aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/utils/backends.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/utils/backends.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/backends.py2501
1 files changed, 2501 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/backends.py b/.venv/lib/python3.12/site-packages/networkx/utils/backends.py
new file mode 100644
index 00000000..0b41d4c7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/backends.py
@@ -0,0 +1,2501 @@
+"""
+Docs for backend users
+~~~~~~~~~~~~~~~~~~~~~~
+NetworkX utilizes a plugin-dispatch architecture. A valid NetworkX backend
+specifies `entry points
+<https://packaging.python.org/en/latest/specifications/entry-points>`_, named
+``networkx.backends`` and an optional ``networkx.backend_info`` when it is
+installed (not imported). This allows NetworkX to dispatch (redirect) function
+calls to the backend so the execution flows to the designated backend
+implementation. This design enhances flexibility and integration, making
+NetworkX more adaptable and efficient.
+
+NetworkX can dispatch to backends **explicitly** (this requires changing code)
+or **automatically** (this requires setting configuration or environment
+variables). The best way to use a backend depends on the backend, your use
+case, and whether you want to automatically convert to or from backend
+graphs. Automatic conversions of graphs is always opt-in.
+
+To explicitly dispatch to a backend, use the `backend=` keyword argument in a
+dispatchable function. This will convert (and cache by default) input NetworkX
+graphs to backend graphs and call the backend implementation. Another explicit
+way to use a backend is to create a backend graph directly--for example,
+perhaps the backend has its own functions for loading data and creating
+graphs--and pass that graph to a dispatchable function, which will then call
+the backend implementation without converting.
+
+Using automatic dispatch requires setting configuration options. Every NetworkX
+configuration may also be set from an environment variable and are processed at
+the time networkx is imported. The following configuration variables are
+supported:
+
+* ``nx.config.backend_priority`` (``NETWORKX_BACKEND_PRIORITY`` env var), a
+ list of backends, controls dispatchable functions that don't return graphs
+ such as e.g. ``nx.pagerank``. When one of these functions is called with
+ NetworkX graphs as input, the dispatcher iterates over the backends listed in
+ this backend_priority config and will use the first backend that implements
+ this function. The input NetworkX graphs are converted (and cached by
+ default) to backend graphs. Using this configuration can allow you to use the
+ full flexibility of NetworkX graphs and the performance of backend
+ implementations, but possible downsides are that creating NetworkX graphs,
+ converting to backend graphs, and caching backend graphs may all be
+ expensive.
+
+* ``nx.config.backend_priority.algos`` (``NETWORKX_BACKEND_PRIORITY_ALGOS`` env
+ var), can be used instead of ``nx.config.backend_priority``
+ (``NETWORKX_BACKEND_PRIORITY`` env var) to emphasize that the setting only
+ affects the dispatching of algorithm functions as described above.
+
+* ``nx.config.backend_priority.generators``
+ (``NETWORKX_BACKEND_PRIORITY_GENERATORS`` env var), a list of backends,
+ controls dispatchable functions that return graphs such as
+ nx.from_pandas_edgelist and nx.empty_graph. When one of these functions is
+ called, the first backend listed in this backend_priority config that
+ implements this function will be used and will return a backend graph. When
+ this backend graph is passed to other dispatchable NetworkX functions, it
+ will use the backend implementation if it exists or raise by default unless
+ nx.config.fallback_to_nx is True (default is False). Using this configuration
+ avoids creating NetworkX graphs, which subsequently avoids the need to
+ convert to and cache backend graphs as when using
+ nx.config.backend_priority.algos, but possible downsides are that the backend
+ graph may not behave the same as a NetworkX graph and the backend may not
+ implement all algorithms that you use, which may break your workflow.
+
+* ``nx.config.fallback_to_nx`` (``NETWORKX_FALLBACK_TO_NX`` env var), a boolean
+ (default False), controls what happens when a backend graph is passed to a
+ dispatchable function that is not implemented by that backend. The default
+ behavior when False is to raise. If True, then the backend graph will be
+ converted (and cached by default) to a NetworkX graph and will run with the
+ default NetworkX implementation. Enabling this configuration can allow
+ workflows to complete if the backend does not implement all algorithms used
+ by the workflow, but a possible downside is that it may require converting
+ the input backend graph to a NetworkX graph, which may be expensive. If a
+ backend graph is duck-type compatible as a NetworkX graph, then the backend
+ may choose not to convert to a NetworkX graph and use the incoming graph
+ as-is.
+
+* ``nx.config.cache_converted_graphs`` (``NETWORKX_CACHE_CONVERTED_GRAPHS`` env
+ var), a boolean (default True), controls whether graph conversions are cached
+ to G.__networkx_cache__ or not. Caching can improve performance by avoiding
+ repeated conversions, but it uses more memory.
+
+.. note:: Backends *should* follow the NetworkX backend naming convention. For
+ example, if a backend is named ``parallel`` and specified using
+ ``backend=parallel`` or ``NETWORKX_BACKEND_PRIORITY=parallel``, the package
+ installed is ``nx-parallel``, and we would use ``import nx_parallel`` if we
+ were to import the backend package directly.
+
+Backends are encouraged to document how they recommend to be used and whether
+their graph types are duck-type compatible as NetworkX graphs. If backend
+graphs are NetworkX-compatible and you want your workflow to automatically
+"just work" with a backend--converting and caching if necessary--then use all
+of the above configurations. Automatically converting graphs is opt-in, and
+configuration gives the user control.
+
+Examples:
+---------
+
+Use the ``cugraph`` backend for every algorithm function it supports. This will
+allow for fall back to the default NetworkX implementations for algorithm calls
+not supported by cugraph because graph generator functions are still returning
+NetworkX graphs.
+
+.. code-block:: bash
+
+ bash> NETWORKX_BACKEND_PRIORITY=cugraph python my_networkx_script.py
+
+Explicitly use the ``parallel`` backend for a function call.
+
+.. code-block:: python
+
+ nx.betweenness_centrality(G, k=10, backend="parallel")
+
+Explicitly use the ``parallel`` backend for a function call by passing an
+instance of the backend graph type to the function.
+
+.. code-block:: python
+
+ H = nx_parallel.ParallelGraph(G)
+ nx.betweenness_centrality(H, k=10)
+
+Explicitly use the ``parallel`` backend and pass additional backend-specific
+arguments. Here, ``get_chunks`` is an argument unique to the ``parallel``
+backend.
+
+.. code-block:: python
+
+ nx.betweenness_centrality(G, k=10, backend="parallel", get_chunks=get_chunks)
+
+Automatically dispatch the ``cugraph`` backend for all NetworkX algorithms and
+generators, and allow the backend graph object returned from generators to be
+passed to NetworkX functions the backend does not support.
+
+.. code-block:: bash
+
+ bash> NETWORKX_BACKEND_PRIORITY_ALGOS=cugraph \\
+ NETWORKX_BACKEND_PRIORITY_GENERATORS=cugraph \\
+ NETWORKX_FALLBACK_TO_NX=True \\
+ python my_networkx_script.py
+
+How does this work?
+-------------------
+
+If you've looked at functions in the NetworkX codebase, you might have seen the
+``@nx._dispatchable`` decorator on most of the functions. This decorator allows the NetworkX
+function to dispatch to the corresponding backend function if available. When the decorated
+function is called, it first checks for a backend to run the function, and if no appropriate
+backend is specified or available, it runs the NetworkX version of the function.
+
+Backend Keyword Argument
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+When a decorated function is called with the ``backend`` kwarg provided, it checks
+if the specified backend is installed, and loads it. Next it checks whether to convert
+input graphs by first resolving the backend of each input graph by looking
+for an attribute named ``__networkx_backend__`` that holds the backend name for that
+graph type. If all input graphs backend matches the ``backend`` kwarg, the backend's
+function is called with the original inputs. If any of the input graphs do not match
+the ``backend`` kwarg, they are converted to the backend graph type before calling.
+Exceptions are raised if any step is not possible, e.g. if the backend does not
+implement this function.
+
+Finding a Backend
+^^^^^^^^^^^^^^^^^
+
+When a decorated function is called without a ``backend`` kwarg, it tries to find a
+dispatchable backend function.
+The backend type of each input graph parameter is resolved (using the
+``__networkx_backend__`` attribute) and if they all agree, that backend's function
+is called if possible. Otherwise the backends listed in the config ``backend_priority``
+are considered one at a time in order. If that backend supports the function and
+can convert the input graphs to its backend type, that backend function is called.
+Otherwise the next backend is considered.
+
+During this process, the backends can provide helpful information to the dispatcher
+via helper methods in the backend's interface. Backend methods ``can_run`` and
+``should_run`` are used by the dispatcher to determine whether to use the backend
+function. If the number of nodes is small, it might be faster to run the NetworkX
+version of the function. This is how backends can provide info about whether to run.
+
+Falling Back to NetworkX
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+If none of the backends are appropriate, we "fall back" to the NetworkX function.
+That means we resolve the backends of all input graphs and if all are NetworkX
+graphs we call the NetworkX function. If any are not NetworkX graphs, we raise
+an exception unless the `fallback_to_nx` config is set. If it is, we convert all
+graph types to NetworkX graph types before calling the NetworkX function.
+
+Functions that mutate the graph
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Any function decorated with the option that indicates it mutates the graph goes through
+a slightly different path to automatically find backends. These functions typically
+generate a graph, or add attributes or change the graph structure. The config
+`backend_priority.generators` holds a list of backend names similar to the config
+`backend_priority`. The process is similar for finding a matching backend. Once found,
+the backend function is called and a backend graph is returned (instead of a NetworkX
+graph). You can then use this backend graph in any function supported by the backend.
+And you can use it for functions not supported by the backend if you set the config
+`fallback_to_nx` to allow it to convert the backend graph to a NetworkX graph before
+calling the function.
+
+Optional keyword arguments
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Backends can add optional keyword parameters to NetworkX functions to allow you to
+control aspects of the backend algorithm. Thus the function signatures can be extended
+beyond the NetworkX function signature. For example, the ``parallel`` backend might
+have a parameter to specify how many CPUs to use. These parameters are collected
+by the dispatchable decorator code at the start of the function call and used when
+calling the backend function.
+
+Existing Backends
+^^^^^^^^^^^^^^^^^
+
+NetworkX does not know all the backends that have been created. In fact, the
+NetworkX library does not need to know that a backend exists for it to work. As
+long as the backend package creates the ``entry_point``, and provides the
+correct interface, it will be called when the user requests it using one of the
+three approaches described above. Some backends have been working with the
+NetworkX developers to ensure smooth operation.
+
+Refer to the :doc:`/backends` section to see a list of available backends known
+to work with the current stable release of NetworkX.
+
+.. _introspect:
+
+Introspection and Logging
+-------------------------
+Introspection techniques aim to demystify dispatching and backend graph conversion behaviors.
+
+The primary way to see what the dispatch machinery is doing is by enabling logging.
+This can help you verify that the backend you specified is being used.
+You can enable NetworkX's backend logger to print to ``sys.stderr`` like this::
+
+ import logging
+ nxl = logging.getLogger("networkx")
+ nxl.addHandler(logging.StreamHandler())
+ nxl.setLevel(logging.DEBUG)
+
+And you can disable it by running this::
+
+ nxl.setLevel(logging.CRITICAL)
+
+Refer to :external+python:mod:`logging` to learn more about the logging facilities in Python.
+
+By looking at the ``.backends`` attribute, you can get the set of all currently
+installed backends that implement a particular function. For example::
+
+ >>> nx.betweenness_centrality.backends # doctest: +SKIP
+ {'parallel'}
+
+The function docstring will also show which installed backends support it
+along with any backend-specific notes and keyword arguments::
+
+ >>> help(nx.betweenness_centrality) # doctest: +SKIP
+ ...
+ Backends
+ --------
+ parallel : Parallel backend for NetworkX algorithms
+ The parallel computation is implemented by dividing the nodes into chunks
+ and computing betweenness centrality for each chunk concurrently.
+ ...
+
+The NetworkX documentation website also includes info about trusted backends of NetworkX in function references.
+For example, see :func:`~networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path_length`.
+
+Introspection capabilities are currently limited, but we are working to improve them.
+We plan to make it easier to answer questions such as:
+
+- What happened (and why)?
+- What *will* happen (and why)?
+- Where was time spent (including conversions)?
+- What is in the cache and how much memory is it using?
+
+Transparency is essential to allow for greater understanding, debug-ability,
+and customization. After all, NetworkX dispatching is extremely flexible and can
+support advanced workflows with multiple backends and fine-tuned configuration,
+but introspection can be helpful by describing *when* and *how* to evolve your workflow
+to meet your needs. If you have suggestions for how to improve introspection, please
+`let us know <https://github.com/networkx/networkx/issues/new>`_!
+
+Docs for backend developers
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Creating a custom backend
+-------------------------
+
+1. Defining a ``BackendInterface`` object:
+
+ Note that the ``BackendInterface`` doesn't need to must be a class. It can be an
+ instance of a class, or a module as well. You can define the following methods or
+ functions in your backend's ``BackendInterface`` object.:
+
+ 1. ``convert_from_nx`` and ``convert_to_nx`` methods or functions are required for
+ backend dispatching to work. The arguments to ``convert_from_nx`` are:
+
+ - ``G`` : NetworkX Graph
+ - ``edge_attrs`` : dict, optional
+ Dictionary mapping edge attributes to default values if missing in ``G``.
+ If None, then no edge attributes will be converted and default may be 1.
+ - ``node_attrs``: dict, optional
+ Dictionary mapping node attributes to default values if missing in ``G``.
+ If None, then no node attributes will be converted.
+ - ``preserve_edge_attrs`` : bool
+ Whether to preserve all edge attributes.
+ - ``preserve_node_attrs`` : bool
+ Whether to preserve all node attributes.
+ - ``preserve_graph_attrs`` : bool
+ Whether to preserve all graph attributes.
+ - ``preserve_all_attrs`` : bool
+ Whether to preserve all graph, node, and edge attributes.
+ - ``name`` : str
+ The name of the algorithm.
+ - ``graph_name`` : str
+ The name of the graph argument being converted.
+
+ 2. ``can_run`` (Optional):
+ If your backend only partially implements an algorithm, you can define
+ a ``can_run(name, args, kwargs)`` function in your ``BackendInterface`` object that
+ returns True or False indicating whether the backend can run the algorithm with
+ the given arguments or not. Instead of a boolean you can also return a string
+ message to inform the user why that algorithm can't be run.
+
+ 3. ``should_run`` (Optional):
+ A backend may also define ``should_run(name, args, kwargs)``
+ that is similar to ``can_run``, but answers whether the backend *should* be run.
+ ``should_run`` is only run when performing backend graph conversions. Like
+ ``can_run``, it receives the original arguments so it can decide whether it
+ should be run by inspecting the arguments. ``can_run`` runs before
+ ``should_run``, so ``should_run`` may assume ``can_run`` is True. If not
+ implemented by the backend, ``can_run``and ``should_run`` are assumed to
+ always return True if the backend implements the algorithm.
+
+ 4. ``on_start_tests`` (Optional):
+ A special ``on_start_tests(items)`` function may be defined by the backend.
+ It will be called with the list of NetworkX tests discovered. Each item
+ is a test object that can be marked as xfail if the backend does not support
+ the test using ``item.add_marker(pytest.mark.xfail(reason=...))``.
+
+2. Adding entry points
+
+ To be discoverable by NetworkX, your package must register an
+ `entry-point <https://packaging.python.org/en/latest/specifications/entry-points>`_
+ ``networkx.backends`` in the package's metadata, with a `key pointing to your
+ dispatch object <https://packaging.python.org/en/latest/guides/creating-and-discovering-plugins/#using-package-metadata>`_ .
+ For example, if you are using ``setuptools`` to manage your backend package,
+ you can `add the following to your pyproject.toml file <https://setuptools.pypa.io/en/latest/userguide/entry_point.html>`_::
+
+ [project.entry-points."networkx.backends"]
+ backend_name = "your_backend_interface_object"
+
+ You can also add the ``backend_info`` entry-point. It points towards the ``get_info``
+ function that returns all the backend information, which is then used to build the
+ "Additional Backend Implementation" box at the end of algorithm's documentation
+ page. Note that the `get_info` function shouldn't import your backend package.::
+
+ [project.entry-points."networkx.backend_info"]
+ backend_name = "your_get_info_function"
+
+ The ``get_info`` should return a dictionary with following key-value pairs:
+ - ``backend_name`` : str or None
+ It is the name passed in the ``backend`` kwarg.
+ - ``project`` : str or None
+ The name of your backend project.
+ - ``package`` : str or None
+ The name of your backend package.
+ - ``url`` : str or None
+ This is the url to either your backend's codebase or documentation, and
+ will be displayed as a hyperlink to the ``backend_name``, in the
+ "Additional backend implementations" section.
+ - ``short_summary`` : str or None
+ One line summary of your backend which will be displayed in the
+ "Additional backend implementations" section.
+ - ``default_config`` : dict
+ A dictionary mapping the backend config parameter names to their default values.
+ This is used to automatically initialize the default configs for all the
+ installed backends at the time of networkx's import.
+
+ .. seealso:: `~networkx.utils.configs.Config`
+
+ - ``functions`` : dict or None
+ A dictionary mapping function names to a dictionary of information
+ about the function. The information can include the following keys:
+
+ - ``url`` : str or None
+ The url to ``function``'s source code or documentation.
+ - ``additional_docs`` : str or None
+ A short description or note about the backend function's
+ implementation.
+ - ``additional_parameters`` : dict or None
+ A dictionary mapping additional parameters headers to their
+ short descriptions. For example::
+
+ "additional_parameters": {
+ 'param1 : str, function (default = "chunks")' : "...",
+ 'param2 : int' : "...",
+ }
+
+ If any of these keys are not present, the corresponding information
+ will not be displayed in the "Additional backend implementations"
+ section on NetworkX docs website.
+
+ Note that your backend's docs would only appear on the official NetworkX docs only
+ if your backend is a trusted backend of NetworkX, and is present in the
+ `.circleci/config.yml` and `.github/workflows/deploy-docs.yml` files in the
+ NetworkX repository.
+
+3. Defining a Backend Graph class
+
+ The backend must create an object with an attribute ``__networkx_backend__`` that holds
+ a string with the entry point name::
+
+ class BackendGraph:
+ __networkx_backend__ = "backend_name"
+ ...
+
+ A backend graph instance may have a ``G.__networkx_cache__`` dict to enable
+ caching, and care should be taken to clear the cache when appropriate.
+
+Testing the Custom backend
+--------------------------
+
+To test your custom backend, you can run the NetworkX test suite on your backend.
+This also ensures that the custom backend is compatible with NetworkX's API.
+The following steps will help you run the tests:
+
+1. Setting Backend Environment Variables:
+ - ``NETWORKX_TEST_BACKEND`` : Setting this to your backend's ``backend_name`` will
+ let NetworkX's dispatch machinery to automatically convert a regular NetworkX
+ ``Graph``, ``DiGraph``, ``MultiGraph``, etc. to their backend equivalents, using
+ ``your_backend_interface_object.convert_from_nx(G, ...)`` function.
+ - ``NETWORKX_FALLBACK_TO_NX`` (default=False) : Setting this variable to `True` will
+ instruct tests to use a NetworkX ``Graph`` for algorithms not implemented by your
+ custom backend. Setting this to `False` will only run the tests for algorithms
+ implemented by your custom backend and tests for other algorithms will ``xfail``.
+
+2. Running Tests:
+ You can invoke NetworkX tests for your custom backend with the following commands::
+
+ NETWORKX_TEST_BACKEND=<backend_name>
+ NETWORKX_FALLBACK_TO_NX=True # or False
+ pytest --pyargs networkx
+
+How tests are run?
+------------------
+
+1. While dispatching to the backend implementation the ``_convert_and_call`` function
+ is used and while testing the ``_convert_and_call_for_tests`` function is used.
+ Other than testing it also checks for functions that return numpy scalars, and
+ for functions that return graphs it runs the backend implementation and the
+ networkx implementation and then converts the backend graph into a NetworkX graph
+ and then compares them, and returns the networkx graph. This can be regarded as
+ (pragmatic) technical debt. We may replace these checks in the future.
+
+2. Conversions while running tests:
+ - Convert NetworkX graphs using ``<your_backend_interface_object>.convert_from_nx(G, ...)`` into
+ the backend graph.
+ - Pass the backend graph objects to the backend implementation of the algorithm.
+ - Convert the result back to a form expected by NetworkX tests using
+ ``<your_backend_interface_object>.convert_to_nx(result, ...)``.
+ - For nx_loopback, the graph is copied using the dispatchable metadata
+
+3. Dispatchable algorithms that are not implemented by the backend
+ will cause a ``pytest.xfail``, when the ``NETWORKX_FALLBACK_TO_NX``
+ environment variable is set to ``False``, giving some indication that
+ not all tests are running, while avoiding causing an explicit failure.
+"""
+
+import inspect
+import itertools
+import logging
+import os
+import warnings
+from functools import partial
+from importlib.metadata import entry_points
+
+import networkx as nx
+
+from .configs import BackendPriorities, Config, NetworkXConfig
+from .decorators import argmap
+
+__all__ = ["_dispatchable"]
+
+_logger = logging.getLogger(__name__)
+
+
+def _do_nothing():
+ """This does nothing at all, yet it helps turn `_dispatchable` into functions."""
+
+
+def _get_backends(group, *, load_and_call=False):
+ """
+ Retrieve NetworkX ``backends`` and ``backend_info`` from the entry points.
+
+ Parameters
+ -----------
+ group : str
+ The entry_point to be retrieved.
+ load_and_call : bool, optional
+ If True, load and call the backend. Defaults to False.
+
+ Returns
+ --------
+ dict
+ A dictionary mapping backend names to their respective backend objects.
+
+ Notes
+ ------
+ If a backend is defined more than once, a warning is issued.
+ The `nx_loopback` backend is removed if it exists, as it is only available during testing.
+ A warning is displayed if an error occurs while loading a backend.
+ """
+ items = entry_points(group=group)
+ rv = {}
+ for ep in items:
+ if ep.name in rv:
+ warnings.warn(
+ f"networkx backend defined more than once: {ep.name}",
+ RuntimeWarning,
+ stacklevel=2,
+ )
+ elif load_and_call:
+ try:
+ rv[ep.name] = ep.load()()
+ except Exception as exc:
+ warnings.warn(
+ f"Error encountered when loading info for backend {ep.name}: {exc}",
+ RuntimeWarning,
+ stacklevel=2,
+ )
+ else:
+ rv[ep.name] = ep
+ rv.pop("nx_loopback", None)
+ return rv
+
+
+# Note: "networkx" will be in `backend_info`, but not `backends` or `config.backends`.
+# It is valid to use "networkx"` as backend argument and in `config.backend_priority`.
+# We may make "networkx" a "proper" backend and have it in `backends` and `config.backends`.
+backends = _get_backends("networkx.backends")
+backend_info = {} # fill backend_info after networkx is imported in __init__.py
+
+# Load and cache backends on-demand
+_loaded_backends = {} # type: ignore[var-annotated]
+_registered_algorithms = {}
+
+
+# Get default configuration from environment variables at import time
+def _comma_sep_to_list(string):
+ return [stripped for x in string.strip().split(",") if (stripped := x.strip())]
+
+
+def _set_configs_from_environment():
+ """Initialize ``config.backend_priority``, load backend_info and config.
+
+ This gets default values from environment variables (see ``nx.config`` for details).
+ This function is run at the very end of importing networkx. It is run at this time
+ to avoid loading backend_info before the rest of networkx is imported in case a
+ backend uses networkx for its backend_info (e.g. subclassing the Config class.)
+ """
+ # backend_info is defined above as empty dict. Fill it after import finishes.
+ backend_info.update(_get_backends("networkx.backend_info", load_and_call=True))
+ backend_info.update(
+ (backend, {}) for backend in backends.keys() - backend_info.keys()
+ )
+
+ # set up config based on backend_info and environment
+ config = NetworkXConfig(
+ backend_priority=BackendPriorities(
+ algos=[],
+ generators=[],
+ ),
+ backends=Config(
+ **{
+ backend: (
+ cfg
+ if isinstance(cfg := info["default_config"], Config)
+ else Config(**cfg)
+ )
+ if "default_config" in info
+ else Config()
+ for backend, info in backend_info.items()
+ }
+ ),
+ cache_converted_graphs=bool(
+ os.environ.get("NETWORKX_CACHE_CONVERTED_GRAPHS", True)
+ ),
+ fallback_to_nx=bool(os.environ.get("NETWORKX_FALLBACK_TO_NX", False)),
+ warnings_to_ignore={
+ x.strip()
+ for x in os.environ.get("NETWORKX_WARNINGS_TO_IGNORE", "").split(",")
+ if x.strip()
+ },
+ )
+ backend_info["networkx"] = {}
+ type(config.backends).__doc__ = "All installed NetworkX backends and their configs."
+
+ # NETWORKX_BACKEND_PRIORITY is the same as NETWORKX_BACKEND_PRIORITY_ALGOS
+ priorities = {
+ key[26:].lower(): val
+ for key, val in os.environ.items()
+ if key.startswith("NETWORKX_BACKEND_PRIORITY_")
+ }
+ backend_priority = config.backend_priority
+ backend_priority.algos = (
+ _comma_sep_to_list(priorities.pop("algos"))
+ if "algos" in priorities
+ else _comma_sep_to_list(
+ os.environ.get(
+ "NETWORKX_BACKEND_PRIORITY",
+ os.environ.get("NETWORKX_AUTOMATIC_BACKENDS", ""),
+ )
+ )
+ )
+ backend_priority.generators = _comma_sep_to_list(priorities.pop("generators", ""))
+ for key in sorted(priorities):
+ backend_priority[key] = _comma_sep_to_list(priorities[key])
+
+ return config
+
+
+def _always_run(name, args, kwargs):
+ return True
+
+
+def _load_backend(backend_name):
+ if backend_name in _loaded_backends:
+ return _loaded_backends[backend_name]
+ if backend_name not in backends:
+ raise ImportError(f"'{backend_name}' backend is not installed")
+ rv = _loaded_backends[backend_name] = backends[backend_name].load()
+ if not hasattr(rv, "can_run"):
+ rv.can_run = _always_run
+ if not hasattr(rv, "should_run"):
+ rv.should_run = _always_run
+ return rv
+
+
+class _dispatchable:
+ _is_testing = False
+
+ class _fallback_to_nx:
+ """Class property that returns ``nx.config.fallback_to_nx``."""
+
+ def __get__(self, instance, owner=None):
+ warnings.warn(
+ "`_dispatchable._fallback_to_nx` is deprecated and will be removed "
+ "in NetworkX v3.5. Use `nx.config.fallback_to_nx` instead.",
+ category=DeprecationWarning,
+ stacklevel=2,
+ )
+ return nx.config.fallback_to_nx
+
+ # Note that chaining `@classmethod` and `@property` was removed in Python 3.13
+ _fallback_to_nx = _fallback_to_nx() # type: ignore[assignment,misc]
+
+ def __new__(
+ cls,
+ func=None,
+ *,
+ name=None,
+ graphs="G",
+ edge_attrs=None,
+ node_attrs=None,
+ preserve_edge_attrs=False,
+ preserve_node_attrs=False,
+ preserve_graph_attrs=False,
+ preserve_all_attrs=False,
+ mutates_input=False,
+ returns_graph=False,
+ ):
+ """A decorator function that is used to redirect the execution of ``func``
+ function to its backend implementation.
+
+ This decorator function dispatches to
+ a different backend implementation based on the input graph types, and it also
+ manages all the ``backend_kwargs``. Usage can be any of the following decorator
+ forms:
+
+ - ``@_dispatchable``
+ - ``@_dispatchable()``
+ - ``@_dispatchable(name="override_name")``
+ - ``@_dispatchable(graphs="graph_var_name")``
+ - ``@_dispatchable(edge_attrs="weight")``
+ - ``@_dispatchable(graphs={"G": 0, "H": 1}, edge_attrs={"weight": "default"})``
+ with 0 and 1 giving the position in the signature function for graph
+ objects. When ``edge_attrs`` is a dict, keys are keyword names and values
+ are defaults.
+
+ Parameters
+ ----------
+ func : callable, optional
+ The function to be decorated. If ``func`` is not provided, returns a
+ partial object that can be used to decorate a function later. If ``func``
+ is provided, returns a new callable object that dispatches to a backend
+ algorithm based on input graph types.
+
+ name : str, optional
+ The name of the algorithm to use for dispatching. If not provided,
+ the name of ``func`` will be used. ``name`` is useful to avoid name
+ conflicts, as all dispatched algorithms live in a single namespace.
+ For example, ``tournament.is_strongly_connected`` had a name conflict
+ with the standard ``nx.is_strongly_connected``, so we used
+ ``@_dispatchable(name="tournament_is_strongly_connected")``.
+
+ graphs : str or dict or None, default "G"
+ If a string, the parameter name of the graph, which must be the first
+ argument of the wrapped function. If more than one graph is required
+ for the algorithm (or if the graph is not the first argument), provide
+ a dict keyed to argument names with argument position as values for each
+ graph argument. For example, ``@_dispatchable(graphs={"G": 0, "auxiliary?": 4})``
+ indicates the 0th parameter ``G`` of the function is a required graph,
+ and the 4th parameter ``auxiliary?`` is an optional graph.
+ To indicate that an argument is a list of graphs, do ``"[graphs]"``.
+ Use ``graphs=None``, if *no* arguments are NetworkX graphs such as for
+ graph generators, readers, and conversion functions.
+
+ edge_attrs : str or dict, optional
+ ``edge_attrs`` holds information about edge attribute arguments
+ and default values for those edge attributes.
+ If a string, ``edge_attrs`` holds the function argument name that
+ indicates a single edge attribute to include in the converted graph.
+ The default value for this attribute is 1. To indicate that an argument
+ is a list of attributes (all with default value 1), use e.g. ``"[attrs]"``.
+ If a dict, ``edge_attrs`` holds a dict keyed by argument names, with
+ values that are either the default value or, if a string, the argument
+ name that indicates the default value.
+
+ node_attrs : str or dict, optional
+ Like ``edge_attrs``, but for node attributes.
+
+ preserve_edge_attrs : bool or str or dict, optional
+ For bool, whether to preserve all edge attributes.
+ For str, the parameter name that may indicate (with ``True`` or a
+ callable argument) whether all edge attributes should be preserved
+ when converting.
+ For dict of ``{graph_name: {attr: default}}``, indicate pre-determined
+ edge attributes (and defaults) to preserve for input graphs.
+
+ preserve_node_attrs : bool or str or dict, optional
+ Like ``preserve_edge_attrs``, but for node attributes.
+
+ preserve_graph_attrs : bool or set
+ For bool, whether to preserve all graph attributes.
+ For set, which input graph arguments to preserve graph attributes.
+
+ preserve_all_attrs : bool
+ Whether to preserve all edge, node and graph attributes.
+ This overrides all the other preserve_*_attrs.
+
+ mutates_input : bool or dict, default False
+ For bool, whether the function mutates an input graph argument.
+ For dict of ``{arg_name: arg_pos}``, arguments that indicate whether an
+ input graph will be mutated, and ``arg_name`` may begin with ``"not "``
+ to negate the logic (for example, this is used by ``copy=`` arguments).
+ By default, dispatching doesn't convert input graphs to a different
+ backend for functions that mutate input graphs.
+
+ returns_graph : bool, default False
+ Whether the function can return or yield a graph object. By default,
+ dispatching doesn't convert input graphs to a different backend for
+ functions that return graphs.
+ """
+ if func is None:
+ return partial(
+ _dispatchable,
+ name=name,
+ graphs=graphs,
+ edge_attrs=edge_attrs,
+ node_attrs=node_attrs,
+ preserve_edge_attrs=preserve_edge_attrs,
+ preserve_node_attrs=preserve_node_attrs,
+ preserve_graph_attrs=preserve_graph_attrs,
+ preserve_all_attrs=preserve_all_attrs,
+ mutates_input=mutates_input,
+ returns_graph=returns_graph,
+ )
+ if isinstance(func, str):
+ raise TypeError("'name' and 'graphs' must be passed by keyword") from None
+ # If name not provided, use the name of the function
+ if name is None:
+ name = func.__name__
+
+ self = object.__new__(cls)
+
+ # standard function-wrapping stuff
+ # __annotations__ not used
+ self.__name__ = func.__name__
+ # self.__doc__ = func.__doc__ # __doc__ handled as cached property
+ self.__defaults__ = func.__defaults__
+ # We "magically" add `backend=` keyword argument to allow backend to be specified
+ if func.__kwdefaults__:
+ self.__kwdefaults__ = {**func.__kwdefaults__, "backend": None}
+ else:
+ self.__kwdefaults__ = {"backend": None}
+ self.__module__ = func.__module__
+ self.__qualname__ = func.__qualname__
+ self.__dict__.update(func.__dict__)
+ self.__wrapped__ = func
+
+ # Supplement docstring with backend info; compute and cache when needed
+ self._orig_doc = func.__doc__
+ self._cached_doc = None
+
+ self.orig_func = func
+ self.name = name
+ self.edge_attrs = edge_attrs
+ self.node_attrs = node_attrs
+ self.preserve_edge_attrs = preserve_edge_attrs or preserve_all_attrs
+ self.preserve_node_attrs = preserve_node_attrs or preserve_all_attrs
+ self.preserve_graph_attrs = preserve_graph_attrs or preserve_all_attrs
+ self.mutates_input = mutates_input
+ # Keep `returns_graph` private for now, b/c we may extend info on return types
+ self._returns_graph = returns_graph
+
+ if edge_attrs is not None and not isinstance(edge_attrs, str | dict):
+ raise TypeError(
+ f"Bad type for edge_attrs: {type(edge_attrs)}. Expected str or dict."
+ ) from None
+ if node_attrs is not None and not isinstance(node_attrs, str | dict):
+ raise TypeError(
+ f"Bad type for node_attrs: {type(node_attrs)}. Expected str or dict."
+ ) from None
+ if not isinstance(self.preserve_edge_attrs, bool | str | dict):
+ raise TypeError(
+ f"Bad type for preserve_edge_attrs: {type(self.preserve_edge_attrs)}."
+ " Expected bool, str, or dict."
+ ) from None
+ if not isinstance(self.preserve_node_attrs, bool | str | dict):
+ raise TypeError(
+ f"Bad type for preserve_node_attrs: {type(self.preserve_node_attrs)}."
+ " Expected bool, str, or dict."
+ ) from None
+ if not isinstance(self.preserve_graph_attrs, bool | set):
+ raise TypeError(
+ f"Bad type for preserve_graph_attrs: {type(self.preserve_graph_attrs)}."
+ " Expected bool or set."
+ ) from None
+ if not isinstance(self.mutates_input, bool | dict):
+ raise TypeError(
+ f"Bad type for mutates_input: {type(self.mutates_input)}."
+ " Expected bool or dict."
+ ) from None
+ if not isinstance(self._returns_graph, bool):
+ raise TypeError(
+ f"Bad type for returns_graph: {type(self._returns_graph)}."
+ " Expected bool."
+ ) from None
+
+ if isinstance(graphs, str):
+ graphs = {graphs: 0}
+ elif graphs is None:
+ pass
+ elif not isinstance(graphs, dict):
+ raise TypeError(
+ f"Bad type for graphs: {type(graphs)}. Expected str or dict."
+ ) from None
+ elif len(graphs) == 0:
+ raise KeyError("'graphs' must contain at least one variable name") from None
+
+ # This dict comprehension is complicated for better performance; equivalent shown below.
+ self.optional_graphs = set()
+ self.list_graphs = set()
+ if graphs is None:
+ self.graphs = {}
+ else:
+ self.graphs = {
+ self.optional_graphs.add(val := k[:-1]) or val
+ if (last := k[-1]) == "?"
+ else self.list_graphs.add(val := k[1:-1]) or val
+ if last == "]"
+ else k: v
+ for k, v in graphs.items()
+ }
+ # The above is equivalent to:
+ # self.optional_graphs = {k[:-1] for k in graphs if k[-1] == "?"}
+ # self.list_graphs = {k[1:-1] for k in graphs if k[-1] == "]"}
+ # self.graphs = {k[:-1] if k[-1] == "?" else k: v for k, v in graphs.items()}
+
+ # Compute and cache the signature on-demand
+ self._sig = None
+
+ # Which backends implement this function?
+ self.backends = {
+ backend
+ for backend, info in backend_info.items()
+ if "functions" in info and name in info["functions"]
+ }
+
+ if name in _registered_algorithms:
+ raise KeyError(
+ f"Algorithm already exists in dispatch registry: {name}"
+ ) from None
+ # Use the magic of `argmap` to turn `self` into a function. This does result
+ # in small additional overhead compared to calling `_dispatchable` directly,
+ # but `argmap` has the magical property that it can stack with other `argmap`
+ # decorators "for free". Being a function is better for REPRs and type-checkers.
+ self = argmap(_do_nothing)(self)
+ _registered_algorithms[name] = self
+ return self
+
+ @property
+ def __doc__(self):
+ """If the cached documentation exists, it is returned.
+ Otherwise, the documentation is generated using _make_doc() method,
+ cached, and then returned."""
+
+ if (rv := self._cached_doc) is not None:
+ return rv
+ rv = self._cached_doc = self._make_doc()
+ return rv
+
+ @__doc__.setter
+ def __doc__(self, val):
+ """Sets the original documentation to the given value and resets the
+ cached documentation."""
+
+ self._orig_doc = val
+ self._cached_doc = None
+
+ @property
+ def __signature__(self):
+ """Return the signature of the original function, with the addition of
+ the `backend` and `backend_kwargs` parameters."""
+
+ if self._sig is None:
+ sig = inspect.signature(self.orig_func)
+ # `backend` is now a reserved argument used by dispatching.
+ # assert "backend" not in sig.parameters
+ if not any(
+ p.kind == inspect.Parameter.VAR_KEYWORD for p in sig.parameters.values()
+ ):
+ sig = sig.replace(
+ parameters=[
+ *sig.parameters.values(),
+ inspect.Parameter(
+ "backend", inspect.Parameter.KEYWORD_ONLY, default=None
+ ),
+ inspect.Parameter(
+ "backend_kwargs", inspect.Parameter.VAR_KEYWORD
+ ),
+ ]
+ )
+ else:
+ *parameters, var_keyword = sig.parameters.values()
+ sig = sig.replace(
+ parameters=[
+ *parameters,
+ inspect.Parameter(
+ "backend", inspect.Parameter.KEYWORD_ONLY, default=None
+ ),
+ var_keyword,
+ ]
+ )
+ self._sig = sig
+ return self._sig
+
+ def __call__(self, /, *args, backend=None, **kwargs):
+ """Returns the result of the original function, or the backend function if
+ the backend is specified and that backend implements `func`."""
+
+ if not backends:
+ # Fast path if no backends are installed
+ if backend is not None and backend != "networkx":
+ raise ImportError(f"'{backend}' backend is not installed")
+ return self.orig_func(*args, **kwargs)
+
+ # Use `backend_name` in this function instead of `backend`.
+ # This is purely for aesthetics and to make it easier to search for this
+ # variable since "backend" is used in many comments and log/error messages.
+ backend_name = backend
+ if backend_name is not None and backend_name not in backend_info:
+ raise ImportError(f"'{backend_name}' backend is not installed")
+
+ graphs_resolved = {}
+ for gname, pos in self.graphs.items():
+ if pos < len(args):
+ if gname in kwargs:
+ raise TypeError(f"{self.name}() got multiple values for {gname!r}")
+ graph = args[pos]
+ elif gname in kwargs:
+ graph = kwargs[gname]
+ elif gname not in self.optional_graphs:
+ raise TypeError(
+ f"{self.name}() missing required graph argument: {gname}"
+ )
+ else:
+ continue
+ if graph is None:
+ if gname not in self.optional_graphs:
+ raise TypeError(
+ f"{self.name}() required graph argument {gname!r} is None; must be a graph"
+ )
+ else:
+ graphs_resolved[gname] = graph
+
+ # Alternative to the above that does not check duplicated args or missing required graphs.
+ # graphs_resolved = {
+ # gname: graph
+ # for gname, pos in self.graphs.items()
+ # if (graph := args[pos] if pos < len(args) else kwargs.get(gname)) is not None
+ # }
+
+ # Check if any graph comes from a backend
+ if self.list_graphs:
+ # Make sure we don't lose values by consuming an iterator
+ args = list(args)
+ for gname in self.list_graphs & graphs_resolved.keys():
+ list_of_graphs = list(graphs_resolved[gname])
+ graphs_resolved[gname] = list_of_graphs
+ if gname in kwargs:
+ kwargs[gname] = list_of_graphs
+ else:
+ args[self.graphs[gname]] = list_of_graphs
+
+ graph_backend_names = {
+ getattr(g, "__networkx_backend__", None)
+ for gname, g in graphs_resolved.items()
+ if gname not in self.list_graphs
+ }
+ for gname in self.list_graphs & graphs_resolved.keys():
+ graph_backend_names.update(
+ getattr(g, "__networkx_backend__", None)
+ for g in graphs_resolved[gname]
+ )
+ else:
+ graph_backend_names = {
+ getattr(g, "__networkx_backend__", None)
+ for g in graphs_resolved.values()
+ }
+
+ backend_priority = nx.config.backend_priority.get(
+ self.name,
+ nx.config.backend_priority.generators
+ if self._returns_graph
+ else nx.config.backend_priority.algos,
+ )
+ if self._is_testing and backend_priority and backend_name is None:
+ # Special path if we are running networkx tests with a backend.
+ # This even runs for (and handles) functions that mutate input graphs.
+ return self._convert_and_call_for_tests(
+ backend_priority[0],
+ args,
+ kwargs,
+ fallback_to_nx=nx.config.fallback_to_nx,
+ )
+
+ graph_backend_names.discard(None)
+ if backend_name is not None:
+ # Must run with the given backend.
+ # `can_run` only used for better log and error messages.
+ # Check `mutates_input` for logging, not behavior.
+ blurb = (
+ "No other backends will be attempted, because the backend was "
+ f"specified with the `backend='{backend_name}'` keyword argument."
+ )
+ extra_message = (
+ f"'{backend_name}' backend raised NotImplementedError when calling "
+ f"`{self.name}'. {blurb}"
+ )
+ if not graph_backend_names or graph_backend_names == {backend_name}:
+ # All graphs are backend graphs--no need to convert!
+ if self._can_backend_run(backend_name, args, kwargs):
+ return self._call_with_backend(
+ backend_name, args, kwargs, extra_message=extra_message
+ )
+ if self._does_backend_have(backend_name):
+ extra = " for the given arguments"
+ else:
+ extra = ""
+ raise NotImplementedError(
+ f"`{self.name}' is not implemented by '{backend_name}' backend"
+ f"{extra}. {blurb}"
+ )
+ if self._can_convert(backend_name, graph_backend_names):
+ if self._can_backend_run(backend_name, args, kwargs):
+ if self._will_call_mutate_input(args, kwargs):
+ _logger.debug(
+ "`%s' will mutate an input graph. This prevents automatic conversion "
+ "to, and use of, backends listed in `nx.config.backend_priority`. "
+ "Using backend specified by the "
+ "`backend='%s'` keyword argument. This may change behavior by not "
+ "mutating inputs.",
+ self.name,
+ backend_name,
+ )
+ mutations = []
+ else:
+ mutations = None
+ rv = self._convert_and_call(
+ backend_name,
+ graph_backend_names,
+ args,
+ kwargs,
+ extra_message=extra_message,
+ mutations=mutations,
+ )
+ if mutations:
+ for cache, key in mutations:
+ # If the call mutates inputs, then remove all inputs gotten
+ # from cache. We do this after all conversions (and call) so
+ # that a graph can be gotten from a cache multiple times.
+ cache.pop(key, None)
+ return rv
+ if self._does_backend_have(backend_name):
+ extra = " for the given arguments"
+ else:
+ extra = ""
+ raise NotImplementedError(
+ f"`{self.name}' is not implemented by '{backend_name}' backend"
+ f"{extra}. {blurb}"
+ )
+ if len(graph_backend_names) == 1:
+ maybe_s = ""
+ graph_backend_names = f"'{next(iter(graph_backend_names))}'"
+ else:
+ maybe_s = "s"
+ raise TypeError(
+ f"`{self.name}' is unable to convert graph from backend{maybe_s} "
+ f"{graph_backend_names} to '{backend_name}' backend, which was "
+ f"specified with the `backend='{backend_name}'` keyword argument. "
+ f"{blurb}"
+ )
+
+ if self._will_call_mutate_input(args, kwargs):
+ # The current behavior for functions that mutate input graphs:
+ #
+ # 1. If backend is specified by `backend=` keyword, use it (done above).
+ # 2. If inputs are from one backend, try to use it.
+ # 3. If all input graphs are instances of `nx.Graph`, then run with the
+ # default "networkx" implementation.
+ #
+ # Do not automatically convert if a call will mutate inputs, because doing
+ # so would change behavior. Hence, we should fail if there are multiple input
+ # backends or if the input backend does not implement the function. However,
+ # we offer a way for backends to circumvent this if they do not implement
+ # this function: we will fall back to the default "networkx" implementation
+ # without using conversions if all input graphs are subclasses of `nx.Graph`.
+ blurb = (
+ "conversions between backends (if configured) will not be attempted, "
+ "because this may change behavior. You may specify a backend to use "
+ "by passing e.g. `backend='networkx'` keyword, but this may also "
+ "change behavior by not mutating inputs."
+ )
+ fallback_blurb = (
+ "This call will mutate inputs, so fall back to 'networkx' "
+ "backend (without converting) since all input graphs are "
+ "instances of nx.Graph and are hopefully compatible.",
+ )
+ if len(graph_backend_names) == 1:
+ [backend_name] = graph_backend_names
+ msg_template = (
+ f"Backend '{backend_name}' does not implement `{self.name}'%s. "
+ f"This call will mutate an input, so automatic {blurb}"
+ )
+ # `can_run` is only used for better log and error messages
+ try:
+ if self._can_backend_run(backend_name, args, kwargs):
+ return self._call_with_backend(
+ backend_name,
+ args,
+ kwargs,
+ extra_message=msg_template % " with these arguments",
+ )
+ except NotImplementedError as exc:
+ if all(isinstance(g, nx.Graph) for g in graphs_resolved.values()):
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s. %s",
+ backend_name,
+ self.name,
+ exc,
+ fallback_blurb,
+ )
+ else:
+ raise
+ else:
+ if nx.config.fallback_to_nx and all(
+ # Consider dropping the `isinstance` check here to allow
+ # duck-type graphs, but let's wait for a backend to ask us.
+ isinstance(g, nx.Graph)
+ for g in graphs_resolved.values()
+ ):
+ # Log that we are falling back to networkx
+ _logger.debug(
+ "Backend '%s' can't run `%s'. %s",
+ backend_name,
+ self.name,
+ fallback_blurb,
+ )
+ else:
+ if self._does_backend_have(backend_name):
+ extra = " with these arguments"
+ else:
+ extra = ""
+ raise NotImplementedError(msg_template % extra)
+ elif nx.config.fallback_to_nx and all(
+ # Consider dropping the `isinstance` check here to allow
+ # duck-type graphs, but let's wait for a backend to ask us.
+ isinstance(g, nx.Graph)
+ for g in graphs_resolved.values()
+ ):
+ # Log that we are falling back to networkx
+ _logger.debug(
+ "`%s' was called with inputs from multiple backends: %s. %s",
+ self.name,
+ graph_backend_names,
+ fallback_blurb,
+ )
+ else:
+ raise RuntimeError(
+ f"`{self.name}' will mutate an input, but it was called with inputs "
+ f"from multiple backends: {graph_backend_names}. Automatic {blurb}"
+ )
+ # At this point, no backends are available to handle the call with
+ # the input graph types, but if the input graphs are compatible
+ # nx.Graph instances, fall back to networkx without converting.
+ return self.orig_func(*args, **kwargs)
+
+ # We may generalize fallback configuration as e.g. `nx.config.backend_fallback`
+ if nx.config.fallback_to_nx or not graph_backend_names:
+ # Use "networkx" by default if there are no inputs from backends.
+ # For example, graph generators should probably return NetworkX graphs
+ # instead of raising NotImplementedError.
+ backend_fallback = ["networkx"]
+ else:
+ backend_fallback = []
+
+ # ##########################
+ # # How this behaves today #
+ # ##########################
+ #
+ # The prose below describes the implementation and a *possible* way to
+ # generalize "networkx" as "just another backend". The code is structured
+ # to perhaps someday support backend-to-backend conversions (including
+ # simply passing objects from one backend directly to another backend;
+ # the dispatch machinery does not necessarily need to perform conversions),
+ # but since backend-to-backend matching is not yet supported, the following
+ # code is merely a convenient way to implement dispatch behaviors that have
+ # been carefully developed since NetworkX 3.0 and to include falling back
+ # to the default NetworkX implementation.
+ #
+ # The current behavior for functions that don't mutate input graphs:
+ #
+ # 1. If backend is specified by `backend=` keyword, use it (done above).
+ # 2. If input is from a backend other than "networkx", try to use it.
+ # - Note: if present, "networkx" graphs will be converted to the backend.
+ # 3. If input is from "networkx" (or no backend), try to use backends from
+ # `backend_priority` before running with the default "networkx" implementation.
+ # 4. If configured, "fall back" and run with the default "networkx" implementation.
+ #
+ # ################################################
+ # # How this is implemented and may work someday #
+ # ################################################
+ #
+ # Let's determine the order of backends we should try according
+ # to `backend_priority`, `backend_fallback`, and input backends.
+ # There are two† dimensions of priorities to consider:
+ # backend_priority > unspecified > backend_fallback
+ # and
+ # backend of an input > not a backend of an input
+ # These are combined to form five groups of priorities as such:
+ #
+ # input ~input
+ # +-------+-------+
+ # backend_priority | 1 | 2 |
+ # unspecified | 3 | N/A | (if only 1)
+ # backend_fallback | 4 | 5 |
+ # +-------+-------+
+ #
+ # This matches the behaviors we developed in versions 3.0 to 3.2, it
+ # ought to cover virtually all use cases we expect, and I (@eriknw) don't
+ # think it can be done any simpler (although it can be generalized further
+ # and made to be more complicated to capture 100% of *possible* use cases).
+ # Some observations:
+ #
+ # 1. If an input is in `backend_priority`, it will be used before trying a
+ # backend that is higher priority in `backend_priority` and not an input.
+ # 2. To prioritize converting from one backend to another even if both implement
+ # a function, list one in `backend_priority` and one in `backend_fallback`.
+ # 3. To disable conversions, set `backend_priority` and `backend_fallback` to [].
+ #
+ # †: There is actually a third dimension of priorities:
+ # should_run == True > should_run == False
+ # Backends with `can_run == True` and `should_run == False` are tried last.
+ #
+ seen = set()
+ group1 = [] # In backend_priority, and an input
+ group2 = [] # In backend_priority, but not an input
+ for name in backend_priority:
+ if name in seen:
+ continue
+ seen.add(name)
+ if name in graph_backend_names:
+ group1.append(name)
+ else:
+ group2.append(name)
+ group4 = [] # In backend_fallback, and an input
+ group5 = [] # In backend_fallback, but not an input
+ for name in backend_fallback:
+ if name in seen:
+ continue
+ seen.add(name)
+ if name in graph_backend_names:
+ group4.append(name)
+ else:
+ group5.append(name)
+ # An input, but not in backend_priority or backend_fallback.
+ group3 = graph_backend_names - seen
+ if len(group3) > 1:
+ # `group3` backends are not configured for automatic conversion or fallback.
+ # There are at least two issues if this group contains multiple backends:
+ #
+ # 1. How should we prioritize them? We have no good way to break ties.
+ # Although we could arbitrarily choose alphabetical or left-most,
+ # let's follow the Zen of Python and refuse the temptation to guess.
+ # 2. We probably shouldn't automatically convert to these backends,
+ # because we are not configured to do so.
+ #
+ # (2) is important to allow disabling all conversions by setting both
+ # `nx.config.backend_priority` and `nx.config.backend_fallback` to [].
+ #
+ # If there is a single backend in `group3`, then giving it priority over
+ # the fallback backends is what is generally expected. For example, this
+ # allows input graphs of `backend_fallback` backends (such as "networkx")
+ # to be converted to, and run with, the unspecified backend.
+ _logger.debug(
+ "Call to `%s' has inputs from multiple backends, %s, that "
+ "have no priority set in `nx.config.backend_priority`, "
+ "so automatic conversions to "
+ "these backends will not be attempted.",
+ self.name,
+ group3,
+ )
+ group3 = ()
+
+ try_order = list(itertools.chain(group1, group2, group3, group4, group5))
+ if len(try_order) > 1:
+ # Should we consider adding an option for more verbose logging?
+ # For example, we could explain the order of `try_order` in detail.
+ _logger.debug(
+ "Call to `%s' has inputs from %s backends, and will try to use "
+ "backends in the following order: %s",
+ self.name,
+ graph_backend_names or "no",
+ try_order,
+ )
+ backends_to_try_again = []
+ for is_not_first, backend_name in enumerate(try_order):
+ if is_not_first:
+ _logger.debug("Trying next backend: '%s'", backend_name)
+ try:
+ if not graph_backend_names or graph_backend_names == {backend_name}:
+ if self._can_backend_run(backend_name, args, kwargs):
+ return self._call_with_backend(backend_name, args, kwargs)
+ elif self._can_convert(
+ backend_name, graph_backend_names
+ ) and self._can_backend_run(backend_name, args, kwargs):
+ if self._should_backend_run(backend_name, args, kwargs):
+ rv = self._convert_and_call(
+ backend_name, graph_backend_names, args, kwargs
+ )
+ if (
+ self._returns_graph
+ and graph_backend_names
+ and backend_name not in graph_backend_names
+ ):
+ # If the function has graph inputs and graph output, we try
+ # to make it so the backend of the return type will match the
+ # backend of the input types. In case this is not possible,
+ # let's tell the user that the backend of the return graph
+ # has changed. Perhaps we could try to convert back, but
+ # "fallback" backends for graph generators should typically
+ # be compatible with NetworkX graphs.
+ _logger.debug(
+ "Call to `%s' is returning a graph from a different "
+ "backend! It has inputs from %s backends, but ran with "
+ "'%s' backend and is returning graph from '%s' backend",
+ self.name,
+ graph_backend_names,
+ backend_name,
+ backend_name,
+ )
+ return rv
+ # `should_run` is False, but `can_run` is True, so try again later
+ backends_to_try_again.append(backend_name)
+ except NotImplementedError as exc:
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s",
+ backend_name,
+ self.name,
+ exc,
+ )
+
+ # We are about to fail. Let's try backends with can_run=True and should_run=False.
+ # This is unlikely to help today since we try to run with "networkx" before this.
+ for backend_name in backends_to_try_again:
+ _logger.debug(
+ "Trying backend: '%s' (ignoring `should_run=False`)", backend_name
+ )
+ try:
+ rv = self._convert_and_call(
+ backend_name, graph_backend_names, args, kwargs
+ )
+ if (
+ self._returns_graph
+ and graph_backend_names
+ and backend_name not in graph_backend_names
+ ):
+ _logger.debug(
+ "Call to `%s' is returning a graph from a different "
+ "backend! It has inputs from %s backends, but ran with "
+ "'%s' backend and is returning graph from '%s' backend",
+ self.name,
+ graph_backend_names,
+ backend_name,
+ backend_name,
+ )
+ return rv
+ except NotImplementedError as exc:
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s",
+ backend_name,
+ self.name,
+ exc,
+ )
+ # As a final effort, we could try to convert and run with `group3` backends
+ # that we discarded when `len(group3) > 1`, but let's not consider doing
+ # so until there is a reasonable request for it.
+
+ if len(unspecified_backends := graph_backend_names - seen) > 1:
+ raise TypeError(
+ f"Unable to convert inputs from {graph_backend_names} backends and "
+ f"run `{self.name}'. NetworkX is configured to automatically convert "
+ f"to {try_order} backends. To remedy this, you may enable automatic "
+ f"conversion to {unspecified_backends} backends by adding them to "
+ "`nx.config.backend_priority`, or you "
+ "may specify a backend to use with the `backend=` keyword argument."
+ )
+ raise NotImplementedError(
+ f"`{self.name}' is not implemented by {try_order} backends. To remedy "
+ "this, you may enable automatic conversion to more backends (including "
+ "'networkx') by adding them to `nx.config.backend_priority`, "
+ "or you may specify a backend to use with "
+ "the `backend=` keyword argument."
+ )
+
+ def _will_call_mutate_input(self, args, kwargs):
+ return (mutates_input := self.mutates_input) and (
+ mutates_input is True
+ or any(
+ # If `mutates_input` begins with "not ", then assume the argument is bool,
+ # otherwise treat it as a node or edge attribute if it's not None.
+ not (
+ args[arg_pos]
+ if len(args) > arg_pos
+ # This assumes that e.g. `copy=True` is the default
+ else kwargs.get(arg_name[4:], True)
+ )
+ if arg_name.startswith("not ")
+ else (args[arg_pos] if len(args) > arg_pos else kwargs.get(arg_name))
+ is not None
+ for arg_name, arg_pos in mutates_input.items()
+ )
+ )
+
+ def _can_convert(self, backend_name, graph_backend_names):
+ # Backend-to-backend conversion not supported yet.
+ # We can only convert to and from networkx.
+ rv = backend_name == "networkx" or graph_backend_names.issubset(
+ {"networkx", backend_name}
+ )
+ if not rv:
+ _logger.debug(
+ "Unable to convert from %s backends to '%s' backend",
+ graph_backend_names,
+ backend_name,
+ )
+ return rv
+
+ def _does_backend_have(self, backend_name):
+ """Does the specified backend have this algorithm?"""
+ if backend_name == "networkx":
+ return True
+ # Inspect the backend; don't trust metadata used to create `self.backends`
+ backend = _load_backend(backend_name)
+ return hasattr(backend, self.name)
+
+ def _can_backend_run(self, backend_name, args, kwargs):
+ """Can the specified backend run this algorithm with these arguments?"""
+ if backend_name == "networkx":
+ return True
+ backend = _load_backend(backend_name)
+ # `backend.can_run` and `backend.should_run` may return strings that describe
+ # why they can't or shouldn't be run.
+ if not hasattr(backend, self.name):
+ _logger.debug(
+ "Backend '%s' does not implement `%s'", backend_name, self.name
+ )
+ return False
+ can_run = backend.can_run(self.name, args, kwargs)
+ if isinstance(can_run, str) or not can_run:
+ reason = f", because: {can_run}" if isinstance(can_run, str) else ""
+ _logger.debug(
+ "Backend '%s' can't run `%s` with arguments: %s%s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, args, kwargs),
+ reason,
+ )
+ return False
+ return True
+
+ def _should_backend_run(self, backend_name, args, kwargs):
+ """Should the specified backend run this algorithm with these arguments?
+
+ Note that this does not check ``backend.can_run``.
+ """
+ # `backend.can_run` and `backend.should_run` may return strings that describe
+ # why they can't or shouldn't be run.
+ if backend_name == "networkx":
+ return True
+ backend = _load_backend(backend_name)
+ should_run = backend.should_run(self.name, args, kwargs)
+ if isinstance(should_run, str) or not should_run:
+ reason = f", because: {should_run}" if isinstance(should_run, str) else ""
+ _logger.debug(
+ "Backend '%s' shouldn't run `%s` with arguments: %s%s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, args, kwargs),
+ reason,
+ )
+ return False
+ return True
+
+ def _convert_arguments(self, backend_name, args, kwargs, *, use_cache, mutations):
+ """Convert graph arguments to the specified backend.
+
+ Returns
+ -------
+ args tuple and kwargs dict
+ """
+ bound = self.__signature__.bind(*args, **kwargs)
+ bound.apply_defaults()
+ if not self.graphs:
+ bound_kwargs = bound.kwargs
+ del bound_kwargs["backend"]
+ return bound.args, bound_kwargs
+ if backend_name == "networkx":
+ # `backend_interface.convert_from_nx` preserves everything
+ preserve_edge_attrs = preserve_node_attrs = preserve_graph_attrs = True
+ else:
+ preserve_edge_attrs = self.preserve_edge_attrs
+ preserve_node_attrs = self.preserve_node_attrs
+ preserve_graph_attrs = self.preserve_graph_attrs
+ edge_attrs = self.edge_attrs
+ node_attrs = self.node_attrs
+ # Convert graphs into backend graph-like object
+ # Include the edge and/or node labels if provided to the algorithm
+ if preserve_edge_attrs is False:
+ # e.g. `preserve_edge_attrs=False`
+ pass
+ elif preserve_edge_attrs is True:
+ # e.g. `preserve_edge_attrs=True`
+ edge_attrs = None
+ elif isinstance(preserve_edge_attrs, str):
+ if bound.arguments[preserve_edge_attrs] is True or callable(
+ bound.arguments[preserve_edge_attrs]
+ ):
+ # e.g. `preserve_edge_attrs="attr"` and `func(attr=True)`
+ # e.g. `preserve_edge_attrs="attr"` and `func(attr=myfunc)`
+ preserve_edge_attrs = True
+ edge_attrs = None
+ elif bound.arguments[preserve_edge_attrs] is False and (
+ isinstance(edge_attrs, str)
+ and edge_attrs == preserve_edge_attrs
+ or isinstance(edge_attrs, dict)
+ and preserve_edge_attrs in edge_attrs
+ ):
+ # e.g. `preserve_edge_attrs="attr"` and `func(attr=False)`
+ # Treat `False` argument as meaning "preserve_edge_data=False"
+ # and not `False` as the edge attribute to use.
+ preserve_edge_attrs = False
+ edge_attrs = None
+ else:
+ # e.g. `preserve_edge_attrs="attr"` and `func(attr="weight")`
+ preserve_edge_attrs = False
+ # Else: e.g. `preserve_edge_attrs={"G": {"weight": 1}}`
+
+ if edge_attrs is None:
+ # May have been set to None above b/c all attributes are preserved
+ pass
+ elif isinstance(edge_attrs, str):
+ if edge_attrs[0] == "[":
+ # e.g. `edge_attrs="[edge_attributes]"` (argument of list of attributes)
+ # e.g. `func(edge_attributes=["foo", "bar"])`
+ edge_attrs = {
+ edge_attr: 1 for edge_attr in bound.arguments[edge_attrs[1:-1]]
+ }
+ elif callable(bound.arguments[edge_attrs]):
+ # e.g. `edge_attrs="weight"` and `func(weight=myfunc)`
+ preserve_edge_attrs = True
+ edge_attrs = None
+ elif bound.arguments[edge_attrs] is not None:
+ # e.g. `edge_attrs="weight"` and `func(weight="foo")` (default of 1)
+ edge_attrs = {bound.arguments[edge_attrs]: 1}
+ elif self.name == "to_numpy_array" and hasattr(
+ bound.arguments["dtype"], "names"
+ ):
+ # Custom handling: attributes may be obtained from `dtype`
+ edge_attrs = {
+ edge_attr: 1 for edge_attr in bound.arguments["dtype"].names
+ }
+ else:
+ # e.g. `edge_attrs="weight"` and `func(weight=None)`
+ edge_attrs = None
+ else:
+ # e.g. `edge_attrs={"attr": "default"}` and `func(attr="foo", default=7)`
+ # e.g. `edge_attrs={"attr": 0}` and `func(attr="foo")`
+ edge_attrs = {
+ edge_attr: bound.arguments.get(val, 1) if isinstance(val, str) else val
+ for key, val in edge_attrs.items()
+ if (edge_attr := bound.arguments[key]) is not None
+ }
+
+ if preserve_node_attrs is False:
+ # e.g. `preserve_node_attrs=False`
+ pass
+ elif preserve_node_attrs is True:
+ # e.g. `preserve_node_attrs=True`
+ node_attrs = None
+ elif isinstance(preserve_node_attrs, str):
+ if bound.arguments[preserve_node_attrs] is True or callable(
+ bound.arguments[preserve_node_attrs]
+ ):
+ # e.g. `preserve_node_attrs="attr"` and `func(attr=True)`
+ # e.g. `preserve_node_attrs="attr"` and `func(attr=myfunc)`
+ preserve_node_attrs = True
+ node_attrs = None
+ elif bound.arguments[preserve_node_attrs] is False and (
+ isinstance(node_attrs, str)
+ and node_attrs == preserve_node_attrs
+ or isinstance(node_attrs, dict)
+ and preserve_node_attrs in node_attrs
+ ):
+ # e.g. `preserve_node_attrs="attr"` and `func(attr=False)`
+ # Treat `False` argument as meaning "preserve_node_data=False"
+ # and not `False` as the node attribute to use. Is this used?
+ preserve_node_attrs = False
+ node_attrs = None
+ else:
+ # e.g. `preserve_node_attrs="attr"` and `func(attr="weight")`
+ preserve_node_attrs = False
+ # Else: e.g. `preserve_node_attrs={"G": {"pos": None}}`
+
+ if node_attrs is None:
+ # May have been set to None above b/c all attributes are preserved
+ pass
+ elif isinstance(node_attrs, str):
+ if node_attrs[0] == "[":
+ # e.g. `node_attrs="[node_attributes]"` (argument of list of attributes)
+ # e.g. `func(node_attributes=["foo", "bar"])`
+ node_attrs = {
+ node_attr: None for node_attr in bound.arguments[node_attrs[1:-1]]
+ }
+ elif callable(bound.arguments[node_attrs]):
+ # e.g. `node_attrs="weight"` and `func(weight=myfunc)`
+ preserve_node_attrs = True
+ node_attrs = None
+ elif bound.arguments[node_attrs] is not None:
+ # e.g. `node_attrs="weight"` and `func(weight="foo")`
+ node_attrs = {bound.arguments[node_attrs]: None}
+ else:
+ # e.g. `node_attrs="weight"` and `func(weight=None)`
+ node_attrs = None
+ else:
+ # e.g. `node_attrs={"attr": "default"}` and `func(attr="foo", default=7)`
+ # e.g. `node_attrs={"attr": 0}` and `func(attr="foo")`
+ node_attrs = {
+ node_attr: bound.arguments.get(val) if isinstance(val, str) else val
+ for key, val in node_attrs.items()
+ if (node_attr := bound.arguments[key]) is not None
+ }
+
+ # It should be safe to assume that we either have networkx graphs or backend graphs.
+ # Future work: allow conversions between backends.
+ for gname in self.graphs:
+ if gname in self.list_graphs:
+ bound.arguments[gname] = [
+ self._convert_graph(
+ backend_name,
+ g,
+ edge_attrs=edge_attrs,
+ node_attrs=node_attrs,
+ preserve_edge_attrs=preserve_edge_attrs,
+ preserve_node_attrs=preserve_node_attrs,
+ preserve_graph_attrs=preserve_graph_attrs,
+ graph_name=gname,
+ use_cache=use_cache,
+ mutations=mutations,
+ )
+ if getattr(g, "__networkx_backend__", "networkx") != backend_name
+ else g
+ for g in bound.arguments[gname]
+ ]
+ else:
+ graph = bound.arguments[gname]
+ if graph is None:
+ if gname in self.optional_graphs:
+ continue
+ raise TypeError(
+ f"Missing required graph argument `{gname}` in {self.name} function"
+ )
+ if isinstance(preserve_edge_attrs, dict):
+ preserve_edges = False
+ edges = preserve_edge_attrs.get(gname, edge_attrs)
+ else:
+ preserve_edges = preserve_edge_attrs
+ edges = edge_attrs
+ if isinstance(preserve_node_attrs, dict):
+ preserve_nodes = False
+ nodes = preserve_node_attrs.get(gname, node_attrs)
+ else:
+ preserve_nodes = preserve_node_attrs
+ nodes = node_attrs
+ if isinstance(preserve_graph_attrs, set):
+ preserve_graph = gname in preserve_graph_attrs
+ else:
+ preserve_graph = preserve_graph_attrs
+ if getattr(graph, "__networkx_backend__", "networkx") != backend_name:
+ bound.arguments[gname] = self._convert_graph(
+ backend_name,
+ graph,
+ edge_attrs=edges,
+ node_attrs=nodes,
+ preserve_edge_attrs=preserve_edges,
+ preserve_node_attrs=preserve_nodes,
+ preserve_graph_attrs=preserve_graph,
+ graph_name=gname,
+ use_cache=use_cache,
+ mutations=mutations,
+ )
+ bound_kwargs = bound.kwargs
+ del bound_kwargs["backend"]
+ return bound.args, bound_kwargs
+
+ def _convert_graph(
+ self,
+ backend_name,
+ graph,
+ *,
+ edge_attrs,
+ node_attrs,
+ preserve_edge_attrs,
+ preserve_node_attrs,
+ preserve_graph_attrs,
+ graph_name,
+ use_cache,
+ mutations,
+ ):
+ if (
+ use_cache
+ and (nx_cache := getattr(graph, "__networkx_cache__", None)) is not None
+ ):
+ cache = nx_cache.setdefault("backends", {}).setdefault(backend_name, {})
+ key = _get_cache_key(
+ edge_attrs=edge_attrs,
+ node_attrs=node_attrs,
+ preserve_edge_attrs=preserve_edge_attrs,
+ preserve_node_attrs=preserve_node_attrs,
+ preserve_graph_attrs=preserve_graph_attrs,
+ )
+ compat_key, rv = _get_from_cache(cache, key, mutations=mutations)
+ if rv is not None:
+ if "cache" not in nx.config.warnings_to_ignore:
+ warnings.warn(
+ "Note: conversions to backend graphs are saved to cache "
+ "(`G.__networkx_cache__` on the original graph) by default."
+ "\n\nThis warning means the cached graph is being used "
+ f"for the {backend_name!r} backend in the "
+ f"call to {self.name}.\n\nFor the cache to be consistent "
+ "(i.e., correct), the input graph must not have been "
+ "manually mutated since the cached graph was created. "
+ "Examples of manually mutating the graph data structures "
+ "resulting in an inconsistent cache include:\n\n"
+ " >>> G[u][v][key] = val\n\n"
+ "and\n\n"
+ " >>> for u, v, d in G.edges(data=True):\n"
+ " ... d[key] = val\n\n"
+ "Using methods such as `G.add_edge(u, v, weight=val)` "
+ "will correctly clear the cache to keep it consistent. "
+ "You may also use `G.__networkx_cache__.clear()` to "
+ "manually clear the cache, or set `G.__networkx_cache__` "
+ "to None to disable caching for G. Enable or disable caching "
+ "globally via `nx.config.cache_converted_graphs` config.\n\n"
+ "To disable this warning:\n\n"
+ ' >>> nx.config.warnings_to_ignore.add("cache")\n'
+ )
+ _logger.debug(
+ "Using cached converted graph (from '%s' to '%s' backend) "
+ "in call to `%s' for '%s' argument",
+ getattr(graph, "__networkx_backend__", None),
+ backend_name,
+ self.name,
+ graph_name,
+ )
+ return rv
+
+ if backend_name == "networkx":
+ # Perhaps we should check that "__networkx_backend__" attribute exists
+ # and return the original object if not.
+ if not hasattr(graph, "__networkx_backend__"):
+ _logger.debug(
+ "Unable to convert input to 'networkx' backend in call to `%s' for "
+ "'%s argument, because it is not from a backend (i.e., it does not "
+ "have `G.__networkx_backend__` attribute). Using the original "
+ "object: %s",
+ self.name,
+ graph_name,
+ graph,
+ )
+ # This may fail, but let it fail in the networkx function
+ return graph
+ backend = _load_backend(graph.__networkx_backend__)
+ rv = backend.convert_to_nx(graph)
+ else:
+ backend = _load_backend(backend_name)
+ rv = backend.convert_from_nx(
+ graph,
+ edge_attrs=edge_attrs,
+ node_attrs=node_attrs,
+ preserve_edge_attrs=preserve_edge_attrs,
+ preserve_node_attrs=preserve_node_attrs,
+ # Always preserve graph attrs when we are caching b/c this should be
+ # cheap and may help prevent extra (unnecessary) conversions. Because
+ # we do this, we don't need `preserve_graph_attrs` in the cache key.
+ preserve_graph_attrs=preserve_graph_attrs or use_cache,
+ name=self.name,
+ graph_name=graph_name,
+ )
+ if use_cache and nx_cache is not None and mutations is None:
+ _set_to_cache(cache, key, rv)
+ _logger.debug(
+ "Caching converted graph (from '%s' to '%s' backend) "
+ "in call to `%s' for '%s' argument",
+ getattr(graph, "__networkx_backend__", None),
+ backend_name,
+ self.name,
+ graph_name,
+ )
+
+ return rv
+
+ def _call_with_backend(self, backend_name, args, kwargs, *, extra_message=None):
+ """Call this dispatchable function with a backend without converting inputs."""
+ if backend_name == "networkx":
+ return self.orig_func(*args, **kwargs)
+ backend = _load_backend(backend_name)
+ _logger.debug(
+ "Using backend '%s' for call to `%s' with arguments: %s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, args, kwargs),
+ )
+ try:
+ return getattr(backend, self.name)(*args, **kwargs)
+ except NotImplementedError as exc:
+ if extra_message is not None:
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s",
+ backend_name,
+ self.name,
+ exc,
+ )
+ raise NotImplementedError(extra_message) from exc
+ raise
+
+ def _convert_and_call(
+ self,
+ backend_name,
+ input_backend_names,
+ args,
+ kwargs,
+ *,
+ extra_message=None,
+ mutations=None,
+ ):
+ """Call this dispatchable function with a backend after converting inputs.
+
+ Parameters
+ ----------
+ backend_name : str
+ input_backend_names : set[str]
+ args : arguments tuple
+ kwargs : keywords dict
+ extra_message : str, optional
+ Additional message to log if NotImplementedError is raised by backend.
+ mutations : list, optional
+ Used to clear objects gotten from cache if inputs will be mutated.
+ """
+ if backend_name == "networkx":
+ func = self.orig_func
+ else:
+ backend = _load_backend(backend_name)
+ func = getattr(backend, self.name)
+ other_backend_names = input_backend_names - {backend_name}
+ _logger.debug(
+ "Converting input graphs from %s backend%s to '%s' backend for call to `%s'",
+ other_backend_names
+ if len(other_backend_names) > 1
+ else f"'{next(iter(other_backend_names))}'",
+ "s" if len(other_backend_names) > 1 else "",
+ backend_name,
+ self.name,
+ )
+ try:
+ converted_args, converted_kwargs = self._convert_arguments(
+ backend_name,
+ args,
+ kwargs,
+ use_cache=nx.config.cache_converted_graphs,
+ mutations=mutations,
+ )
+ except NotImplementedError as exc:
+ # Only log the exception if we are adding an extra message
+ # because we don't want to lose any information.
+ _logger.debug(
+ "Failed to convert graphs from %s to '%s' backend for call to `%s'"
+ + ("" if extra_message is None else ": %s"),
+ input_backend_names,
+ backend_name,
+ self.name,
+ *(() if extra_message is None else (exc,)),
+ )
+ if extra_message is not None:
+ raise NotImplementedError(extra_message) from exc
+ raise
+ if backend_name != "networkx":
+ _logger.debug(
+ "Using backend '%s' for call to `%s' with arguments: %s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, converted_args, converted_kwargs),
+ )
+ try:
+ return func(*converted_args, **converted_kwargs)
+ except NotImplementedError as exc:
+ if extra_message is not None:
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s",
+ backend_name,
+ self.name,
+ exc,
+ )
+ raise NotImplementedError(extra_message) from exc
+ raise
+
+ def _convert_and_call_for_tests(
+ self, backend_name, args, kwargs, *, fallback_to_nx=False
+ ):
+ """Call this dispatchable function with a backend; for use with testing."""
+ backend = _load_backend(backend_name)
+ if not self._can_backend_run(backend_name, args, kwargs):
+ if fallback_to_nx or not self.graphs:
+ if fallback_to_nx:
+ _logger.debug(
+ "Falling back to use 'networkx' instead of '%s' backend "
+ "for call to `%s' with arguments: %s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, args, kwargs),
+ )
+ return self.orig_func(*args, **kwargs)
+
+ import pytest
+
+ msg = f"'{self.name}' not implemented by {backend_name}"
+ if hasattr(backend, self.name):
+ msg += " with the given arguments"
+ pytest.xfail(msg)
+
+ from collections.abc import Iterable, Iterator, Mapping
+ from copy import copy, deepcopy
+ from io import BufferedReader, BytesIO, StringIO, TextIOWrapper
+ from itertools import tee
+ from random import Random
+
+ import numpy as np
+ from numpy.random import Generator, RandomState
+ from scipy.sparse import sparray
+
+ # We sometimes compare the backend result to the original result,
+ # so we need two sets of arguments. We tee iterators and copy
+ # random state so that they may be used twice.
+ if not args:
+ args1 = args2 = args
+ else:
+ args1, args2 = zip(
+ *(
+ (arg, deepcopy(arg))
+ if isinstance(arg, RandomState)
+ else (arg, copy(arg))
+ if isinstance(arg, BytesIO | StringIO | Random | Generator)
+ else tee(arg)
+ if isinstance(arg, Iterator)
+ and not isinstance(arg, BufferedReader | TextIOWrapper)
+ else (arg, arg)
+ for arg in args
+ )
+ )
+ if not kwargs:
+ kwargs1 = kwargs2 = kwargs
+ else:
+ kwargs1, kwargs2 = zip(
+ *(
+ ((k, v), (k, deepcopy(v)))
+ if isinstance(v, RandomState)
+ else ((k, v), (k, copy(v)))
+ if isinstance(v, BytesIO | StringIO | Random | Generator)
+ else ((k, (teed := tee(v))[0]), (k, teed[1]))
+ if isinstance(v, Iterator)
+ and not isinstance(v, BufferedReader | TextIOWrapper)
+ else ((k, v), (k, v))
+ for k, v in kwargs.items()
+ )
+ )
+ kwargs1 = dict(kwargs1)
+ kwargs2 = dict(kwargs2)
+ try:
+ converted_args, converted_kwargs = self._convert_arguments(
+ backend_name, args1, kwargs1, use_cache=False, mutations=None
+ )
+ _logger.debug(
+ "Using backend '%s' for call to `%s' with arguments: %s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, converted_args, converted_kwargs),
+ )
+ result = getattr(backend, self.name)(*converted_args, **converted_kwargs)
+ except NotImplementedError as exc:
+ if fallback_to_nx:
+ _logger.debug(
+ "Graph conversion failed; falling back to use 'networkx' instead "
+ "of '%s' backend for call to `%s'",
+ backend_name,
+ self.name,
+ )
+ return self.orig_func(*args2, **kwargs2)
+ import pytest
+
+ pytest.xfail(
+ exc.args[0] if exc.args else f"{self.name} raised {type(exc).__name__}"
+ )
+ # Verify that `self._returns_graph` is correct. This compares the return type
+ # to the type expected from `self._returns_graph`. This handles tuple and list
+ # return types, but *does not* catch functions that yield graphs.
+ if (
+ self._returns_graph
+ != (
+ isinstance(result, nx.Graph)
+ or hasattr(result, "__networkx_backend__")
+ or isinstance(result, tuple | list)
+ and any(
+ isinstance(x, nx.Graph) or hasattr(x, "__networkx_backend__")
+ for x in result
+ )
+ )
+ and not (
+ # May return Graph or None
+ self.name in {"check_planarity", "check_planarity_recursive"}
+ and any(x is None for x in result)
+ )
+ and not (
+ # May return Graph or dict
+ self.name in {"held_karp_ascent"}
+ and any(isinstance(x, dict) for x in result)
+ )
+ and self.name
+ not in {
+ # yields graphs
+ "all_triads",
+ "general_k_edge_subgraphs",
+ # yields graphs or arrays
+ "nonisomorphic_trees",
+ }
+ ):
+ raise RuntimeError(f"`returns_graph` is incorrect for {self.name}")
+
+ def check_result(val, depth=0):
+ if isinstance(val, np.number):
+ raise RuntimeError(
+ f"{self.name} returned a numpy scalar {val} ({type(val)}, depth={depth})"
+ )
+ if isinstance(val, np.ndarray | sparray):
+ return
+ if isinstance(val, nx.Graph):
+ check_result(val._node, depth=depth + 1)
+ check_result(val._adj, depth=depth + 1)
+ return
+ if isinstance(val, Iterator):
+ raise NotImplementedError
+ if isinstance(val, Iterable) and not isinstance(val, str):
+ for x in val:
+ check_result(x, depth=depth + 1)
+ if isinstance(val, Mapping):
+ for x in val.values():
+ check_result(x, depth=depth + 1)
+
+ def check_iterator(it):
+ for val in it:
+ try:
+ check_result(val)
+ except RuntimeError as exc:
+ raise RuntimeError(
+ f"{self.name} returned a numpy scalar {val} ({type(val)})"
+ ) from exc
+ yield val
+
+ if self.name in {"from_edgelist"}:
+ # numpy scalars are explicitly given as values in some tests
+ pass
+ elif isinstance(result, Iterator):
+ result = check_iterator(result)
+ else:
+ try:
+ check_result(result)
+ except RuntimeError as exc:
+ raise RuntimeError(
+ f"{self.name} returned a numpy scalar {result} ({type(result)})"
+ ) from exc
+ check_result(result)
+
+ if self.name in {
+ "edmonds_karp",
+ "barycenter",
+ "contracted_edge",
+ "contracted_nodes",
+ "stochastic_graph",
+ "relabel_nodes",
+ "maximum_branching",
+ "incremental_closeness_centrality",
+ "minimal_branching",
+ "minimum_spanning_arborescence",
+ "recursive_simple_cycles",
+ "connected_double_edge_swap",
+ }:
+ # Special-case algorithms that mutate input graphs
+ bound = self.__signature__.bind(*converted_args, **converted_kwargs)
+ bound.apply_defaults()
+ bound2 = self.__signature__.bind(*args2, **kwargs2)
+ bound2.apply_defaults()
+ if self.name in {
+ "minimal_branching",
+ "minimum_spanning_arborescence",
+ "recursive_simple_cycles",
+ "connected_double_edge_swap",
+ }:
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ G2._adj = G1._adj
+ if G2.is_directed():
+ G2._pred = G1._pred
+ nx._clear_cache(G2)
+ elif self.name == "edmonds_karp":
+ R1 = backend.convert_to_nx(bound.arguments["residual"])
+ R2 = bound2.arguments["residual"]
+ if R1 is not None and R2 is not None:
+ for k, v in R1.edges.items():
+ R2.edges[k]["flow"] = v["flow"]
+ R2.graph.update(R1.graph)
+ nx._clear_cache(R2)
+ elif self.name == "barycenter" and bound.arguments["attr"] is not None:
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ attr = bound.arguments["attr"]
+ for k, v in G1.nodes.items():
+ G2.nodes[k][attr] = v[attr]
+ nx._clear_cache(G2)
+ elif (
+ self.name in {"contracted_nodes", "contracted_edge"}
+ and not bound.arguments["copy"]
+ ):
+ # Edges and nodes changed; node "contraction" and edge "weight" attrs
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ G2.__dict__.update(G1.__dict__)
+ nx._clear_cache(G2)
+ elif self.name == "stochastic_graph" and not bound.arguments["copy"]:
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ for k, v in G1.edges.items():
+ G2.edges[k]["weight"] = v["weight"]
+ nx._clear_cache(G2)
+ elif (
+ self.name == "relabel_nodes"
+ and not bound.arguments["copy"]
+ or self.name in {"incremental_closeness_centrality"}
+ ):
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ if G1 is G2:
+ return G2
+ G2._node.clear()
+ G2._node.update(G1._node)
+ G2._adj.clear()
+ G2._adj.update(G1._adj)
+ if hasattr(G1, "_pred") and hasattr(G2, "_pred"):
+ G2._pred.clear()
+ G2._pred.update(G1._pred)
+ if hasattr(G1, "_succ") and hasattr(G2, "_succ"):
+ G2._succ.clear()
+ G2._succ.update(G1._succ)
+ nx._clear_cache(G2)
+ if self.name == "relabel_nodes":
+ return G2
+ return backend.convert_to_nx(result)
+
+ converted_result = backend.convert_to_nx(result)
+ if isinstance(converted_result, nx.Graph) and self.name not in {
+ "boykov_kolmogorov",
+ "preflow_push",
+ "quotient_graph",
+ "shortest_augmenting_path",
+ "spectral_graph_forge",
+ # We don't handle tempfile.NamedTemporaryFile arguments
+ "read_gml",
+ "read_graph6",
+ "read_sparse6",
+ # We don't handle io.BufferedReader or io.TextIOWrapper arguments
+ "bipartite_read_edgelist",
+ "read_adjlist",
+ "read_edgelist",
+ "read_graphml",
+ "read_multiline_adjlist",
+ "read_pajek",
+ "from_pydot",
+ "pydot_read_dot",
+ "agraph_read_dot",
+ # graph comparison fails b/c of nan values
+ "read_gexf",
+ }:
+ # For graph return types (e.g. generators), we compare that results are
+ # the same between the backend and networkx, then return the original
+ # networkx result so the iteration order will be consistent in tests.
+ G = self.orig_func(*args2, **kwargs2)
+ if not nx.utils.graphs_equal(G, converted_result):
+ assert G.number_of_nodes() == converted_result.number_of_nodes()
+ assert G.number_of_edges() == converted_result.number_of_edges()
+ assert G.graph == converted_result.graph
+ assert G.nodes == converted_result.nodes
+ assert G.adj == converted_result.adj
+ assert type(G) is type(converted_result)
+ raise AssertionError("Graphs are not equal")
+ return G
+ return converted_result
+
+ def _make_doc(self):
+ """Generate the backends section at the end for functions having an alternate
+ backend implementation(s) using the `backend_info` entry-point."""
+
+ if not self.backends:
+ return self._orig_doc
+ lines = [
+ "Backends",
+ "--------",
+ ]
+ for backend in sorted(self.backends):
+ info = backend_info[backend]
+ if "short_summary" in info:
+ lines.append(f"{backend} : {info['short_summary']}")
+ else:
+ lines.append(backend)
+ if "functions" not in info or self.name not in info["functions"]:
+ lines.append("")
+ continue
+
+ func_info = info["functions"][self.name]
+
+ # Renaming extra_docstring to additional_docs
+ if func_docs := (
+ func_info.get("additional_docs") or func_info.get("extra_docstring")
+ ):
+ lines.extend(
+ f" {line}" if line else line for line in func_docs.split("\n")
+ )
+ add_gap = True
+ else:
+ add_gap = False
+
+ # Renaming extra_parameters to additional_parameters
+ if extra_parameters := (
+ func_info.get("extra_parameters")
+ or func_info.get("additional_parameters")
+ ):
+ if add_gap:
+ lines.append("")
+ lines.append(" Additional parameters:")
+ for param in sorted(extra_parameters):
+ lines.append(f" {param}")
+ if desc := extra_parameters[param]:
+ lines.append(f" {desc}")
+ lines.append("")
+ else:
+ lines.append("")
+
+ if func_url := func_info.get("url"):
+ lines.append(f"[`Source <{func_url}>`_]")
+ lines.append("")
+
+ lines.pop() # Remove last empty line
+ to_add = "\n ".join(lines)
+ if not self._orig_doc:
+ return f"The original docstring for {self.name} was empty.\n\n {to_add}"
+ return f"{self._orig_doc.rstrip()}\n\n {to_add}"
+
+ def __reduce__(self):
+ """Allow this object to be serialized with pickle.
+
+ This uses the global registry `_registered_algorithms` to deserialize.
+ """
+ return _restore_dispatchable, (self.name,)
+
+
+def _restore_dispatchable(name):
+ return _registered_algorithms[name].__wrapped__
+
+
+def _get_cache_key(
+ *,
+ edge_attrs,
+ node_attrs,
+ preserve_edge_attrs,
+ preserve_node_attrs,
+ preserve_graph_attrs,
+):
+ """Return key used by networkx caching given arguments for ``convert_from_nx``."""
+ # edge_attrs: dict | None
+ # node_attrs: dict | None
+ # preserve_edge_attrs: bool (False if edge_attrs is not None)
+ # preserve_node_attrs: bool (False if node_attrs is not None)
+ return (
+ frozenset(edge_attrs.items())
+ if edge_attrs is not None
+ else preserve_edge_attrs,
+ frozenset(node_attrs.items())
+ if node_attrs is not None
+ else preserve_node_attrs,
+ )
+
+
+def _get_from_cache(cache, key, *, backend_name=None, mutations=None):
+ """Search the networkx cache for a graph that is compatible with ``key``.
+
+ Parameters
+ ----------
+ cache : dict
+ If ``backend_name`` is given, then this is treated as ``G.__networkx_cache__``,
+ but if ``backend_name`` is None, then this is treated as the resolved inner
+ cache such as ``G.__networkx_cache__["backends"][backend_name]``.
+ key : tuple
+ Cache key from ``_get_cache_key``.
+ backend_name : str, optional
+ Name of the backend to control how ``cache`` is interpreted.
+ mutations : list, optional
+ Used internally to clear objects gotten from cache if inputs will be mutated.
+
+ Returns
+ -------
+ tuple or None
+ The key of the compatible graph found in the cache.
+ graph or None
+ A compatible graph or None.
+ """
+ if backend_name is not None:
+ cache = cache.get("backends", {}).get(backend_name, {})
+ if not cache:
+ return None, None
+
+ # Do a simple search for a cached graph with compatible data.
+ # For example, if we need a single attribute, then it's okay
+ # to use a cached graph that preserved all attributes.
+ # This looks for an exact match first.
+ edge_key, node_key = key
+ for compat_key in itertools.product(
+ (edge_key, True) if edge_key is not True else (True,),
+ (node_key, True) if node_key is not True else (True,),
+ ):
+ if (rv := cache.get(compat_key)) is not None:
+ if mutations is not None:
+ # Remove this item from the cache (after all conversions) if
+ # the call to this dispatchable function will mutate an input.
+ mutations.append((cache, compat_key))
+ return compat_key, rv
+ if edge_key is not True and node_key is not True:
+ # Iterate over the items in `cache` to see if any are compatible.
+ # For example, if no edge attributes are needed, then a graph
+ # with any edge attribute will suffice. We use the same logic
+ # below (but switched) to clear unnecessary items from the cache.
+ # Use `list(cache.items())` to be thread-safe.
+ for (ekey, nkey), graph in list(cache.items()):
+ if edge_key is False or ekey is True:
+ pass # Cache works for edge data!
+ elif edge_key is True or ekey is False or not edge_key.issubset(ekey):
+ continue # Cache missing required edge data; does not work
+ if node_key is False or nkey is True:
+ pass # Cache works for node data!
+ elif node_key is True or nkey is False or not node_key.issubset(nkey):
+ continue # Cache missing required node data; does not work
+ if mutations is not None:
+ # Remove this item from the cache (after all conversions) if
+ # the call to this dispatchable function will mutate an input.
+ mutations.append((cache, (ekey, nkey)))
+ return (ekey, nkey), graph
+ return None, None
+
+
+def _set_to_cache(cache, key, graph, *, backend_name=None):
+ """Set a backend graph to the cache, and remove unnecessary cached items.
+
+ Parameters
+ ----------
+ cache : dict
+ If ``backend_name`` is given, then this is treated as ``G.__networkx_cache__``,
+ but if ``backend_name`` is None, then this is treated as the resolved inner
+ cache such as ``G.__networkx_cache__["backends"][backend_name]``.
+ key : tuple
+ Cache key from ``_get_cache_key``.
+ graph : graph
+ backend_name : str, optional
+ Name of the backend to control how ``cache`` is interpreted.
+
+ Returns
+ -------
+ dict
+ The items that were removed from the cache.
+ """
+ if backend_name is not None:
+ cache = cache.setdefault("backends", {}).setdefault(backend_name, {})
+ # Remove old cached items that are no longer necessary since they
+ # are dominated/subsumed/outdated by what was just calculated.
+ # This uses the same logic as above, but with keys switched.
+ # Also, don't update the cache here if the call will mutate an input.
+ removed = {}
+ edge_key, node_key = key
+ cache[key] = graph # Set at beginning to be thread-safe
+ for cur_key in list(cache):
+ if cur_key == key:
+ continue
+ ekey, nkey = cur_key
+ if ekey is False or edge_key is True:
+ pass
+ elif ekey is True or edge_key is False or not ekey.issubset(edge_key):
+ continue
+ if nkey is False or node_key is True:
+ pass
+ elif nkey is True or node_key is False or not nkey.issubset(node_key):
+ continue
+ # Use pop instead of del to try to be thread-safe
+ if (graph := cache.pop(cur_key, None)) is not None:
+ removed[cur_key] = graph
+ return removed
+
+
+class _LazyArgsRepr:
+ """Simple wrapper to display arguments of dispatchable functions in logging calls."""
+
+ def __init__(self, func, args, kwargs):
+ self.func = func
+ self.args = args
+ self.kwargs = kwargs
+ self.value = None
+
+ def __repr__(self):
+ if self.value is None:
+ bound = self.func.__signature__.bind_partial(*self.args, **self.kwargs)
+ inner = ", ".join(f"{key}={val!r}" for key, val in bound.arguments.items())
+ self.value = f"({inner})"
+ return self.value
+
+
+if os.environ.get("_NETWORKX_BUILDING_DOCS_"):
+ # When building docs with Sphinx, use the original function with the
+ # dispatched __doc__, b/c Sphinx renders normal Python functions better.
+ # This doesn't show e.g. `*, backend=None, **backend_kwargs` in the
+ # signatures, which is probably okay. It does allow the docstring to be
+ # updated based on the installed backends.
+ _orig_dispatchable = _dispatchable
+
+ def _dispatchable(func=None, **kwargs): # type: ignore[no-redef]
+ if func is None:
+ return partial(_dispatchable, **kwargs)
+ dispatched_func = _orig_dispatchable(func, **kwargs)
+ func.__doc__ = dispatched_func.__doc__
+ return func
+
+ _dispatchable.__doc__ = _orig_dispatchable.__new__.__doc__ # type: ignore[method-assign,assignment]
+ _sig = inspect.signature(_orig_dispatchable.__new__)
+ _dispatchable.__signature__ = _sig.replace( # type: ignore[method-assign,assignment]
+ parameters=[v for k, v in _sig.parameters.items() if k != "cls"]
+ )