_shift: _UFunc_Nin2_Nout1[L['left_shift'], L[11], None]
+less: _UFunc_Nin2_Nout1[L['less'], L[23], None]
+less_equal: _UFunc_Nin2_Nout1[L['less_equal'], L[23], None]
+log10: _UFunc_Nin1_Nout1[L['log10'], L[8], None]
+log1p: _UFunc_Nin1_Nout1[L['log1p'], L[8], None]
+log2: _UFunc_Nin1_Nout1[L['log2'], L[8], None]
+log: _UFunc_Nin1_Nout1[L['log'], L[10], None]
+logaddexp2: _UFunc_Nin2_Nout1[L['logaddexp2'], L[4], float]
+logaddexp: _UFunc_Nin2_Nout1[L['logaddexp'], L[4], float]
+logical_and: _UFunc_Nin2_Nout1[L['logical_and'], L[20], L[True]]
+logical_not: _UFunc_Nin1_Nout1[L['logical_not'], L[20], None]
+logical_or: _UFunc_Nin2_Nout1[L['logical_or'], L[20], L[False]]
+logical_xor: _UFunc_Nin2_Nout1[L['logical_xor'], L[19], L[False]]
+matmul: _GUFunc_Nin2_Nout1[L['matmul'], L[19], None]
+maximum: _UFunc_Nin2_Nout1[L['maximum'], L[21], None]
+minimum: _UFunc_Nin2_Nout1[L['minimum'], L[21], None]
+mod: _UFunc_Nin2_Nout1[L['remainder'], L[16], None]
+modf: _UFunc_Nin1_Nout2[L['modf'], L[4], None]
+multiply: _UFunc_Nin2_Nout1[L['multiply'], L[23], L[1]]
+negative: _UFunc_Nin1_Nout1[L['negative'], L[19], None]
+nextafter: _UFunc_Nin2_Nout1[L['nextafter'], L[4], None]
+not_equal: _UFunc_Nin2_Nout1[L['not_equal'], L[23], None]
+positive: _UFunc_Nin1_Nout1[L['positive'], L[19], None]
+power: _UFunc_Nin2_Nout1[L['power'], L[18], None]
+rad2deg: _UFunc_Nin1_Nout1[L['rad2deg'], L[5], None]
+radians: _UFunc_Nin1_Nout1[L['radians'], L[5], None]
+reciprocal: _UFunc_Nin1_Nout1[L['reciprocal'], L[18], None]
+remainder: _UFunc_Nin2_Nout1[L['remainder'], L[16], None]
+right_shift: _UFunc_Nin2_Nout1[L['right_shift'], L[11], None]
+rint: _UFunc_Nin1_Nout1[L['rint'], L[10], None]
+sign: _UFunc_Nin1_Nout1[L['sign'], L[19], None]
+signbit: _UFunc_Nin1_Nout1[L['signbit'], L[4], None]
+sin: _UFunc_Nin1_Nout1[L['sin'], L[9], None]
+sinh: _UFunc_Nin1_Nout1[L['sinh'], L[8], None]
+spacing: _UFunc_Nin1_Nout1[L['spacing'], L[4], None]
+sqrt: _UFunc_Nin1_Nout1[L['sqrt'], L[10], None]
+square: _UFunc_Nin1_Nout1[L['square'], L[18], None]
+subtract: _UFunc_Nin2_Nout1[L['subtract'], L[21], None]
+tan: _UFunc_Nin1_Nout1[L['tan'], L[8], None]
+tanh: _UFunc_Nin1_Nout1[L['tanh'], L[8], None]
+true_divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None]
+trunc: _UFunc_Nin1_Nout1[L['trunc'], L[7], None]
+
+abs = absolute
+
+class _CopyMode(enum.Enum):
+ ALWAYS: L[True]
+ IF_NEEDED: L[False]
+ NEVER: L[2]
+
+# Warnings
+class RankWarning(UserWarning): ...
+
+_CallType = TypeVar("_CallType", bound=_ErrFunc | _SupportsWrite[str])
+
+class errstate(Generic[_CallType], ContextDecorator):
+ call: _CallType
+ kwargs: _ErrDictOptional
+
+ # Expand `**kwargs` into explicit keyword-only arguments
+ def __init__(
+ self,
+ *,
+ call: _CallType = ...,
+ all: None | _ErrKind = ...,
+ divide: None | _ErrKind = ...,
+ over: None | _ErrKind = ...,
+ under: None | _ErrKind = ...,
+ invalid: None | _ErrKind = ...,
+ ) -> None: ...
+ def __enter__(self) -> None: ...
+ def __exit__(
+ self,
+ exc_type: None | type[BaseException],
+ exc_value: None | BaseException,
+ traceback: None | TracebackType,
+ /,
+ ) -> None: ...
+
+@contextmanager
+def _no_nep50_warning() -> Generator[None, None, None]: ...
+def _get_promotion_state() -> str: ...
+def _set_promotion_state(state: str, /) -> None: ...
+
+class ndenumerate(Generic[_ScalarType]):
+ iter: flatiter[NDArray[_ScalarType]]
+ @overload
+ def __new__(
+ cls, arr: _FiniteNestedSequence[_SupportsArray[dtype[_ScalarType]]],
+ ) -> ndenumerate[_ScalarType]: ...
+ @overload
+ def __new__(cls, arr: str | _NestedSequence[str]) -> ndenumerate[str_]: ...
+ @overload
+ def __new__(cls, arr: bytes | _NestedSequence[bytes]) -> ndenumerate[bytes_]: ...
+ @overload
+ def __new__(cls, arr: bool | _NestedSequence[bool]) -> ndenumerate[bool_]: ...
+ @overload
+ def __new__(cls, arr: int | _NestedSequence[int]) -> ndenumerate[int_]: ...
+ @overload
+ def __new__(cls, arr: float | _NestedSequence[float]) -> ndenumerate[float_]: ...
+ @overload
+ def __new__(cls, arr: complex | _NestedSequence[complex]) -> ndenumerate[complex_]: ...
+ def __next__(self: ndenumerate[_ScalarType]) -> tuple[_Shape, _ScalarType]: ...
+ def __iter__(self: _T) -> _T: ...
+
+class ndindex:
+ @overload
+ def __init__(self, shape: tuple[SupportsIndex, ...], /) -> None: ...
+ @overload
+ def __init__(self, *shape: SupportsIndex) -> None: ...
+ def __iter__(self: _T) -> _T: ...
+ def __next__(self) -> _Shape: ...
+
+class DataSource:
+ def __init__(
+ self,
+ destpath: None | str | os.PathLike[str] = ...,
+ ) -> None: ...
+ def __del__(self) -> None: ...
+ def abspath(self, path: str) -> str: ...
+ def exists(self, path: str) -> bool: ...
+
+ # Whether the file-object is opened in string or bytes mode (by default)
+ # depends on the file-extension of `path`
+ def open(
+ self,
+ path: str,
+ mode: str = ...,
+ encoding: None | str = ...,
+ newline: None | str = ...,
+ ) -> IO[Any]: ...
+
+# TODO: The type of each `__next__` and `iters` return-type depends
+# on the length and dtype of `args`; we can't describe this behavior yet
+# as we lack variadics (PEP 646).
+@final
+class broadcast:
+ def __new__(cls, *args: ArrayLike) -> broadcast: ...
+ @property
+ def index(self) -> int: ...
+ @property
+ def iters(self) -> tuple[flatiter[Any], ...]: ...
+ @property
+ def nd(self) -> int: ...
+ @property
+ def ndim(self) -> int: ...
+ @property
+ def numiter(self) -> int: ...
+ @property
+ def shape(self) -> _Shape: ...
+ @property
+ def size(self) -> int: ...
+ def __next__(self) -> tuple[Any, ...]: ...
+ def __iter__(self: _T) -> _T: ...
+ def reset(self) -> None: ...
+
+@final
+class busdaycalendar:
+ def __new__(
+ cls,
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] = ...,
+ ) -> busdaycalendar: ...
+ @property
+ def weekmask(self) -> NDArray[bool_]: ...
+ @property
+ def holidays(self) -> NDArray[datetime64]: ...
+
+class finfo(Generic[_FloatType]):
+ dtype: dtype[_FloatType]
+ bits: int
+ eps: _FloatType
+ epsneg: _FloatType
+ iexp: int
+ machep: int
+ max: _FloatType
+ maxexp: int
+ min: _FloatType
+ minexp: int
+ negep: int
+ nexp: int
+ nmant: int
+ precision: int
+ resolution: _FloatType
+ smallest_subnormal: _FloatType
+ @property
+ def smallest_normal(self) -> _FloatType: ...
+ @property
+ def tiny(self) -> _FloatType: ...
+ @overload
+ def __new__(
+ cls, dtype: inexact[_NBit1] | _DTypeLike[inexact[_NBit1]]
+ ) -> finfo[floating[_NBit1]]: ...
+ @overload
+ def __new__(
+ cls, dtype: complex | float | type[complex] | type[float]
+ ) -> finfo[float_]: ...
+ @overload
+ def __new__(
+ cls, dtype: str
+ ) -> finfo[floating[Any]]: ...
+
+class iinfo(Generic[_IntType]):
+ dtype: dtype[_IntType]
+ kind: str
+ bits: int
+ key: str
+ @property
+ def min(self) -> int: ...
+ @property
+ def max(self) -> int: ...
+
+ @overload
+ def __new__(cls, dtype: _IntType | _DTypeLike[_IntType]) -> iinfo[_IntType]: ...
+ @overload
+ def __new__(cls, dtype: int | type[int]) -> iinfo[int_]: ...
+ @overload
+ def __new__(cls, dtype: str) -> iinfo[Any]: ...
+
+class format_parser:
+ dtype: dtype[void]
+ def __init__(
+ self,
+ formats: DTypeLike,
+ names: None | str | Sequence[str],
+ titles: None | str | Sequence[str],
+ aligned: bool = ...,
+ byteorder: None | _ByteOrder = ...,
+ ) -> None: ...
+
+class recarray(ndarray[_ShapeType, _DType_co]):
+ # NOTE: While not strictly mandatory, we're demanding here that arguments
+ # for the `format_parser`- and `dtype`-based dtype constructors are
+ # mutually exclusive
+ @overload
+ def __new__(
+ subtype,
+ shape: _ShapeLike,
+ dtype: None = ...,
+ buf: None | _SupportsBuffer = ...,
+ offset: SupportsIndex = ...,
+ strides: None | _ShapeLike = ...,
+ *,
+ formats: DTypeLike,
+ names: None | str | Sequence[str] = ...,
+ titles: None | str | Sequence[str] = ...,
+ byteorder: None | _ByteOrder = ...,
+ aligned: bool = ...,
+ order: _OrderKACF = ...,
+ ) -> recarray[Any, dtype[record]]: ...
+ @overload
+ def __new__(
+ subtype,
+ shape: _ShapeLike,
+ dtype: DTypeLike,
+ buf: None | _SupportsBuffer = ...,
+ offset: SupportsIndex = ...,
+ strides: None | _ShapeLike = ...,
+ formats: None = ...,
+ names: None = ...,
+ titles: None = ...,
+ byteorder: None = ...,
+ aligned: L[False] = ...,
+ order: _OrderKACF = ...,
+ ) -> recarray[Any, dtype[Any]]: ...
+ def __array_finalize__(self, obj: object) -> None: ...
+ def __getattribute__(self, attr: str) -> Any: ...
+ def __setattr__(self, attr: str, val: ArrayLike) -> None: ...
+ @overload
+ def __getitem__(self, indx: (
+ SupportsIndex
+ | _ArrayLikeInt_co
+ | tuple[SupportsIndex | _ArrayLikeInt_co, ...]
+ )) -> Any: ...
+ @overload
+ def __getitem__(self: recarray[Any, dtype[void]], indx: (
+ None
+ | slice
+ | ellipsis
+ | SupportsIndex
+ | _ArrayLikeInt_co
+ | tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...]
+ )) -> recarray[Any, _DType_co]: ...
+ @overload
+ def __getitem__(self, indx: (
+ None
+ | slice
+ | ellipsis
+ | SupportsIndex
+ | _ArrayLikeInt_co
+ | tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...]
+ )) -> ndarray[Any, _DType_co]: ...
+ @overload
+ def __getitem__(self, indx: str) -> NDArray[Any]: ...
+ @overload
+ def __getitem__(self, indx: list[str]) -> recarray[_ShapeType, dtype[record]]: ...
+ @overload
+ def field(self, attr: int | str, val: None = ...) -> Any: ...
+ @overload
+ def field(self, attr: int | str, val: ArrayLike) -> None: ...
+
+class record(void):
+ def __getattribute__(self, attr: str) -> Any: ...
+ def __setattr__(self, attr: str, val: ArrayLike) -> None: ...
+ def pprint(self) -> str: ...
+ @overload
+ def __getitem__(self, key: str | SupportsIndex) -> Any: ...
+ @overload
+ def __getitem__(self, key: list[str]) -> record: ...
+
+_NDIterFlagsKind = L[
+ "buffered",
+ "c_index",
+ "copy_if_overlap",
+ "common_dtype",
+ "delay_bufalloc",
+ "external_loop",
+ "f_index",
+ "grow_inner", "growinner",
+ "multi_index",
+ "ranged",
+ "refs_ok",
+ "reduce_ok",
+ "zerosize_ok",
+]
+
+_NDIterOpFlagsKind = L[
+ "aligned",
+ "allocate",
+ "arraymask",
+ "copy",
+ "config",
+ "nbo",
+ "no_subtype",
+ "no_broadcast",
+ "overlap_assume_elementwise",
+ "readonly",
+ "readwrite",
+ "updateifcopy",
+ "virtual",
+ "writeonly",
+ "writemasked"
+]
+
+@final
+class nditer:
+ def __new__(
+ cls,
+ op: ArrayLike | Sequence[ArrayLike],
+ flags: None | Sequence[_NDIterFlagsKind] = ...,
+ op_flags: None | Sequence[Sequence[_NDIterOpFlagsKind]] = ...,
+ op_dtypes: DTypeLike | Sequence[DTypeLike] = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingKind = ...,
+ op_axes: None | Sequence[Sequence[SupportsIndex]] = ...,
+ itershape: None | _ShapeLike = ...,
+ buffersize: SupportsIndex = ...,
+ ) -> nditer: ...
+ def __enter__(self) -> nditer: ...
+ def __exit__(
+ self,
+ exc_type: None | type[BaseException],
+ exc_value: None | BaseException,
+ traceback: None | TracebackType,
+ ) -> None: ...
+ def __iter__(self) -> nditer: ...
+ def __next__(self) -> tuple[NDArray[Any], ...]: ...
+ def __len__(self) -> int: ...
+ def __copy__(self) -> nditer: ...
+ @overload
+ def __getitem__(self, index: SupportsIndex) -> NDArray[Any]: ...
+ @overload
+ def __getitem__(self, index: slice) -> tuple[NDArray[Any], ...]: ...
+ def __setitem__(self, index: slice | SupportsIndex, value: ArrayLike) -> None: ...
+ def close(self) -> None: ...
+ def copy(self) -> nditer: ...
+ def debug_print(self) -> None: ...
+ def enable_external_loop(self) -> None: ...
+ def iternext(self) -> bool: ...
+ def remove_axis(self, i: SupportsIndex, /) -> None: ...
+ def remove_multi_index(self) -> None: ...
+ def reset(self) -> None: ...
+ @property
+ def dtypes(self) -> tuple[dtype[Any], ...]: ...
+ @property
+ def finished(self) -> bool: ...
+ @property
+ def has_delayed_bufalloc(self) -> bool: ...
+ @property
+ def has_index(self) -> bool: ...
+ @property
+ def has_multi_index(self) -> bool: ...
+ @property
+ def index(self) -> int: ...
+ @property
+ def iterationneedsapi(self) -> bool: ...
+ @property
+ def iterindex(self) -> int: ...
+ @property
+ def iterrange(self) -> tuple[int, ...]: ...
+ @property
+ def itersize(self) -> int: ...
+ @property
+ def itviews(self) -> tuple[NDArray[Any], ...]: ...
+ @property
+ def multi_index(self) -> tuple[int, ...]: ...
+ @property
+ def ndim(self) -> int: ...
+ @property
+ def nop(self) -> int: ...
+ @property
+ def operands(self) -> tuple[NDArray[Any], ...]: ...
+ @property
+ def shape(self) -> tuple[int, ...]: ...
+ @property
+ def value(self) -> tuple[NDArray[Any], ...]: ...
+
+_MemMapModeKind = L[
+ "readonly", "r",
+ "copyonwrite", "c",
+ "readwrite", "r+",
+ "write", "w+",
+]
+
+class memmap(ndarray[_ShapeType, _DType_co]):
+ __array_priority__: ClassVar[float]
+ filename: str | None
+ offset: int
+ mode: str
+ @overload
+ def __new__(
+ subtype,
+ filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol,
+ dtype: type[uint8] = ...,
+ mode: _MemMapModeKind = ...,
+ offset: int = ...,
+ shape: None | int | tuple[int, ...] = ...,
+ order: _OrderKACF = ...,
+ ) -> memmap[Any, dtype[uint8]]: ...
+ @overload
+ def __new__(
+ subtype,
+ filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol,
+ dtype: _DTypeLike[_ScalarType],
+ mode: _MemMapModeKind = ...,
+ offset: int = ...,
+ shape: None | int | tuple[int, ...] = ...,
+ order: _OrderKACF = ...,
+ ) -> memmap[Any, dtype[_ScalarType]]: ...
+ @overload
+ def __new__(
+ subtype,
+ filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol,
+ dtype: DTypeLike,
+ mode: _MemMapModeKind = ...,
+ offset: int = ...,
+ shape: None | int | tuple[int, ...] = ...,
+ order: _OrderKACF = ...,
+ ) -> memmap[Any, dtype[Any]]: ...
+ def __array_finalize__(self, obj: object) -> None: ...
+ def __array_wrap__(
+ self,
+ array: memmap[_ShapeType, _DType_co],
+ context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
+ ) -> Any: ...
+ def flush(self) -> None: ...
+
+# TODO: Add a mypy plugin for managing functions whose output type is dependent
+# on the literal value of some sort of signature (e.g. `einsum` and `vectorize`)
+class vectorize:
+ pyfunc: Callable[..., Any]
+ cache: bool
+ signature: None | str
+ otypes: None | str
+ excluded: set[int | str]
+ __doc__: None | str
+ def __init__(
+ self,
+ pyfunc: Callable[..., Any],
+ otypes: None | str | Iterable[DTypeLike] = ...,
+ doc: None | str = ...,
+ excluded: None | Iterable[int | str] = ...,
+ cache: bool = ...,
+ signature: None | str = ...,
+ ) -> None: ...
+ def __call__(self, *args: Any, **kwargs: Any) -> Any: ...
+
+class poly1d:
+ @property
+ def variable(self) -> str: ...
+ @property
+ def order(self) -> int: ...
+ @property
+ def o(self) -> int: ...
+ @property
+ def roots(self) -> NDArray[Any]: ...
+ @property
+ def r(self) -> NDArray[Any]: ...
+
+ @property
+ def coeffs(self) -> NDArray[Any]: ...
+ @coeffs.setter
+ def coeffs(self, value: NDArray[Any]) -> None: ...
+
+ @property
+ def c(self) -> NDArray[Any]: ...
+ @c.setter
+ def c(self, value: NDArray[Any]) -> None: ...
+
+ @property
+ def coef(self) -> NDArray[Any]: ...
+ @coef.setter
+ def coef(self, value: NDArray[Any]) -> None: ...
+
+ @property
+ def coefficients(self) -> NDArray[Any]: ...
+ @coefficients.setter
+ def coefficients(self, value: NDArray[Any]) -> None: ...
+
+ __hash__: ClassVar[None] # type: ignore
+
+ @overload
+ def __array__(self, t: None = ...) -> NDArray[Any]: ...
+ @overload
+ def __array__(self, t: _DType) -> ndarray[Any, _DType]: ...
+
+ @overload
+ def __call__(self, val: _ScalarLike_co) -> Any: ...
+ @overload
+ def __call__(self, val: poly1d) -> poly1d: ...
+ @overload
+ def __call__(self, val: ArrayLike) -> NDArray[Any]: ...
+
+ def __init__(
+ self,
+ c_or_r: ArrayLike,
+ r: bool = ...,
+ variable: None | str = ...,
+ ) -> None: ...
+ def __len__(self) -> int: ...
+ def __neg__(self) -> poly1d: ...
+ def __pos__(self) -> poly1d: ...
+ def __mul__(self, other: ArrayLike) -> poly1d: ...
+ def __rmul__(self, other: ArrayLike) -> poly1d: ...
+ def __add__(self, other: ArrayLike) -> poly1d: ...
+ def __radd__(self, other: ArrayLike) -> poly1d: ...
+ def __pow__(self, val: _FloatLike_co) -> poly1d: ... # Integral floats are accepted
+ def __sub__(self, other: ArrayLike) -> poly1d: ...
+ def __rsub__(self, other: ArrayLike) -> poly1d: ...
+ def __div__(self, other: ArrayLike) -> poly1d: ...
+ def __truediv__(self, other: ArrayLike) -> poly1d: ...
+ def __rdiv__(self, other: ArrayLike) -> poly1d: ...
+ def __rtruediv__(self, other: ArrayLike) -> poly1d: ...
+ def __getitem__(self, val: int) -> Any: ...
+ def __setitem__(self, key: int, val: Any) -> None: ...
+ def __iter__(self) -> Iterator[Any]: ...
+ def deriv(self, m: SupportsInt | SupportsIndex = ...) -> poly1d: ...
+ def integ(
+ self,
+ m: SupportsInt | SupportsIndex = ...,
+ k: None | _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
+ ) -> poly1d: ...
+
+class matrix(ndarray[_ShapeType, _DType_co]):
+ __array_priority__: ClassVar[float]
+ def __new__(
+ subtype,
+ data: ArrayLike,
+ dtype: DTypeLike = ...,
+ copy: bool = ...,
+ ) -> matrix[Any, Any]: ...
+ def __array_finalize__(self, obj: object) -> None: ...
+
+ @overload
+ def __getitem__(self, key: (
+ SupportsIndex
+ | _ArrayLikeInt_co
+ | tuple[SupportsIndex | _ArrayLikeInt_co, ...]
+ )) -> Any: ...
+ @overload
+ def __getitem__(self, key: (
+ None
+ | slice
+ | ellipsis
+ | SupportsIndex
+ | _ArrayLikeInt_co
+ | tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...]
+ )) -> matrix[Any, _DType_co]: ...
+ @overload
+ def __getitem__(self: NDArray[void], key: str) -> matrix[Any, dtype[Any]]: ...
+ @overload
+ def __getitem__(self: NDArray[void], key: list[str]) -> matrix[_ShapeType, dtype[void]]: ...
+
+ def __mul__(self, other: ArrayLike) -> matrix[Any, Any]: ...
+ def __rmul__(self, other: ArrayLike) -> matrix[Any, Any]: ...
+ def __imul__(self, other: ArrayLike) -> matrix[_ShapeType, _DType_co]: ...
+ def __pow__(self, other: ArrayLike) -> matrix[Any, Any]: ...
+ def __ipow__(self, other: ArrayLike) -> matrix[_ShapeType, _DType_co]: ...
+
+ @overload
+ def sum(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ...
+ @overload
+ def sum(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ...
+ @overload
+ def sum(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def mean(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ...
+ @overload
+ def mean(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ...
+ @overload
+ def mean(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def std(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ...
+ @overload
+ def std(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[Any, Any]: ...
+ @overload
+ def std(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ..., ddof: float = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def var(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ...
+ @overload
+ def var(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[Any, Any]: ...
+ @overload
+ def var(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ..., ddof: float = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def prod(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ...
+ @overload
+ def prod(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ...
+ @overload
+ def prod(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def any(self, axis: None = ..., out: None = ...) -> bool_: ...
+ @overload
+ def any(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[bool_]]: ...
+ @overload
+ def any(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def all(self, axis: None = ..., out: None = ...) -> bool_: ...
+ @overload
+ def all(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[bool_]]: ...
+ @overload
+ def all(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def max(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ...
+ @overload
+ def max(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ...
+ @overload
+ def max(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def min(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ...
+ @overload
+ def min(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ...
+ @overload
+ def min(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def argmax(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> intp: ...
+ @overload
+ def argmax(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[intp]]: ...
+ @overload
+ def argmax(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def argmin(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> intp: ...
+ @overload
+ def argmin(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[intp]]: ...
+ @overload
+ def argmin(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ @overload
+ def ptp(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ...
+ @overload
+ def ptp(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ...
+ @overload
+ def ptp(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
+
+ def squeeze(self, axis: None | _ShapeLike = ...) -> matrix[Any, _DType_co]: ...
+ def tolist(self: matrix[Any, dtype[_SupportsItem[_T]]]) -> list[list[_T]]: ... # type: ignore[typevar]
+ def ravel(self, order: _OrderKACF = ...) -> matrix[Any, _DType_co]: ...
+ def flatten(self, order: _OrderKACF = ...) -> matrix[Any, _DType_co]: ...
+
+ @property
+ def T(self) -> matrix[Any, _DType_co]: ...
+ @property
+ def I(self) -> matrix[Any, Any]: ...
+ @property
+ def A(self) -> ndarray[_ShapeType, _DType_co]: ...
+ @property
+ def A1(self) -> ndarray[Any, _DType_co]: ...
+ @property
+ def H(self) -> matrix[Any, _DType_co]: ...
+ def getT(self) -> matrix[Any, _DType_co]: ...
+ def getI(self) -> matrix[Any, Any]: ...
+ def getA(self) -> ndarray[_ShapeType, _DType_co]: ...
+ def getA1(self) -> ndarray[Any, _DType_co]: ...
+ def getH(self) -> matrix[Any, _DType_co]: ...
+
+_CharType = TypeVar("_CharType", str_, bytes_)
+_CharDType = TypeVar("_CharDType", dtype[str_], dtype[bytes_])
+_CharArray = chararray[Any, dtype[_CharType]]
+
+class chararray(ndarray[_ShapeType, _CharDType]):
+ @overload
+ def __new__(
+ subtype,
+ shape: _ShapeLike,
+ itemsize: SupportsIndex | SupportsInt = ...,
+ unicode: L[False] = ...,
+ buffer: _SupportsBuffer = ...,
+ offset: SupportsIndex = ...,
+ strides: _ShapeLike = ...,
+ order: _OrderKACF = ...,
+ ) -> chararray[Any, dtype[bytes_]]: ...
+ @overload
+ def __new__(
+ subtype,
+ shape: _ShapeLike,
+ itemsize: SupportsIndex | SupportsInt = ...,
+ unicode: L[True] = ...,
+ buffer: _SupportsBuffer = ...,
+ offset: SupportsIndex = ...,
+ strides: _ShapeLike = ...,
+ order: _OrderKACF = ...,
+ ) -> chararray[Any, dtype[str_]]: ...
+
+ def __array_finalize__(self, obj: object) -> None: ...
+ def __mul__(self, other: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ...
+ def __rmul__(self, other: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ...
+ def __mod__(self, i: Any) -> chararray[Any, _CharDType]: ...
+
+ @overload
+ def __eq__(
+ self: _CharArray[str_],
+ other: _ArrayLikeStr_co,
+ ) -> NDArray[bool_]: ...
+ @overload
+ def __eq__(
+ self: _CharArray[bytes_],
+ other: _ArrayLikeBytes_co,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def __ne__(
+ self: _CharArray[str_],
+ other: _ArrayLikeStr_co,
+ ) -> NDArray[bool_]: ...
+ @overload
+ def __ne__(
+ self: _CharArray[bytes_],
+ other: _ArrayLikeBytes_co,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def __ge__(
+ self: _CharArray[str_],
+ other: _ArrayLikeStr_co,
+ ) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(
+ self: _CharArray[bytes_],
+ other: _ArrayLikeBytes_co,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def __le__(
+ self: _CharArray[str_],
+ other: _ArrayLikeStr_co,
+ ) -> NDArray[bool_]: ...
+ @overload
+ def __le__(
+ self: _CharArray[bytes_],
+ other: _ArrayLikeBytes_co,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def __gt__(
+ self: _CharArray[str_],
+ other: _ArrayLikeStr_co,
+ ) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(
+ self: _CharArray[bytes_],
+ other: _ArrayLikeBytes_co,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def __lt__(
+ self: _CharArray[str_],
+ other: _ArrayLikeStr_co,
+ ) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(
+ self: _CharArray[bytes_],
+ other: _ArrayLikeBytes_co,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def __add__(
+ self: _CharArray[str_],
+ other: _ArrayLikeStr_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def __add__(
+ self: _CharArray[bytes_],
+ other: _ArrayLikeBytes_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def __radd__(
+ self: _CharArray[str_],
+ other: _ArrayLikeStr_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def __radd__(
+ self: _CharArray[bytes_],
+ other: _ArrayLikeBytes_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def center(
+ self: _CharArray[str_],
+ width: _ArrayLikeInt_co,
+ fillchar: _ArrayLikeStr_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def center(
+ self: _CharArray[bytes_],
+ width: _ArrayLikeInt_co,
+ fillchar: _ArrayLikeBytes_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def count(
+ self: _CharArray[str_],
+ sub: _ArrayLikeStr_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def count(
+ self: _CharArray[bytes_],
+ sub: _ArrayLikeBytes_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+
+ def decode(
+ self: _CharArray[bytes_],
+ encoding: None | str = ...,
+ errors: None | str = ...,
+ ) -> _CharArray[str_]: ...
+
+ def encode(
+ self: _CharArray[str_],
+ encoding: None | str = ...,
+ errors: None | str = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def endswith(
+ self: _CharArray[str_],
+ suffix: _ArrayLikeStr_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[bool_]: ...
+ @overload
+ def endswith(
+ self: _CharArray[bytes_],
+ suffix: _ArrayLikeBytes_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[bool_]: ...
+
+ def expandtabs(
+ self,
+ tabsize: _ArrayLikeInt_co = ...,
+ ) -> chararray[Any, _CharDType]: ...
+
+ @overload
+ def find(
+ self: _CharArray[str_],
+ sub: _ArrayLikeStr_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def find(
+ self: _CharArray[bytes_],
+ sub: _ArrayLikeBytes_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+
+ @overload
+ def index(
+ self: _CharArray[str_],
+ sub: _ArrayLikeStr_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def index(
+ self: _CharArray[bytes_],
+ sub: _ArrayLikeBytes_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+
+ @overload
+ def join(
+ self: _CharArray[str_],
+ seq: _ArrayLikeStr_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def join(
+ self: _CharArray[bytes_],
+ seq: _ArrayLikeBytes_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def ljust(
+ self: _CharArray[str_],
+ width: _ArrayLikeInt_co,
+ fillchar: _ArrayLikeStr_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def ljust(
+ self: _CharArray[bytes_],
+ width: _ArrayLikeInt_co,
+ fillchar: _ArrayLikeBytes_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def lstrip(
+ self: _CharArray[str_],
+ chars: None | _ArrayLikeStr_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def lstrip(
+ self: _CharArray[bytes_],
+ chars: None | _ArrayLikeBytes_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def partition(
+ self: _CharArray[str_],
+ sep: _ArrayLikeStr_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def partition(
+ self: _CharArray[bytes_],
+ sep: _ArrayLikeBytes_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def replace(
+ self: _CharArray[str_],
+ old: _ArrayLikeStr_co,
+ new: _ArrayLikeStr_co,
+ count: None | _ArrayLikeInt_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def replace(
+ self: _CharArray[bytes_],
+ old: _ArrayLikeBytes_co,
+ new: _ArrayLikeBytes_co,
+ count: None | _ArrayLikeInt_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def rfind(
+ self: _CharArray[str_],
+ sub: _ArrayLikeStr_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def rfind(
+ self: _CharArray[bytes_],
+ sub: _ArrayLikeBytes_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+
+ @overload
+ def rindex(
+ self: _CharArray[str_],
+ sub: _ArrayLikeStr_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def rindex(
+ self: _CharArray[bytes_],
+ sub: _ArrayLikeBytes_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[int_]: ...
+
+ @overload
+ def rjust(
+ self: _CharArray[str_],
+ width: _ArrayLikeInt_co,
+ fillchar: _ArrayLikeStr_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def rjust(
+ self: _CharArray[bytes_],
+ width: _ArrayLikeInt_co,
+ fillchar: _ArrayLikeBytes_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def rpartition(
+ self: _CharArray[str_],
+ sep: _ArrayLikeStr_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def rpartition(
+ self: _CharArray[bytes_],
+ sep: _ArrayLikeBytes_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def rsplit(
+ self: _CharArray[str_],
+ sep: None | _ArrayLikeStr_co = ...,
+ maxsplit: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[object_]: ...
+ @overload
+ def rsplit(
+ self: _CharArray[bytes_],
+ sep: None | _ArrayLikeBytes_co = ...,
+ maxsplit: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[object_]: ...
+
+ @overload
+ def rstrip(
+ self: _CharArray[str_],
+ chars: None | _ArrayLikeStr_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def rstrip(
+ self: _CharArray[bytes_],
+ chars: None | _ArrayLikeBytes_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def split(
+ self: _CharArray[str_],
+ sep: None | _ArrayLikeStr_co = ...,
+ maxsplit: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[object_]: ...
+ @overload
+ def split(
+ self: _CharArray[bytes_],
+ sep: None | _ArrayLikeBytes_co = ...,
+ maxsplit: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[object_]: ...
+
+ def splitlines(self, keepends: None | _ArrayLikeBool_co = ...) -> NDArray[object_]: ...
+
+ @overload
+ def startswith(
+ self: _CharArray[str_],
+ prefix: _ArrayLikeStr_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[bool_]: ...
+ @overload
+ def startswith(
+ self: _CharArray[bytes_],
+ prefix: _ArrayLikeBytes_co,
+ start: _ArrayLikeInt_co = ...,
+ end: None | _ArrayLikeInt_co = ...,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def strip(
+ self: _CharArray[str_],
+ chars: None | _ArrayLikeStr_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def strip(
+ self: _CharArray[bytes_],
+ chars: None | _ArrayLikeBytes_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def translate(
+ self: _CharArray[str_],
+ table: _ArrayLikeStr_co,
+ deletechars: None | _ArrayLikeStr_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def translate(
+ self: _CharArray[bytes_],
+ table: _ArrayLikeBytes_co,
+ deletechars: None | _ArrayLikeBytes_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ def zfill(self, width: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ...
+ def capitalize(self) -> chararray[_ShapeType, _CharDType]: ...
+ def title(self) -> chararray[_ShapeType, _CharDType]: ...
+ def swapcase(self) -> chararray[_ShapeType, _CharDType]: ...
+ def lower(self) -> chararray[_ShapeType, _CharDType]: ...
+ def upper(self) -> chararray[_ShapeType, _CharDType]: ...
+ def isalnum(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
+ def isalpha(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
+ def isdigit(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
+ def islower(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
+ def isspace(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
+ def istitle(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
+ def isupper(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
+ def isnumeric(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
+ def isdecimal(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
+
+# NOTE: Deprecated
+# class MachAr: ...
+
+class _SupportsDLPack(Protocol[_T_contra]):
+ def __dlpack__(self, *, stream: None | _T_contra = ...) -> _PyCapsule: ...
+
+def from_dlpack(obj: _SupportsDLPack[None], /) -> NDArray[Any]: ...