about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py268
1 files changed, 268 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py
new file mode 100644
index 00000000..eff36b2a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py
@@ -0,0 +1,268 @@
+import random
+from copy import copy
+
+import pytest
+
+import networkx as nx
+from networkx.utils import (
+    PythonRandomInterface,
+    PythonRandomViaNumpyBits,
+    arbitrary_element,
+    create_py_random_state,
+    create_random_state,
+    dict_to_numpy_array,
+    discrete_sequence,
+    flatten,
+    groups,
+    make_list_of_ints,
+    pairwise,
+    powerlaw_sequence,
+)
+from networkx.utils.misc import _dict_to_numpy_array1, _dict_to_numpy_array2
+
+nested_depth = (
+    1,
+    2,
+    (3, 4, ((5, 6, (7,), (8, (9, 10), 11), (12, 13, (14, 15)), 16), 17), 18, 19),
+    20,
+)
+
+nested_set = {
+    (1, 2, 3, 4),
+    (5, 6, 7, 8, 9),
+    (10, 11, (12, 13, 14), (15, 16, 17, 18)),
+    19,
+    20,
+}
+
+nested_mixed = [
+    1,
+    (2, 3, {4, (5, 6), 7}, [8, 9]),
+    {10: "foo", 11: "bar", (12, 13): "baz"},
+    {(14, 15): "qwe", 16: "asd"},
+    (17, (18, "19"), 20),
+]
+
+
+@pytest.mark.parametrize("result", [None, [], ["existing"], ["existing1", "existing2"]])
+@pytest.mark.parametrize("nested", [nested_depth, nested_mixed, nested_set])
+def test_flatten(nested, result):
+    if result is None:
+        val = flatten(nested, result)
+        assert len(val) == 20
+    else:
+        _result = copy(result)  # because pytest passes parameters as is
+        nexisting = len(_result)
+        val = flatten(nested, _result)
+        assert len(val) == len(_result) == 20 + nexisting
+
+    assert issubclass(type(val), tuple)
+
+
+def test_make_list_of_ints():
+    mylist = [1, 2, 3.0, 42, -2]
+    assert make_list_of_ints(mylist) is mylist
+    assert make_list_of_ints(mylist) == mylist
+    assert type(make_list_of_ints(mylist)[2]) is int
+    pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3, "kermit"])
+    pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3.1])
+
+
+def test_random_number_distribution():
+    # smoke test only
+    z = powerlaw_sequence(20, exponent=2.5)
+    z = discrete_sequence(20, distribution=[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3])
+
+
+class TestNumpyArray:
+    @classmethod
+    def setup_class(cls):
+        global np
+        np = pytest.importorskip("numpy")
+
+    def test_numpy_to_list_of_ints(self):
+        a = np.array([1, 2, 3], dtype=np.int64)
+        b = np.array([1.0, 2, 3])
+        c = np.array([1.1, 2, 3])
+        assert type(make_list_of_ints(a)) == list
+        assert make_list_of_ints(b) == list(b)
+        B = make_list_of_ints(b)
+        assert type(B[0]) == int
+        pytest.raises(nx.NetworkXError, make_list_of_ints, c)
+
+    def test__dict_to_numpy_array1(self):
+        d = {"a": 1, "b": 2}
+        a = _dict_to_numpy_array1(d, mapping={"a": 0, "b": 1})
+        np.testing.assert_allclose(a, np.array([1, 2]))
+        a = _dict_to_numpy_array1(d, mapping={"b": 0, "a": 1})
+        np.testing.assert_allclose(a, np.array([2, 1]))
+
+        a = _dict_to_numpy_array1(d)
+        np.testing.assert_allclose(a.sum(), 3)
+
+    def test__dict_to_numpy_array2(self):
+        d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}}
+
+        mapping = {"a": 1, "b": 0}
+        a = _dict_to_numpy_array2(d, mapping=mapping)
+        np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]]))
+
+        a = _dict_to_numpy_array2(d)
+        np.testing.assert_allclose(a.sum(), 33)
+
+    def test_dict_to_numpy_array_a(self):
+        d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}}
+
+        mapping = {"a": 0, "b": 1}
+        a = dict_to_numpy_array(d, mapping=mapping)
+        np.testing.assert_allclose(a, np.array([[1, 2], [10, 20]]))
+
+        mapping = {"a": 1, "b": 0}
+        a = dict_to_numpy_array(d, mapping=mapping)
+        np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]]))
+
+        a = _dict_to_numpy_array2(d)
+        np.testing.assert_allclose(a.sum(), 33)
+
+    def test_dict_to_numpy_array_b(self):
+        d = {"a": 1, "b": 2}
+
+        mapping = {"a": 0, "b": 1}
+        a = dict_to_numpy_array(d, mapping=mapping)
+        np.testing.assert_allclose(a, np.array([1, 2]))
+
+        a = _dict_to_numpy_array1(d)
+        np.testing.assert_allclose(a.sum(), 3)
+
+
+def test_pairwise():
+    nodes = range(4)
+    node_pairs = [(0, 1), (1, 2), (2, 3)]
+    node_pairs_cycle = node_pairs + [(3, 0)]
+    assert list(pairwise(nodes)) == node_pairs
+    assert list(pairwise(iter(nodes))) == node_pairs
+    assert list(pairwise(nodes, cyclic=True)) == node_pairs_cycle
+    empty_iter = iter(())
+    assert list(pairwise(empty_iter)) == []
+    empty_iter = iter(())
+    assert list(pairwise(empty_iter, cyclic=True)) == []
+
+
+def test_groups():
+    many_to_one = dict(zip("abcde", [0, 0, 1, 1, 2]))
+    actual = groups(many_to_one)
+    expected = {0: {"a", "b"}, 1: {"c", "d"}, 2: {"e"}}
+    assert actual == expected
+    assert {} == groups({})
+
+
+def test_create_random_state():
+    np = pytest.importorskip("numpy")
+    rs = np.random.RandomState
+
+    assert isinstance(create_random_state(1), rs)
+    assert isinstance(create_random_state(None), rs)
+    assert isinstance(create_random_state(np.random), rs)
+    assert isinstance(create_random_state(rs(1)), rs)
+    # Support for numpy.random.Generator
+    rng = np.random.default_rng()
+    assert isinstance(create_random_state(rng), np.random.Generator)
+    pytest.raises(ValueError, create_random_state, "a")
+
+    assert np.all(rs(1).rand(10) == create_random_state(1).rand(10))
+
+
+def test_create_py_random_state():
+    pyrs = random.Random
+
+    assert isinstance(create_py_random_state(1), pyrs)
+    assert isinstance(create_py_random_state(None), pyrs)
+    assert isinstance(create_py_random_state(pyrs(1)), pyrs)
+    pytest.raises(ValueError, create_py_random_state, "a")
+
+    np = pytest.importorskip("numpy")
+
+    rs = np.random.RandomState
+    rng = np.random.default_rng(1000)
+    rng_explicit = np.random.Generator(np.random.SFC64())
+    old_nprs = PythonRandomInterface
+    nprs = PythonRandomViaNumpyBits
+    assert isinstance(create_py_random_state(np.random), nprs)
+    assert isinstance(create_py_random_state(rs(1)), old_nprs)
+    assert isinstance(create_py_random_state(rng), nprs)
+    assert isinstance(create_py_random_state(rng_explicit), nprs)
+    # test default rng input
+    assert isinstance(PythonRandomInterface(), old_nprs)
+    assert isinstance(PythonRandomViaNumpyBits(), nprs)
+
+    # VeryLargeIntegers Smoke test (they raise error for np.random)
+    int64max = 9223372036854775807  # from np.iinfo(np.int64).max
+    for r in (rng, rs(1)):
+        prs = create_py_random_state(r)
+        prs.randrange(3, int64max + 5)
+        prs.randint(3, int64max + 5)
+
+
+def test_PythonRandomInterface_RandomState():
+    np = pytest.importorskip("numpy")
+
+    seed = 42
+    rs = np.random.RandomState
+    rng = PythonRandomInterface(rs(seed))
+    rs42 = rs(seed)
+
+    # make sure these functions are same as expected outcome
+    assert rng.randrange(3, 5) == rs42.randint(3, 5)
+    assert rng.choice([1, 2, 3]) == rs42.choice([1, 2, 3])
+    assert rng.gauss(0, 1) == rs42.normal(0, 1)
+    assert rng.expovariate(1.5) == rs42.exponential(1 / 1.5)
+    assert np.all(rng.shuffle([1, 2, 3]) == rs42.shuffle([1, 2, 3]))
+    assert np.all(
+        rng.sample([1, 2, 3], 2) == rs42.choice([1, 2, 3], (2,), replace=False)
+    )
+    assert np.all(
+        [rng.randint(3, 5) for _ in range(100)]
+        == [rs42.randint(3, 6) for _ in range(100)]
+    )
+    assert rng.random() == rs42.random_sample()
+
+
+def test_PythonRandomInterface_Generator():
+    np = pytest.importorskip("numpy")
+
+    seed = 42
+    rng = np.random.default_rng(seed)
+    pri = PythonRandomInterface(np.random.default_rng(seed))
+
+    # make sure these functions are same as expected outcome
+    assert pri.randrange(3, 5) == rng.integers(3, 5)
+    assert pri.choice([1, 2, 3]) == rng.choice([1, 2, 3])
+    assert pri.gauss(0, 1) == rng.normal(0, 1)
+    assert pri.expovariate(1.5) == rng.exponential(1 / 1.5)
+    assert np.all(pri.shuffle([1, 2, 3]) == rng.shuffle([1, 2, 3]))
+    assert np.all(
+        pri.sample([1, 2, 3], 2) == rng.choice([1, 2, 3], (2,), replace=False)
+    )
+    assert np.all(
+        [pri.randint(3, 5) for _ in range(100)]
+        == [rng.integers(3, 6) for _ in range(100)]
+    )
+    assert pri.random() == rng.random()
+
+
+@pytest.mark.parametrize(
+    ("iterable_type", "expected"), ((list, 1), (tuple, 1), (str, "["), (set, 1))
+)
+def test_arbitrary_element(iterable_type, expected):
+    iterable = iterable_type([1, 2, 3])
+    assert arbitrary_element(iterable) == expected
+
+
+@pytest.mark.parametrize(
+    "iterator",
+    ((i for i in range(3)), iter([1, 2, 3])),  # generator
+)
+def test_arbitrary_element_raises(iterator):
+    """Value error is raised when input is an iterator."""
+    with pytest.raises(ValueError, match="from an iterator"):
+        arbitrary_element(iterator)