aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/utils
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/utils')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/__init__.py8
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/backends.py2501
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/configs.py387
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/decorators.py1237
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/heaps.py340
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/mapped_queue.py297
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/misc.py653
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/random_sequence.py164
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/rcm.py159
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test__init.py11
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_backends.py170
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_config.py231
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_decorators.py510
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_heaps.py131
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_mapped_queue.py268
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py268
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_random_sequence.py38
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_rcm.py63
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/tests/test_unionfind.py55
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/utils/union_find.py106
21 files changed, 7597 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/__init__.py b/.venv/lib/python3.12/site-packages/networkx/utils/__init__.py
new file mode 100644
index 00000000..d6abb178
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/__init__.py
@@ -0,0 +1,8 @@
+from networkx.utils.misc import *
+from networkx.utils.decorators import *
+from networkx.utils.random_sequence import *
+from networkx.utils.union_find import *
+from networkx.utils.rcm import *
+from networkx.utils.heaps import *
+from networkx.utils.configs import *
+from networkx.utils.backends import *
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/backends.py b/.venv/lib/python3.12/site-packages/networkx/utils/backends.py
new file mode 100644
index 00000000..0b41d4c7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/backends.py
@@ -0,0 +1,2501 @@
+"""
+Docs for backend users
+~~~~~~~~~~~~~~~~~~~~~~
+NetworkX utilizes a plugin-dispatch architecture. A valid NetworkX backend
+specifies `entry points
+<https://packaging.python.org/en/latest/specifications/entry-points>`_, named
+``networkx.backends`` and an optional ``networkx.backend_info`` when it is
+installed (not imported). This allows NetworkX to dispatch (redirect) function
+calls to the backend so the execution flows to the designated backend
+implementation. This design enhances flexibility and integration, making
+NetworkX more adaptable and efficient.
+
+NetworkX can dispatch to backends **explicitly** (this requires changing code)
+or **automatically** (this requires setting configuration or environment
+variables). The best way to use a backend depends on the backend, your use
+case, and whether you want to automatically convert to or from backend
+graphs. Automatic conversions of graphs is always opt-in.
+
+To explicitly dispatch to a backend, use the `backend=` keyword argument in a
+dispatchable function. This will convert (and cache by default) input NetworkX
+graphs to backend graphs and call the backend implementation. Another explicit
+way to use a backend is to create a backend graph directly--for example,
+perhaps the backend has its own functions for loading data and creating
+graphs--and pass that graph to a dispatchable function, which will then call
+the backend implementation without converting.
+
+Using automatic dispatch requires setting configuration options. Every NetworkX
+configuration may also be set from an environment variable and are processed at
+the time networkx is imported. The following configuration variables are
+supported:
+
+* ``nx.config.backend_priority`` (``NETWORKX_BACKEND_PRIORITY`` env var), a
+ list of backends, controls dispatchable functions that don't return graphs
+ such as e.g. ``nx.pagerank``. When one of these functions is called with
+ NetworkX graphs as input, the dispatcher iterates over the backends listed in
+ this backend_priority config and will use the first backend that implements
+ this function. The input NetworkX graphs are converted (and cached by
+ default) to backend graphs. Using this configuration can allow you to use the
+ full flexibility of NetworkX graphs and the performance of backend
+ implementations, but possible downsides are that creating NetworkX graphs,
+ converting to backend graphs, and caching backend graphs may all be
+ expensive.
+
+* ``nx.config.backend_priority.algos`` (``NETWORKX_BACKEND_PRIORITY_ALGOS`` env
+ var), can be used instead of ``nx.config.backend_priority``
+ (``NETWORKX_BACKEND_PRIORITY`` env var) to emphasize that the setting only
+ affects the dispatching of algorithm functions as described above.
+
+* ``nx.config.backend_priority.generators``
+ (``NETWORKX_BACKEND_PRIORITY_GENERATORS`` env var), a list of backends,
+ controls dispatchable functions that return graphs such as
+ nx.from_pandas_edgelist and nx.empty_graph. When one of these functions is
+ called, the first backend listed in this backend_priority config that
+ implements this function will be used and will return a backend graph. When
+ this backend graph is passed to other dispatchable NetworkX functions, it
+ will use the backend implementation if it exists or raise by default unless
+ nx.config.fallback_to_nx is True (default is False). Using this configuration
+ avoids creating NetworkX graphs, which subsequently avoids the need to
+ convert to and cache backend graphs as when using
+ nx.config.backend_priority.algos, but possible downsides are that the backend
+ graph may not behave the same as a NetworkX graph and the backend may not
+ implement all algorithms that you use, which may break your workflow.
+
+* ``nx.config.fallback_to_nx`` (``NETWORKX_FALLBACK_TO_NX`` env var), a boolean
+ (default False), controls what happens when a backend graph is passed to a
+ dispatchable function that is not implemented by that backend. The default
+ behavior when False is to raise. If True, then the backend graph will be
+ converted (and cached by default) to a NetworkX graph and will run with the
+ default NetworkX implementation. Enabling this configuration can allow
+ workflows to complete if the backend does not implement all algorithms used
+ by the workflow, but a possible downside is that it may require converting
+ the input backend graph to a NetworkX graph, which may be expensive. If a
+ backend graph is duck-type compatible as a NetworkX graph, then the backend
+ may choose not to convert to a NetworkX graph and use the incoming graph
+ as-is.
+
+* ``nx.config.cache_converted_graphs`` (``NETWORKX_CACHE_CONVERTED_GRAPHS`` env
+ var), a boolean (default True), controls whether graph conversions are cached
+ to G.__networkx_cache__ or not. Caching can improve performance by avoiding
+ repeated conversions, but it uses more memory.
+
+.. note:: Backends *should* follow the NetworkX backend naming convention. For
+ example, if a backend is named ``parallel`` and specified using
+ ``backend=parallel`` or ``NETWORKX_BACKEND_PRIORITY=parallel``, the package
+ installed is ``nx-parallel``, and we would use ``import nx_parallel`` if we
+ were to import the backend package directly.
+
+Backends are encouraged to document how they recommend to be used and whether
+their graph types are duck-type compatible as NetworkX graphs. If backend
+graphs are NetworkX-compatible and you want your workflow to automatically
+"just work" with a backend--converting and caching if necessary--then use all
+of the above configurations. Automatically converting graphs is opt-in, and
+configuration gives the user control.
+
+Examples:
+---------
+
+Use the ``cugraph`` backend for every algorithm function it supports. This will
+allow for fall back to the default NetworkX implementations for algorithm calls
+not supported by cugraph because graph generator functions are still returning
+NetworkX graphs.
+
+.. code-block:: bash
+
+ bash> NETWORKX_BACKEND_PRIORITY=cugraph python my_networkx_script.py
+
+Explicitly use the ``parallel`` backend for a function call.
+
+.. code-block:: python
+
+ nx.betweenness_centrality(G, k=10, backend="parallel")
+
+Explicitly use the ``parallel`` backend for a function call by passing an
+instance of the backend graph type to the function.
+
+.. code-block:: python
+
+ H = nx_parallel.ParallelGraph(G)
+ nx.betweenness_centrality(H, k=10)
+
+Explicitly use the ``parallel`` backend and pass additional backend-specific
+arguments. Here, ``get_chunks`` is an argument unique to the ``parallel``
+backend.
+
+.. code-block:: python
+
+ nx.betweenness_centrality(G, k=10, backend="parallel", get_chunks=get_chunks)
+
+Automatically dispatch the ``cugraph`` backend for all NetworkX algorithms and
+generators, and allow the backend graph object returned from generators to be
+passed to NetworkX functions the backend does not support.
+
+.. code-block:: bash
+
+ bash> NETWORKX_BACKEND_PRIORITY_ALGOS=cugraph \\
+ NETWORKX_BACKEND_PRIORITY_GENERATORS=cugraph \\
+ NETWORKX_FALLBACK_TO_NX=True \\
+ python my_networkx_script.py
+
+How does this work?
+-------------------
+
+If you've looked at functions in the NetworkX codebase, you might have seen the
+``@nx._dispatchable`` decorator on most of the functions. This decorator allows the NetworkX
+function to dispatch to the corresponding backend function if available. When the decorated
+function is called, it first checks for a backend to run the function, and if no appropriate
+backend is specified or available, it runs the NetworkX version of the function.
+
+Backend Keyword Argument
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+When a decorated function is called with the ``backend`` kwarg provided, it checks
+if the specified backend is installed, and loads it. Next it checks whether to convert
+input graphs by first resolving the backend of each input graph by looking
+for an attribute named ``__networkx_backend__`` that holds the backend name for that
+graph type. If all input graphs backend matches the ``backend`` kwarg, the backend's
+function is called with the original inputs. If any of the input graphs do not match
+the ``backend`` kwarg, they are converted to the backend graph type before calling.
+Exceptions are raised if any step is not possible, e.g. if the backend does not
+implement this function.
+
+Finding a Backend
+^^^^^^^^^^^^^^^^^
+
+When a decorated function is called without a ``backend`` kwarg, it tries to find a
+dispatchable backend function.
+The backend type of each input graph parameter is resolved (using the
+``__networkx_backend__`` attribute) and if they all agree, that backend's function
+is called if possible. Otherwise the backends listed in the config ``backend_priority``
+are considered one at a time in order. If that backend supports the function and
+can convert the input graphs to its backend type, that backend function is called.
+Otherwise the next backend is considered.
+
+During this process, the backends can provide helpful information to the dispatcher
+via helper methods in the backend's interface. Backend methods ``can_run`` and
+``should_run`` are used by the dispatcher to determine whether to use the backend
+function. If the number of nodes is small, it might be faster to run the NetworkX
+version of the function. This is how backends can provide info about whether to run.
+
+Falling Back to NetworkX
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+If none of the backends are appropriate, we "fall back" to the NetworkX function.
+That means we resolve the backends of all input graphs and if all are NetworkX
+graphs we call the NetworkX function. If any are not NetworkX graphs, we raise
+an exception unless the `fallback_to_nx` config is set. If it is, we convert all
+graph types to NetworkX graph types before calling the NetworkX function.
+
+Functions that mutate the graph
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Any function decorated with the option that indicates it mutates the graph goes through
+a slightly different path to automatically find backends. These functions typically
+generate a graph, or add attributes or change the graph structure. The config
+`backend_priority.generators` holds a list of backend names similar to the config
+`backend_priority`. The process is similar for finding a matching backend. Once found,
+the backend function is called and a backend graph is returned (instead of a NetworkX
+graph). You can then use this backend graph in any function supported by the backend.
+And you can use it for functions not supported by the backend if you set the config
+`fallback_to_nx` to allow it to convert the backend graph to a NetworkX graph before
+calling the function.
+
+Optional keyword arguments
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Backends can add optional keyword parameters to NetworkX functions to allow you to
+control aspects of the backend algorithm. Thus the function signatures can be extended
+beyond the NetworkX function signature. For example, the ``parallel`` backend might
+have a parameter to specify how many CPUs to use. These parameters are collected
+by the dispatchable decorator code at the start of the function call and used when
+calling the backend function.
+
+Existing Backends
+^^^^^^^^^^^^^^^^^
+
+NetworkX does not know all the backends that have been created. In fact, the
+NetworkX library does not need to know that a backend exists for it to work. As
+long as the backend package creates the ``entry_point``, and provides the
+correct interface, it will be called when the user requests it using one of the
+three approaches described above. Some backends have been working with the
+NetworkX developers to ensure smooth operation.
+
+Refer to the :doc:`/backends` section to see a list of available backends known
+to work with the current stable release of NetworkX.
+
+.. _introspect:
+
+Introspection and Logging
+-------------------------
+Introspection techniques aim to demystify dispatching and backend graph conversion behaviors.
+
+The primary way to see what the dispatch machinery is doing is by enabling logging.
+This can help you verify that the backend you specified is being used.
+You can enable NetworkX's backend logger to print to ``sys.stderr`` like this::
+
+ import logging
+ nxl = logging.getLogger("networkx")
+ nxl.addHandler(logging.StreamHandler())
+ nxl.setLevel(logging.DEBUG)
+
+And you can disable it by running this::
+
+ nxl.setLevel(logging.CRITICAL)
+
+Refer to :external+python:mod:`logging` to learn more about the logging facilities in Python.
+
+By looking at the ``.backends`` attribute, you can get the set of all currently
+installed backends that implement a particular function. For example::
+
+ >>> nx.betweenness_centrality.backends # doctest: +SKIP
+ {'parallel'}
+
+The function docstring will also show which installed backends support it
+along with any backend-specific notes and keyword arguments::
+
+ >>> help(nx.betweenness_centrality) # doctest: +SKIP
+ ...
+ Backends
+ --------
+ parallel : Parallel backend for NetworkX algorithms
+ The parallel computation is implemented by dividing the nodes into chunks
+ and computing betweenness centrality for each chunk concurrently.
+ ...
+
+The NetworkX documentation website also includes info about trusted backends of NetworkX in function references.
+For example, see :func:`~networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path_length`.
+
+Introspection capabilities are currently limited, but we are working to improve them.
+We plan to make it easier to answer questions such as:
+
+- What happened (and why)?
+- What *will* happen (and why)?
+- Where was time spent (including conversions)?
+- What is in the cache and how much memory is it using?
+
+Transparency is essential to allow for greater understanding, debug-ability,
+and customization. After all, NetworkX dispatching is extremely flexible and can
+support advanced workflows with multiple backends and fine-tuned configuration,
+but introspection can be helpful by describing *when* and *how* to evolve your workflow
+to meet your needs. If you have suggestions for how to improve introspection, please
+`let us know <https://github.com/networkx/networkx/issues/new>`_!
+
+Docs for backend developers
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Creating a custom backend
+-------------------------
+
+1. Defining a ``BackendInterface`` object:
+
+ Note that the ``BackendInterface`` doesn't need to must be a class. It can be an
+ instance of a class, or a module as well. You can define the following methods or
+ functions in your backend's ``BackendInterface`` object.:
+
+ 1. ``convert_from_nx`` and ``convert_to_nx`` methods or functions are required for
+ backend dispatching to work. The arguments to ``convert_from_nx`` are:
+
+ - ``G`` : NetworkX Graph
+ - ``edge_attrs`` : dict, optional
+ Dictionary mapping edge attributes to default values if missing in ``G``.
+ If None, then no edge attributes will be converted and default may be 1.
+ - ``node_attrs``: dict, optional
+ Dictionary mapping node attributes to default values if missing in ``G``.
+ If None, then no node attributes will be converted.
+ - ``preserve_edge_attrs`` : bool
+ Whether to preserve all edge attributes.
+ - ``preserve_node_attrs`` : bool
+ Whether to preserve all node attributes.
+ - ``preserve_graph_attrs`` : bool
+ Whether to preserve all graph attributes.
+ - ``preserve_all_attrs`` : bool
+ Whether to preserve all graph, node, and edge attributes.
+ - ``name`` : str
+ The name of the algorithm.
+ - ``graph_name`` : str
+ The name of the graph argument being converted.
+
+ 2. ``can_run`` (Optional):
+ If your backend only partially implements an algorithm, you can define
+ a ``can_run(name, args, kwargs)`` function in your ``BackendInterface`` object that
+ returns True or False indicating whether the backend can run the algorithm with
+ the given arguments or not. Instead of a boolean you can also return a string
+ message to inform the user why that algorithm can't be run.
+
+ 3. ``should_run`` (Optional):
+ A backend may also define ``should_run(name, args, kwargs)``
+ that is similar to ``can_run``, but answers whether the backend *should* be run.
+ ``should_run`` is only run when performing backend graph conversions. Like
+ ``can_run``, it receives the original arguments so it can decide whether it
+ should be run by inspecting the arguments. ``can_run`` runs before
+ ``should_run``, so ``should_run`` may assume ``can_run`` is True. If not
+ implemented by the backend, ``can_run``and ``should_run`` are assumed to
+ always return True if the backend implements the algorithm.
+
+ 4. ``on_start_tests`` (Optional):
+ A special ``on_start_tests(items)`` function may be defined by the backend.
+ It will be called with the list of NetworkX tests discovered. Each item
+ is a test object that can be marked as xfail if the backend does not support
+ the test using ``item.add_marker(pytest.mark.xfail(reason=...))``.
+
+2. Adding entry points
+
+ To be discoverable by NetworkX, your package must register an
+ `entry-point <https://packaging.python.org/en/latest/specifications/entry-points>`_
+ ``networkx.backends`` in the package's metadata, with a `key pointing to your
+ dispatch object <https://packaging.python.org/en/latest/guides/creating-and-discovering-plugins/#using-package-metadata>`_ .
+ For example, if you are using ``setuptools`` to manage your backend package,
+ you can `add the following to your pyproject.toml file <https://setuptools.pypa.io/en/latest/userguide/entry_point.html>`_::
+
+ [project.entry-points."networkx.backends"]
+ backend_name = "your_backend_interface_object"
+
+ You can also add the ``backend_info`` entry-point. It points towards the ``get_info``
+ function that returns all the backend information, which is then used to build the
+ "Additional Backend Implementation" box at the end of algorithm's documentation
+ page. Note that the `get_info` function shouldn't import your backend package.::
+
+ [project.entry-points."networkx.backend_info"]
+ backend_name = "your_get_info_function"
+
+ The ``get_info`` should return a dictionary with following key-value pairs:
+ - ``backend_name`` : str or None
+ It is the name passed in the ``backend`` kwarg.
+ - ``project`` : str or None
+ The name of your backend project.
+ - ``package`` : str or None
+ The name of your backend package.
+ - ``url`` : str or None
+ This is the url to either your backend's codebase or documentation, and
+ will be displayed as a hyperlink to the ``backend_name``, in the
+ "Additional backend implementations" section.
+ - ``short_summary`` : str or None
+ One line summary of your backend which will be displayed in the
+ "Additional backend implementations" section.
+ - ``default_config`` : dict
+ A dictionary mapping the backend config parameter names to their default values.
+ This is used to automatically initialize the default configs for all the
+ installed backends at the time of networkx's import.
+
+ .. seealso:: `~networkx.utils.configs.Config`
+
+ - ``functions`` : dict or None
+ A dictionary mapping function names to a dictionary of information
+ about the function. The information can include the following keys:
+
+ - ``url`` : str or None
+ The url to ``function``'s source code or documentation.
+ - ``additional_docs`` : str or None
+ A short description or note about the backend function's
+ implementation.
+ - ``additional_parameters`` : dict or None
+ A dictionary mapping additional parameters headers to their
+ short descriptions. For example::
+
+ "additional_parameters": {
+ 'param1 : str, function (default = "chunks")' : "...",
+ 'param2 : int' : "...",
+ }
+
+ If any of these keys are not present, the corresponding information
+ will not be displayed in the "Additional backend implementations"
+ section on NetworkX docs website.
+
+ Note that your backend's docs would only appear on the official NetworkX docs only
+ if your backend is a trusted backend of NetworkX, and is present in the
+ `.circleci/config.yml` and `.github/workflows/deploy-docs.yml` files in the
+ NetworkX repository.
+
+3. Defining a Backend Graph class
+
+ The backend must create an object with an attribute ``__networkx_backend__`` that holds
+ a string with the entry point name::
+
+ class BackendGraph:
+ __networkx_backend__ = "backend_name"
+ ...
+
+ A backend graph instance may have a ``G.__networkx_cache__`` dict to enable
+ caching, and care should be taken to clear the cache when appropriate.
+
+Testing the Custom backend
+--------------------------
+
+To test your custom backend, you can run the NetworkX test suite on your backend.
+This also ensures that the custom backend is compatible with NetworkX's API.
+The following steps will help you run the tests:
+
+1. Setting Backend Environment Variables:
+ - ``NETWORKX_TEST_BACKEND`` : Setting this to your backend's ``backend_name`` will
+ let NetworkX's dispatch machinery to automatically convert a regular NetworkX
+ ``Graph``, ``DiGraph``, ``MultiGraph``, etc. to their backend equivalents, using
+ ``your_backend_interface_object.convert_from_nx(G, ...)`` function.
+ - ``NETWORKX_FALLBACK_TO_NX`` (default=False) : Setting this variable to `True` will
+ instruct tests to use a NetworkX ``Graph`` for algorithms not implemented by your
+ custom backend. Setting this to `False` will only run the tests for algorithms
+ implemented by your custom backend and tests for other algorithms will ``xfail``.
+
+2. Running Tests:
+ You can invoke NetworkX tests for your custom backend with the following commands::
+
+ NETWORKX_TEST_BACKEND=<backend_name>
+ NETWORKX_FALLBACK_TO_NX=True # or False
+ pytest --pyargs networkx
+
+How tests are run?
+------------------
+
+1. While dispatching to the backend implementation the ``_convert_and_call`` function
+ is used and while testing the ``_convert_and_call_for_tests`` function is used.
+ Other than testing it also checks for functions that return numpy scalars, and
+ for functions that return graphs it runs the backend implementation and the
+ networkx implementation and then converts the backend graph into a NetworkX graph
+ and then compares them, and returns the networkx graph. This can be regarded as
+ (pragmatic) technical debt. We may replace these checks in the future.
+
+2. Conversions while running tests:
+ - Convert NetworkX graphs using ``<your_backend_interface_object>.convert_from_nx(G, ...)`` into
+ the backend graph.
+ - Pass the backend graph objects to the backend implementation of the algorithm.
+ - Convert the result back to a form expected by NetworkX tests using
+ ``<your_backend_interface_object>.convert_to_nx(result, ...)``.
+ - For nx_loopback, the graph is copied using the dispatchable metadata
+
+3. Dispatchable algorithms that are not implemented by the backend
+ will cause a ``pytest.xfail``, when the ``NETWORKX_FALLBACK_TO_NX``
+ environment variable is set to ``False``, giving some indication that
+ not all tests are running, while avoiding causing an explicit failure.
+"""
+
+import inspect
+import itertools
+import logging
+import os
+import warnings
+from functools import partial
+from importlib.metadata import entry_points
+
+import networkx as nx
+
+from .configs import BackendPriorities, Config, NetworkXConfig
+from .decorators import argmap
+
+__all__ = ["_dispatchable"]
+
+_logger = logging.getLogger(__name__)
+
+
+def _do_nothing():
+ """This does nothing at all, yet it helps turn `_dispatchable` into functions."""
+
+
+def _get_backends(group, *, load_and_call=False):
+ """
+ Retrieve NetworkX ``backends`` and ``backend_info`` from the entry points.
+
+ Parameters
+ -----------
+ group : str
+ The entry_point to be retrieved.
+ load_and_call : bool, optional
+ If True, load and call the backend. Defaults to False.
+
+ Returns
+ --------
+ dict
+ A dictionary mapping backend names to their respective backend objects.
+
+ Notes
+ ------
+ If a backend is defined more than once, a warning is issued.
+ The `nx_loopback` backend is removed if it exists, as it is only available during testing.
+ A warning is displayed if an error occurs while loading a backend.
+ """
+ items = entry_points(group=group)
+ rv = {}
+ for ep in items:
+ if ep.name in rv:
+ warnings.warn(
+ f"networkx backend defined more than once: {ep.name}",
+ RuntimeWarning,
+ stacklevel=2,
+ )
+ elif load_and_call:
+ try:
+ rv[ep.name] = ep.load()()
+ except Exception as exc:
+ warnings.warn(
+ f"Error encountered when loading info for backend {ep.name}: {exc}",
+ RuntimeWarning,
+ stacklevel=2,
+ )
+ else:
+ rv[ep.name] = ep
+ rv.pop("nx_loopback", None)
+ return rv
+
+
+# Note: "networkx" will be in `backend_info`, but not `backends` or `config.backends`.
+# It is valid to use "networkx"` as backend argument and in `config.backend_priority`.
+# We may make "networkx" a "proper" backend and have it in `backends` and `config.backends`.
+backends = _get_backends("networkx.backends")
+backend_info = {} # fill backend_info after networkx is imported in __init__.py
+
+# Load and cache backends on-demand
+_loaded_backends = {} # type: ignore[var-annotated]
+_registered_algorithms = {}
+
+
+# Get default configuration from environment variables at import time
+def _comma_sep_to_list(string):
+ return [stripped for x in string.strip().split(",") if (stripped := x.strip())]
+
+
+def _set_configs_from_environment():
+ """Initialize ``config.backend_priority``, load backend_info and config.
+
+ This gets default values from environment variables (see ``nx.config`` for details).
+ This function is run at the very end of importing networkx. It is run at this time
+ to avoid loading backend_info before the rest of networkx is imported in case a
+ backend uses networkx for its backend_info (e.g. subclassing the Config class.)
+ """
+ # backend_info is defined above as empty dict. Fill it after import finishes.
+ backend_info.update(_get_backends("networkx.backend_info", load_and_call=True))
+ backend_info.update(
+ (backend, {}) for backend in backends.keys() - backend_info.keys()
+ )
+
+ # set up config based on backend_info and environment
+ config = NetworkXConfig(
+ backend_priority=BackendPriorities(
+ algos=[],
+ generators=[],
+ ),
+ backends=Config(
+ **{
+ backend: (
+ cfg
+ if isinstance(cfg := info["default_config"], Config)
+ else Config(**cfg)
+ )
+ if "default_config" in info
+ else Config()
+ for backend, info in backend_info.items()
+ }
+ ),
+ cache_converted_graphs=bool(
+ os.environ.get("NETWORKX_CACHE_CONVERTED_GRAPHS", True)
+ ),
+ fallback_to_nx=bool(os.environ.get("NETWORKX_FALLBACK_TO_NX", False)),
+ warnings_to_ignore={
+ x.strip()
+ for x in os.environ.get("NETWORKX_WARNINGS_TO_IGNORE", "").split(",")
+ if x.strip()
+ },
+ )
+ backend_info["networkx"] = {}
+ type(config.backends).__doc__ = "All installed NetworkX backends and their configs."
+
+ # NETWORKX_BACKEND_PRIORITY is the same as NETWORKX_BACKEND_PRIORITY_ALGOS
+ priorities = {
+ key[26:].lower(): val
+ for key, val in os.environ.items()
+ if key.startswith("NETWORKX_BACKEND_PRIORITY_")
+ }
+ backend_priority = config.backend_priority
+ backend_priority.algos = (
+ _comma_sep_to_list(priorities.pop("algos"))
+ if "algos" in priorities
+ else _comma_sep_to_list(
+ os.environ.get(
+ "NETWORKX_BACKEND_PRIORITY",
+ os.environ.get("NETWORKX_AUTOMATIC_BACKENDS", ""),
+ )
+ )
+ )
+ backend_priority.generators = _comma_sep_to_list(priorities.pop("generators", ""))
+ for key in sorted(priorities):
+ backend_priority[key] = _comma_sep_to_list(priorities[key])
+
+ return config
+
+
+def _always_run(name, args, kwargs):
+ return True
+
+
+def _load_backend(backend_name):
+ if backend_name in _loaded_backends:
+ return _loaded_backends[backend_name]
+ if backend_name not in backends:
+ raise ImportError(f"'{backend_name}' backend is not installed")
+ rv = _loaded_backends[backend_name] = backends[backend_name].load()
+ if not hasattr(rv, "can_run"):
+ rv.can_run = _always_run
+ if not hasattr(rv, "should_run"):
+ rv.should_run = _always_run
+ return rv
+
+
+class _dispatchable:
+ _is_testing = False
+
+ class _fallback_to_nx:
+ """Class property that returns ``nx.config.fallback_to_nx``."""
+
+ def __get__(self, instance, owner=None):
+ warnings.warn(
+ "`_dispatchable._fallback_to_nx` is deprecated and will be removed "
+ "in NetworkX v3.5. Use `nx.config.fallback_to_nx` instead.",
+ category=DeprecationWarning,
+ stacklevel=2,
+ )
+ return nx.config.fallback_to_nx
+
+ # Note that chaining `@classmethod` and `@property` was removed in Python 3.13
+ _fallback_to_nx = _fallback_to_nx() # type: ignore[assignment,misc]
+
+ def __new__(
+ cls,
+ func=None,
+ *,
+ name=None,
+ graphs="G",
+ edge_attrs=None,
+ node_attrs=None,
+ preserve_edge_attrs=False,
+ preserve_node_attrs=False,
+ preserve_graph_attrs=False,
+ preserve_all_attrs=False,
+ mutates_input=False,
+ returns_graph=False,
+ ):
+ """A decorator function that is used to redirect the execution of ``func``
+ function to its backend implementation.
+
+ This decorator function dispatches to
+ a different backend implementation based on the input graph types, and it also
+ manages all the ``backend_kwargs``. Usage can be any of the following decorator
+ forms:
+
+ - ``@_dispatchable``
+ - ``@_dispatchable()``
+ - ``@_dispatchable(name="override_name")``
+ - ``@_dispatchable(graphs="graph_var_name")``
+ - ``@_dispatchable(edge_attrs="weight")``
+ - ``@_dispatchable(graphs={"G": 0, "H": 1}, edge_attrs={"weight": "default"})``
+ with 0 and 1 giving the position in the signature function for graph
+ objects. When ``edge_attrs`` is a dict, keys are keyword names and values
+ are defaults.
+
+ Parameters
+ ----------
+ func : callable, optional
+ The function to be decorated. If ``func`` is not provided, returns a
+ partial object that can be used to decorate a function later. If ``func``
+ is provided, returns a new callable object that dispatches to a backend
+ algorithm based on input graph types.
+
+ name : str, optional
+ The name of the algorithm to use for dispatching. If not provided,
+ the name of ``func`` will be used. ``name`` is useful to avoid name
+ conflicts, as all dispatched algorithms live in a single namespace.
+ For example, ``tournament.is_strongly_connected`` had a name conflict
+ with the standard ``nx.is_strongly_connected``, so we used
+ ``@_dispatchable(name="tournament_is_strongly_connected")``.
+
+ graphs : str or dict or None, default "G"
+ If a string, the parameter name of the graph, which must be the first
+ argument of the wrapped function. If more than one graph is required
+ for the algorithm (or if the graph is not the first argument), provide
+ a dict keyed to argument names with argument position as values for each
+ graph argument. For example, ``@_dispatchable(graphs={"G": 0, "auxiliary?": 4})``
+ indicates the 0th parameter ``G`` of the function is a required graph,
+ and the 4th parameter ``auxiliary?`` is an optional graph.
+ To indicate that an argument is a list of graphs, do ``"[graphs]"``.
+ Use ``graphs=None``, if *no* arguments are NetworkX graphs such as for
+ graph generators, readers, and conversion functions.
+
+ edge_attrs : str or dict, optional
+ ``edge_attrs`` holds information about edge attribute arguments
+ and default values for those edge attributes.
+ If a string, ``edge_attrs`` holds the function argument name that
+ indicates a single edge attribute to include in the converted graph.
+ The default value for this attribute is 1. To indicate that an argument
+ is a list of attributes (all with default value 1), use e.g. ``"[attrs]"``.
+ If a dict, ``edge_attrs`` holds a dict keyed by argument names, with
+ values that are either the default value or, if a string, the argument
+ name that indicates the default value.
+
+ node_attrs : str or dict, optional
+ Like ``edge_attrs``, but for node attributes.
+
+ preserve_edge_attrs : bool or str or dict, optional
+ For bool, whether to preserve all edge attributes.
+ For str, the parameter name that may indicate (with ``True`` or a
+ callable argument) whether all edge attributes should be preserved
+ when converting.
+ For dict of ``{graph_name: {attr: default}}``, indicate pre-determined
+ edge attributes (and defaults) to preserve for input graphs.
+
+ preserve_node_attrs : bool or str or dict, optional
+ Like ``preserve_edge_attrs``, but for node attributes.
+
+ preserve_graph_attrs : bool or set
+ For bool, whether to preserve all graph attributes.
+ For set, which input graph arguments to preserve graph attributes.
+
+ preserve_all_attrs : bool
+ Whether to preserve all edge, node and graph attributes.
+ This overrides all the other preserve_*_attrs.
+
+ mutates_input : bool or dict, default False
+ For bool, whether the function mutates an input graph argument.
+ For dict of ``{arg_name: arg_pos}``, arguments that indicate whether an
+ input graph will be mutated, and ``arg_name`` may begin with ``"not "``
+ to negate the logic (for example, this is used by ``copy=`` arguments).
+ By default, dispatching doesn't convert input graphs to a different
+ backend for functions that mutate input graphs.
+
+ returns_graph : bool, default False
+ Whether the function can return or yield a graph object. By default,
+ dispatching doesn't convert input graphs to a different backend for
+ functions that return graphs.
+ """
+ if func is None:
+ return partial(
+ _dispatchable,
+ name=name,
+ graphs=graphs,
+ edge_attrs=edge_attrs,
+ node_attrs=node_attrs,
+ preserve_edge_attrs=preserve_edge_attrs,
+ preserve_node_attrs=preserve_node_attrs,
+ preserve_graph_attrs=preserve_graph_attrs,
+ preserve_all_attrs=preserve_all_attrs,
+ mutates_input=mutates_input,
+ returns_graph=returns_graph,
+ )
+ if isinstance(func, str):
+ raise TypeError("'name' and 'graphs' must be passed by keyword") from None
+ # If name not provided, use the name of the function
+ if name is None:
+ name = func.__name__
+
+ self = object.__new__(cls)
+
+ # standard function-wrapping stuff
+ # __annotations__ not used
+ self.__name__ = func.__name__
+ # self.__doc__ = func.__doc__ # __doc__ handled as cached property
+ self.__defaults__ = func.__defaults__
+ # We "magically" add `backend=` keyword argument to allow backend to be specified
+ if func.__kwdefaults__:
+ self.__kwdefaults__ = {**func.__kwdefaults__, "backend": None}
+ else:
+ self.__kwdefaults__ = {"backend": None}
+ self.__module__ = func.__module__
+ self.__qualname__ = func.__qualname__
+ self.__dict__.update(func.__dict__)
+ self.__wrapped__ = func
+
+ # Supplement docstring with backend info; compute and cache when needed
+ self._orig_doc = func.__doc__
+ self._cached_doc = None
+
+ self.orig_func = func
+ self.name = name
+ self.edge_attrs = edge_attrs
+ self.node_attrs = node_attrs
+ self.preserve_edge_attrs = preserve_edge_attrs or preserve_all_attrs
+ self.preserve_node_attrs = preserve_node_attrs or preserve_all_attrs
+ self.preserve_graph_attrs = preserve_graph_attrs or preserve_all_attrs
+ self.mutates_input = mutates_input
+ # Keep `returns_graph` private for now, b/c we may extend info on return types
+ self._returns_graph = returns_graph
+
+ if edge_attrs is not None and not isinstance(edge_attrs, str | dict):
+ raise TypeError(
+ f"Bad type for edge_attrs: {type(edge_attrs)}. Expected str or dict."
+ ) from None
+ if node_attrs is not None and not isinstance(node_attrs, str | dict):
+ raise TypeError(
+ f"Bad type for node_attrs: {type(node_attrs)}. Expected str or dict."
+ ) from None
+ if not isinstance(self.preserve_edge_attrs, bool | str | dict):
+ raise TypeError(
+ f"Bad type for preserve_edge_attrs: {type(self.preserve_edge_attrs)}."
+ " Expected bool, str, or dict."
+ ) from None
+ if not isinstance(self.preserve_node_attrs, bool | str | dict):
+ raise TypeError(
+ f"Bad type for preserve_node_attrs: {type(self.preserve_node_attrs)}."
+ " Expected bool, str, or dict."
+ ) from None
+ if not isinstance(self.preserve_graph_attrs, bool | set):
+ raise TypeError(
+ f"Bad type for preserve_graph_attrs: {type(self.preserve_graph_attrs)}."
+ " Expected bool or set."
+ ) from None
+ if not isinstance(self.mutates_input, bool | dict):
+ raise TypeError(
+ f"Bad type for mutates_input: {type(self.mutates_input)}."
+ " Expected bool or dict."
+ ) from None
+ if not isinstance(self._returns_graph, bool):
+ raise TypeError(
+ f"Bad type for returns_graph: {type(self._returns_graph)}."
+ " Expected bool."
+ ) from None
+
+ if isinstance(graphs, str):
+ graphs = {graphs: 0}
+ elif graphs is None:
+ pass
+ elif not isinstance(graphs, dict):
+ raise TypeError(
+ f"Bad type for graphs: {type(graphs)}. Expected str or dict."
+ ) from None
+ elif len(graphs) == 0:
+ raise KeyError("'graphs' must contain at least one variable name") from None
+
+ # This dict comprehension is complicated for better performance; equivalent shown below.
+ self.optional_graphs = set()
+ self.list_graphs = set()
+ if graphs is None:
+ self.graphs = {}
+ else:
+ self.graphs = {
+ self.optional_graphs.add(val := k[:-1]) or val
+ if (last := k[-1]) == "?"
+ else self.list_graphs.add(val := k[1:-1]) or val
+ if last == "]"
+ else k: v
+ for k, v in graphs.items()
+ }
+ # The above is equivalent to:
+ # self.optional_graphs = {k[:-1] for k in graphs if k[-1] == "?"}
+ # self.list_graphs = {k[1:-1] for k in graphs if k[-1] == "]"}
+ # self.graphs = {k[:-1] if k[-1] == "?" else k: v for k, v in graphs.items()}
+
+ # Compute and cache the signature on-demand
+ self._sig = None
+
+ # Which backends implement this function?
+ self.backends = {
+ backend
+ for backend, info in backend_info.items()
+ if "functions" in info and name in info["functions"]
+ }
+
+ if name in _registered_algorithms:
+ raise KeyError(
+ f"Algorithm already exists in dispatch registry: {name}"
+ ) from None
+ # Use the magic of `argmap` to turn `self` into a function. This does result
+ # in small additional overhead compared to calling `_dispatchable` directly,
+ # but `argmap` has the magical property that it can stack with other `argmap`
+ # decorators "for free". Being a function is better for REPRs and type-checkers.
+ self = argmap(_do_nothing)(self)
+ _registered_algorithms[name] = self
+ return self
+
+ @property
+ def __doc__(self):
+ """If the cached documentation exists, it is returned.
+ Otherwise, the documentation is generated using _make_doc() method,
+ cached, and then returned."""
+
+ if (rv := self._cached_doc) is not None:
+ return rv
+ rv = self._cached_doc = self._make_doc()
+ return rv
+
+ @__doc__.setter
+ def __doc__(self, val):
+ """Sets the original documentation to the given value and resets the
+ cached documentation."""
+
+ self._orig_doc = val
+ self._cached_doc = None
+
+ @property
+ def __signature__(self):
+ """Return the signature of the original function, with the addition of
+ the `backend` and `backend_kwargs` parameters."""
+
+ if self._sig is None:
+ sig = inspect.signature(self.orig_func)
+ # `backend` is now a reserved argument used by dispatching.
+ # assert "backend" not in sig.parameters
+ if not any(
+ p.kind == inspect.Parameter.VAR_KEYWORD for p in sig.parameters.values()
+ ):
+ sig = sig.replace(
+ parameters=[
+ *sig.parameters.values(),
+ inspect.Parameter(
+ "backend", inspect.Parameter.KEYWORD_ONLY, default=None
+ ),
+ inspect.Parameter(
+ "backend_kwargs", inspect.Parameter.VAR_KEYWORD
+ ),
+ ]
+ )
+ else:
+ *parameters, var_keyword = sig.parameters.values()
+ sig = sig.replace(
+ parameters=[
+ *parameters,
+ inspect.Parameter(
+ "backend", inspect.Parameter.KEYWORD_ONLY, default=None
+ ),
+ var_keyword,
+ ]
+ )
+ self._sig = sig
+ return self._sig
+
+ def __call__(self, /, *args, backend=None, **kwargs):
+ """Returns the result of the original function, or the backend function if
+ the backend is specified and that backend implements `func`."""
+
+ if not backends:
+ # Fast path if no backends are installed
+ if backend is not None and backend != "networkx":
+ raise ImportError(f"'{backend}' backend is not installed")
+ return self.orig_func(*args, **kwargs)
+
+ # Use `backend_name` in this function instead of `backend`.
+ # This is purely for aesthetics and to make it easier to search for this
+ # variable since "backend" is used in many comments and log/error messages.
+ backend_name = backend
+ if backend_name is not None and backend_name not in backend_info:
+ raise ImportError(f"'{backend_name}' backend is not installed")
+
+ graphs_resolved = {}
+ for gname, pos in self.graphs.items():
+ if pos < len(args):
+ if gname in kwargs:
+ raise TypeError(f"{self.name}() got multiple values for {gname!r}")
+ graph = args[pos]
+ elif gname in kwargs:
+ graph = kwargs[gname]
+ elif gname not in self.optional_graphs:
+ raise TypeError(
+ f"{self.name}() missing required graph argument: {gname}"
+ )
+ else:
+ continue
+ if graph is None:
+ if gname not in self.optional_graphs:
+ raise TypeError(
+ f"{self.name}() required graph argument {gname!r} is None; must be a graph"
+ )
+ else:
+ graphs_resolved[gname] = graph
+
+ # Alternative to the above that does not check duplicated args or missing required graphs.
+ # graphs_resolved = {
+ # gname: graph
+ # for gname, pos in self.graphs.items()
+ # if (graph := args[pos] if pos < len(args) else kwargs.get(gname)) is not None
+ # }
+
+ # Check if any graph comes from a backend
+ if self.list_graphs:
+ # Make sure we don't lose values by consuming an iterator
+ args = list(args)
+ for gname in self.list_graphs & graphs_resolved.keys():
+ list_of_graphs = list(graphs_resolved[gname])
+ graphs_resolved[gname] = list_of_graphs
+ if gname in kwargs:
+ kwargs[gname] = list_of_graphs
+ else:
+ args[self.graphs[gname]] = list_of_graphs
+
+ graph_backend_names = {
+ getattr(g, "__networkx_backend__", None)
+ for gname, g in graphs_resolved.items()
+ if gname not in self.list_graphs
+ }
+ for gname in self.list_graphs & graphs_resolved.keys():
+ graph_backend_names.update(
+ getattr(g, "__networkx_backend__", None)
+ for g in graphs_resolved[gname]
+ )
+ else:
+ graph_backend_names = {
+ getattr(g, "__networkx_backend__", None)
+ for g in graphs_resolved.values()
+ }
+
+ backend_priority = nx.config.backend_priority.get(
+ self.name,
+ nx.config.backend_priority.generators
+ if self._returns_graph
+ else nx.config.backend_priority.algos,
+ )
+ if self._is_testing and backend_priority and backend_name is None:
+ # Special path if we are running networkx tests with a backend.
+ # This even runs for (and handles) functions that mutate input graphs.
+ return self._convert_and_call_for_tests(
+ backend_priority[0],
+ args,
+ kwargs,
+ fallback_to_nx=nx.config.fallback_to_nx,
+ )
+
+ graph_backend_names.discard(None)
+ if backend_name is not None:
+ # Must run with the given backend.
+ # `can_run` only used for better log and error messages.
+ # Check `mutates_input` for logging, not behavior.
+ blurb = (
+ "No other backends will be attempted, because the backend was "
+ f"specified with the `backend='{backend_name}'` keyword argument."
+ )
+ extra_message = (
+ f"'{backend_name}' backend raised NotImplementedError when calling "
+ f"`{self.name}'. {blurb}"
+ )
+ if not graph_backend_names or graph_backend_names == {backend_name}:
+ # All graphs are backend graphs--no need to convert!
+ if self._can_backend_run(backend_name, args, kwargs):
+ return self._call_with_backend(
+ backend_name, args, kwargs, extra_message=extra_message
+ )
+ if self._does_backend_have(backend_name):
+ extra = " for the given arguments"
+ else:
+ extra = ""
+ raise NotImplementedError(
+ f"`{self.name}' is not implemented by '{backend_name}' backend"
+ f"{extra}. {blurb}"
+ )
+ if self._can_convert(backend_name, graph_backend_names):
+ if self._can_backend_run(backend_name, args, kwargs):
+ if self._will_call_mutate_input(args, kwargs):
+ _logger.debug(
+ "`%s' will mutate an input graph. This prevents automatic conversion "
+ "to, and use of, backends listed in `nx.config.backend_priority`. "
+ "Using backend specified by the "
+ "`backend='%s'` keyword argument. This may change behavior by not "
+ "mutating inputs.",
+ self.name,
+ backend_name,
+ )
+ mutations = []
+ else:
+ mutations = None
+ rv = self._convert_and_call(
+ backend_name,
+ graph_backend_names,
+ args,
+ kwargs,
+ extra_message=extra_message,
+ mutations=mutations,
+ )
+ if mutations:
+ for cache, key in mutations:
+ # If the call mutates inputs, then remove all inputs gotten
+ # from cache. We do this after all conversions (and call) so
+ # that a graph can be gotten from a cache multiple times.
+ cache.pop(key, None)
+ return rv
+ if self._does_backend_have(backend_name):
+ extra = " for the given arguments"
+ else:
+ extra = ""
+ raise NotImplementedError(
+ f"`{self.name}' is not implemented by '{backend_name}' backend"
+ f"{extra}. {blurb}"
+ )
+ if len(graph_backend_names) == 1:
+ maybe_s = ""
+ graph_backend_names = f"'{next(iter(graph_backend_names))}'"
+ else:
+ maybe_s = "s"
+ raise TypeError(
+ f"`{self.name}' is unable to convert graph from backend{maybe_s} "
+ f"{graph_backend_names} to '{backend_name}' backend, which was "
+ f"specified with the `backend='{backend_name}'` keyword argument. "
+ f"{blurb}"
+ )
+
+ if self._will_call_mutate_input(args, kwargs):
+ # The current behavior for functions that mutate input graphs:
+ #
+ # 1. If backend is specified by `backend=` keyword, use it (done above).
+ # 2. If inputs are from one backend, try to use it.
+ # 3. If all input graphs are instances of `nx.Graph`, then run with the
+ # default "networkx" implementation.
+ #
+ # Do not automatically convert if a call will mutate inputs, because doing
+ # so would change behavior. Hence, we should fail if there are multiple input
+ # backends or if the input backend does not implement the function. However,
+ # we offer a way for backends to circumvent this if they do not implement
+ # this function: we will fall back to the default "networkx" implementation
+ # without using conversions if all input graphs are subclasses of `nx.Graph`.
+ blurb = (
+ "conversions between backends (if configured) will not be attempted, "
+ "because this may change behavior. You may specify a backend to use "
+ "by passing e.g. `backend='networkx'` keyword, but this may also "
+ "change behavior by not mutating inputs."
+ )
+ fallback_blurb = (
+ "This call will mutate inputs, so fall back to 'networkx' "
+ "backend (without converting) since all input graphs are "
+ "instances of nx.Graph and are hopefully compatible.",
+ )
+ if len(graph_backend_names) == 1:
+ [backend_name] = graph_backend_names
+ msg_template = (
+ f"Backend '{backend_name}' does not implement `{self.name}'%s. "
+ f"This call will mutate an input, so automatic {blurb}"
+ )
+ # `can_run` is only used for better log and error messages
+ try:
+ if self._can_backend_run(backend_name, args, kwargs):
+ return self._call_with_backend(
+ backend_name,
+ args,
+ kwargs,
+ extra_message=msg_template % " with these arguments",
+ )
+ except NotImplementedError as exc:
+ if all(isinstance(g, nx.Graph) for g in graphs_resolved.values()):
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s. %s",
+ backend_name,
+ self.name,
+ exc,
+ fallback_blurb,
+ )
+ else:
+ raise
+ else:
+ if nx.config.fallback_to_nx and all(
+ # Consider dropping the `isinstance` check here to allow
+ # duck-type graphs, but let's wait for a backend to ask us.
+ isinstance(g, nx.Graph)
+ for g in graphs_resolved.values()
+ ):
+ # Log that we are falling back to networkx
+ _logger.debug(
+ "Backend '%s' can't run `%s'. %s",
+ backend_name,
+ self.name,
+ fallback_blurb,
+ )
+ else:
+ if self._does_backend_have(backend_name):
+ extra = " with these arguments"
+ else:
+ extra = ""
+ raise NotImplementedError(msg_template % extra)
+ elif nx.config.fallback_to_nx and all(
+ # Consider dropping the `isinstance` check here to allow
+ # duck-type graphs, but let's wait for a backend to ask us.
+ isinstance(g, nx.Graph)
+ for g in graphs_resolved.values()
+ ):
+ # Log that we are falling back to networkx
+ _logger.debug(
+ "`%s' was called with inputs from multiple backends: %s. %s",
+ self.name,
+ graph_backend_names,
+ fallback_blurb,
+ )
+ else:
+ raise RuntimeError(
+ f"`{self.name}' will mutate an input, but it was called with inputs "
+ f"from multiple backends: {graph_backend_names}. Automatic {blurb}"
+ )
+ # At this point, no backends are available to handle the call with
+ # the input graph types, but if the input graphs are compatible
+ # nx.Graph instances, fall back to networkx without converting.
+ return self.orig_func(*args, **kwargs)
+
+ # We may generalize fallback configuration as e.g. `nx.config.backend_fallback`
+ if nx.config.fallback_to_nx or not graph_backend_names:
+ # Use "networkx" by default if there are no inputs from backends.
+ # For example, graph generators should probably return NetworkX graphs
+ # instead of raising NotImplementedError.
+ backend_fallback = ["networkx"]
+ else:
+ backend_fallback = []
+
+ # ##########################
+ # # How this behaves today #
+ # ##########################
+ #
+ # The prose below describes the implementation and a *possible* way to
+ # generalize "networkx" as "just another backend". The code is structured
+ # to perhaps someday support backend-to-backend conversions (including
+ # simply passing objects from one backend directly to another backend;
+ # the dispatch machinery does not necessarily need to perform conversions),
+ # but since backend-to-backend matching is not yet supported, the following
+ # code is merely a convenient way to implement dispatch behaviors that have
+ # been carefully developed since NetworkX 3.0 and to include falling back
+ # to the default NetworkX implementation.
+ #
+ # The current behavior for functions that don't mutate input graphs:
+ #
+ # 1. If backend is specified by `backend=` keyword, use it (done above).
+ # 2. If input is from a backend other than "networkx", try to use it.
+ # - Note: if present, "networkx" graphs will be converted to the backend.
+ # 3. If input is from "networkx" (or no backend), try to use backends from
+ # `backend_priority` before running with the default "networkx" implementation.
+ # 4. If configured, "fall back" and run with the default "networkx" implementation.
+ #
+ # ################################################
+ # # How this is implemented and may work someday #
+ # ################################################
+ #
+ # Let's determine the order of backends we should try according
+ # to `backend_priority`, `backend_fallback`, and input backends.
+ # There are two† dimensions of priorities to consider:
+ # backend_priority > unspecified > backend_fallback
+ # and
+ # backend of an input > not a backend of an input
+ # These are combined to form five groups of priorities as such:
+ #
+ # input ~input
+ # +-------+-------+
+ # backend_priority | 1 | 2 |
+ # unspecified | 3 | N/A | (if only 1)
+ # backend_fallback | 4 | 5 |
+ # +-------+-------+
+ #
+ # This matches the behaviors we developed in versions 3.0 to 3.2, it
+ # ought to cover virtually all use cases we expect, and I (@eriknw) don't
+ # think it can be done any simpler (although it can be generalized further
+ # and made to be more complicated to capture 100% of *possible* use cases).
+ # Some observations:
+ #
+ # 1. If an input is in `backend_priority`, it will be used before trying a
+ # backend that is higher priority in `backend_priority` and not an input.
+ # 2. To prioritize converting from one backend to another even if both implement
+ # a function, list one in `backend_priority` and one in `backend_fallback`.
+ # 3. To disable conversions, set `backend_priority` and `backend_fallback` to [].
+ #
+ # †: There is actually a third dimension of priorities:
+ # should_run == True > should_run == False
+ # Backends with `can_run == True` and `should_run == False` are tried last.
+ #
+ seen = set()
+ group1 = [] # In backend_priority, and an input
+ group2 = [] # In backend_priority, but not an input
+ for name in backend_priority:
+ if name in seen:
+ continue
+ seen.add(name)
+ if name in graph_backend_names:
+ group1.append(name)
+ else:
+ group2.append(name)
+ group4 = [] # In backend_fallback, and an input
+ group5 = [] # In backend_fallback, but not an input
+ for name in backend_fallback:
+ if name in seen:
+ continue
+ seen.add(name)
+ if name in graph_backend_names:
+ group4.append(name)
+ else:
+ group5.append(name)
+ # An input, but not in backend_priority or backend_fallback.
+ group3 = graph_backend_names - seen
+ if len(group3) > 1:
+ # `group3` backends are not configured for automatic conversion or fallback.
+ # There are at least two issues if this group contains multiple backends:
+ #
+ # 1. How should we prioritize them? We have no good way to break ties.
+ # Although we could arbitrarily choose alphabetical or left-most,
+ # let's follow the Zen of Python and refuse the temptation to guess.
+ # 2. We probably shouldn't automatically convert to these backends,
+ # because we are not configured to do so.
+ #
+ # (2) is important to allow disabling all conversions by setting both
+ # `nx.config.backend_priority` and `nx.config.backend_fallback` to [].
+ #
+ # If there is a single backend in `group3`, then giving it priority over
+ # the fallback backends is what is generally expected. For example, this
+ # allows input graphs of `backend_fallback` backends (such as "networkx")
+ # to be converted to, and run with, the unspecified backend.
+ _logger.debug(
+ "Call to `%s' has inputs from multiple backends, %s, that "
+ "have no priority set in `nx.config.backend_priority`, "
+ "so automatic conversions to "
+ "these backends will not be attempted.",
+ self.name,
+ group3,
+ )
+ group3 = ()
+
+ try_order = list(itertools.chain(group1, group2, group3, group4, group5))
+ if len(try_order) > 1:
+ # Should we consider adding an option for more verbose logging?
+ # For example, we could explain the order of `try_order` in detail.
+ _logger.debug(
+ "Call to `%s' has inputs from %s backends, and will try to use "
+ "backends in the following order: %s",
+ self.name,
+ graph_backend_names or "no",
+ try_order,
+ )
+ backends_to_try_again = []
+ for is_not_first, backend_name in enumerate(try_order):
+ if is_not_first:
+ _logger.debug("Trying next backend: '%s'", backend_name)
+ try:
+ if not graph_backend_names or graph_backend_names == {backend_name}:
+ if self._can_backend_run(backend_name, args, kwargs):
+ return self._call_with_backend(backend_name, args, kwargs)
+ elif self._can_convert(
+ backend_name, graph_backend_names
+ ) and self._can_backend_run(backend_name, args, kwargs):
+ if self._should_backend_run(backend_name, args, kwargs):
+ rv = self._convert_and_call(
+ backend_name, graph_backend_names, args, kwargs
+ )
+ if (
+ self._returns_graph
+ and graph_backend_names
+ and backend_name not in graph_backend_names
+ ):
+ # If the function has graph inputs and graph output, we try
+ # to make it so the backend of the return type will match the
+ # backend of the input types. In case this is not possible,
+ # let's tell the user that the backend of the return graph
+ # has changed. Perhaps we could try to convert back, but
+ # "fallback" backends for graph generators should typically
+ # be compatible with NetworkX graphs.
+ _logger.debug(
+ "Call to `%s' is returning a graph from a different "
+ "backend! It has inputs from %s backends, but ran with "
+ "'%s' backend and is returning graph from '%s' backend",
+ self.name,
+ graph_backend_names,
+ backend_name,
+ backend_name,
+ )
+ return rv
+ # `should_run` is False, but `can_run` is True, so try again later
+ backends_to_try_again.append(backend_name)
+ except NotImplementedError as exc:
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s",
+ backend_name,
+ self.name,
+ exc,
+ )
+
+ # We are about to fail. Let's try backends with can_run=True and should_run=False.
+ # This is unlikely to help today since we try to run with "networkx" before this.
+ for backend_name in backends_to_try_again:
+ _logger.debug(
+ "Trying backend: '%s' (ignoring `should_run=False`)", backend_name
+ )
+ try:
+ rv = self._convert_and_call(
+ backend_name, graph_backend_names, args, kwargs
+ )
+ if (
+ self._returns_graph
+ and graph_backend_names
+ and backend_name not in graph_backend_names
+ ):
+ _logger.debug(
+ "Call to `%s' is returning a graph from a different "
+ "backend! It has inputs from %s backends, but ran with "
+ "'%s' backend and is returning graph from '%s' backend",
+ self.name,
+ graph_backend_names,
+ backend_name,
+ backend_name,
+ )
+ return rv
+ except NotImplementedError as exc:
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s",
+ backend_name,
+ self.name,
+ exc,
+ )
+ # As a final effort, we could try to convert and run with `group3` backends
+ # that we discarded when `len(group3) > 1`, but let's not consider doing
+ # so until there is a reasonable request for it.
+
+ if len(unspecified_backends := graph_backend_names - seen) > 1:
+ raise TypeError(
+ f"Unable to convert inputs from {graph_backend_names} backends and "
+ f"run `{self.name}'. NetworkX is configured to automatically convert "
+ f"to {try_order} backends. To remedy this, you may enable automatic "
+ f"conversion to {unspecified_backends} backends by adding them to "
+ "`nx.config.backend_priority`, or you "
+ "may specify a backend to use with the `backend=` keyword argument."
+ )
+ raise NotImplementedError(
+ f"`{self.name}' is not implemented by {try_order} backends. To remedy "
+ "this, you may enable automatic conversion to more backends (including "
+ "'networkx') by adding them to `nx.config.backend_priority`, "
+ "or you may specify a backend to use with "
+ "the `backend=` keyword argument."
+ )
+
+ def _will_call_mutate_input(self, args, kwargs):
+ return (mutates_input := self.mutates_input) and (
+ mutates_input is True
+ or any(
+ # If `mutates_input` begins with "not ", then assume the argument is bool,
+ # otherwise treat it as a node or edge attribute if it's not None.
+ not (
+ args[arg_pos]
+ if len(args) > arg_pos
+ # This assumes that e.g. `copy=True` is the default
+ else kwargs.get(arg_name[4:], True)
+ )
+ if arg_name.startswith("not ")
+ else (args[arg_pos] if len(args) > arg_pos else kwargs.get(arg_name))
+ is not None
+ for arg_name, arg_pos in mutates_input.items()
+ )
+ )
+
+ def _can_convert(self, backend_name, graph_backend_names):
+ # Backend-to-backend conversion not supported yet.
+ # We can only convert to and from networkx.
+ rv = backend_name == "networkx" or graph_backend_names.issubset(
+ {"networkx", backend_name}
+ )
+ if not rv:
+ _logger.debug(
+ "Unable to convert from %s backends to '%s' backend",
+ graph_backend_names,
+ backend_name,
+ )
+ return rv
+
+ def _does_backend_have(self, backend_name):
+ """Does the specified backend have this algorithm?"""
+ if backend_name == "networkx":
+ return True
+ # Inspect the backend; don't trust metadata used to create `self.backends`
+ backend = _load_backend(backend_name)
+ return hasattr(backend, self.name)
+
+ def _can_backend_run(self, backend_name, args, kwargs):
+ """Can the specified backend run this algorithm with these arguments?"""
+ if backend_name == "networkx":
+ return True
+ backend = _load_backend(backend_name)
+ # `backend.can_run` and `backend.should_run` may return strings that describe
+ # why they can't or shouldn't be run.
+ if not hasattr(backend, self.name):
+ _logger.debug(
+ "Backend '%s' does not implement `%s'", backend_name, self.name
+ )
+ return False
+ can_run = backend.can_run(self.name, args, kwargs)
+ if isinstance(can_run, str) or not can_run:
+ reason = f", because: {can_run}" if isinstance(can_run, str) else ""
+ _logger.debug(
+ "Backend '%s' can't run `%s` with arguments: %s%s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, args, kwargs),
+ reason,
+ )
+ return False
+ return True
+
+ def _should_backend_run(self, backend_name, args, kwargs):
+ """Should the specified backend run this algorithm with these arguments?
+
+ Note that this does not check ``backend.can_run``.
+ """
+ # `backend.can_run` and `backend.should_run` may return strings that describe
+ # why they can't or shouldn't be run.
+ if backend_name == "networkx":
+ return True
+ backend = _load_backend(backend_name)
+ should_run = backend.should_run(self.name, args, kwargs)
+ if isinstance(should_run, str) or not should_run:
+ reason = f", because: {should_run}" if isinstance(should_run, str) else ""
+ _logger.debug(
+ "Backend '%s' shouldn't run `%s` with arguments: %s%s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, args, kwargs),
+ reason,
+ )
+ return False
+ return True
+
+ def _convert_arguments(self, backend_name, args, kwargs, *, use_cache, mutations):
+ """Convert graph arguments to the specified backend.
+
+ Returns
+ -------
+ args tuple and kwargs dict
+ """
+ bound = self.__signature__.bind(*args, **kwargs)
+ bound.apply_defaults()
+ if not self.graphs:
+ bound_kwargs = bound.kwargs
+ del bound_kwargs["backend"]
+ return bound.args, bound_kwargs
+ if backend_name == "networkx":
+ # `backend_interface.convert_from_nx` preserves everything
+ preserve_edge_attrs = preserve_node_attrs = preserve_graph_attrs = True
+ else:
+ preserve_edge_attrs = self.preserve_edge_attrs
+ preserve_node_attrs = self.preserve_node_attrs
+ preserve_graph_attrs = self.preserve_graph_attrs
+ edge_attrs = self.edge_attrs
+ node_attrs = self.node_attrs
+ # Convert graphs into backend graph-like object
+ # Include the edge and/or node labels if provided to the algorithm
+ if preserve_edge_attrs is False:
+ # e.g. `preserve_edge_attrs=False`
+ pass
+ elif preserve_edge_attrs is True:
+ # e.g. `preserve_edge_attrs=True`
+ edge_attrs = None
+ elif isinstance(preserve_edge_attrs, str):
+ if bound.arguments[preserve_edge_attrs] is True or callable(
+ bound.arguments[preserve_edge_attrs]
+ ):
+ # e.g. `preserve_edge_attrs="attr"` and `func(attr=True)`
+ # e.g. `preserve_edge_attrs="attr"` and `func(attr=myfunc)`
+ preserve_edge_attrs = True
+ edge_attrs = None
+ elif bound.arguments[preserve_edge_attrs] is False and (
+ isinstance(edge_attrs, str)
+ and edge_attrs == preserve_edge_attrs
+ or isinstance(edge_attrs, dict)
+ and preserve_edge_attrs in edge_attrs
+ ):
+ # e.g. `preserve_edge_attrs="attr"` and `func(attr=False)`
+ # Treat `False` argument as meaning "preserve_edge_data=False"
+ # and not `False` as the edge attribute to use.
+ preserve_edge_attrs = False
+ edge_attrs = None
+ else:
+ # e.g. `preserve_edge_attrs="attr"` and `func(attr="weight")`
+ preserve_edge_attrs = False
+ # Else: e.g. `preserve_edge_attrs={"G": {"weight": 1}}`
+
+ if edge_attrs is None:
+ # May have been set to None above b/c all attributes are preserved
+ pass
+ elif isinstance(edge_attrs, str):
+ if edge_attrs[0] == "[":
+ # e.g. `edge_attrs="[edge_attributes]"` (argument of list of attributes)
+ # e.g. `func(edge_attributes=["foo", "bar"])`
+ edge_attrs = {
+ edge_attr: 1 for edge_attr in bound.arguments[edge_attrs[1:-1]]
+ }
+ elif callable(bound.arguments[edge_attrs]):
+ # e.g. `edge_attrs="weight"` and `func(weight=myfunc)`
+ preserve_edge_attrs = True
+ edge_attrs = None
+ elif bound.arguments[edge_attrs] is not None:
+ # e.g. `edge_attrs="weight"` and `func(weight="foo")` (default of 1)
+ edge_attrs = {bound.arguments[edge_attrs]: 1}
+ elif self.name == "to_numpy_array" and hasattr(
+ bound.arguments["dtype"], "names"
+ ):
+ # Custom handling: attributes may be obtained from `dtype`
+ edge_attrs = {
+ edge_attr: 1 for edge_attr in bound.arguments["dtype"].names
+ }
+ else:
+ # e.g. `edge_attrs="weight"` and `func(weight=None)`
+ edge_attrs = None
+ else:
+ # e.g. `edge_attrs={"attr": "default"}` and `func(attr="foo", default=7)`
+ # e.g. `edge_attrs={"attr": 0}` and `func(attr="foo")`
+ edge_attrs = {
+ edge_attr: bound.arguments.get(val, 1) if isinstance(val, str) else val
+ for key, val in edge_attrs.items()
+ if (edge_attr := bound.arguments[key]) is not None
+ }
+
+ if preserve_node_attrs is False:
+ # e.g. `preserve_node_attrs=False`
+ pass
+ elif preserve_node_attrs is True:
+ # e.g. `preserve_node_attrs=True`
+ node_attrs = None
+ elif isinstance(preserve_node_attrs, str):
+ if bound.arguments[preserve_node_attrs] is True or callable(
+ bound.arguments[preserve_node_attrs]
+ ):
+ # e.g. `preserve_node_attrs="attr"` and `func(attr=True)`
+ # e.g. `preserve_node_attrs="attr"` and `func(attr=myfunc)`
+ preserve_node_attrs = True
+ node_attrs = None
+ elif bound.arguments[preserve_node_attrs] is False and (
+ isinstance(node_attrs, str)
+ and node_attrs == preserve_node_attrs
+ or isinstance(node_attrs, dict)
+ and preserve_node_attrs in node_attrs
+ ):
+ # e.g. `preserve_node_attrs="attr"` and `func(attr=False)`
+ # Treat `False` argument as meaning "preserve_node_data=False"
+ # and not `False` as the node attribute to use. Is this used?
+ preserve_node_attrs = False
+ node_attrs = None
+ else:
+ # e.g. `preserve_node_attrs="attr"` and `func(attr="weight")`
+ preserve_node_attrs = False
+ # Else: e.g. `preserve_node_attrs={"G": {"pos": None}}`
+
+ if node_attrs is None:
+ # May have been set to None above b/c all attributes are preserved
+ pass
+ elif isinstance(node_attrs, str):
+ if node_attrs[0] == "[":
+ # e.g. `node_attrs="[node_attributes]"` (argument of list of attributes)
+ # e.g. `func(node_attributes=["foo", "bar"])`
+ node_attrs = {
+ node_attr: None for node_attr in bound.arguments[node_attrs[1:-1]]
+ }
+ elif callable(bound.arguments[node_attrs]):
+ # e.g. `node_attrs="weight"` and `func(weight=myfunc)`
+ preserve_node_attrs = True
+ node_attrs = None
+ elif bound.arguments[node_attrs] is not None:
+ # e.g. `node_attrs="weight"` and `func(weight="foo")`
+ node_attrs = {bound.arguments[node_attrs]: None}
+ else:
+ # e.g. `node_attrs="weight"` and `func(weight=None)`
+ node_attrs = None
+ else:
+ # e.g. `node_attrs={"attr": "default"}` and `func(attr="foo", default=7)`
+ # e.g. `node_attrs={"attr": 0}` and `func(attr="foo")`
+ node_attrs = {
+ node_attr: bound.arguments.get(val) if isinstance(val, str) else val
+ for key, val in node_attrs.items()
+ if (node_attr := bound.arguments[key]) is not None
+ }
+
+ # It should be safe to assume that we either have networkx graphs or backend graphs.
+ # Future work: allow conversions between backends.
+ for gname in self.graphs:
+ if gname in self.list_graphs:
+ bound.arguments[gname] = [
+ self._convert_graph(
+ backend_name,
+ g,
+ edge_attrs=edge_attrs,
+ node_attrs=node_attrs,
+ preserve_edge_attrs=preserve_edge_attrs,
+ preserve_node_attrs=preserve_node_attrs,
+ preserve_graph_attrs=preserve_graph_attrs,
+ graph_name=gname,
+ use_cache=use_cache,
+ mutations=mutations,
+ )
+ if getattr(g, "__networkx_backend__", "networkx") != backend_name
+ else g
+ for g in bound.arguments[gname]
+ ]
+ else:
+ graph = bound.arguments[gname]
+ if graph is None:
+ if gname in self.optional_graphs:
+ continue
+ raise TypeError(
+ f"Missing required graph argument `{gname}` in {self.name} function"
+ )
+ if isinstance(preserve_edge_attrs, dict):
+ preserve_edges = False
+ edges = preserve_edge_attrs.get(gname, edge_attrs)
+ else:
+ preserve_edges = preserve_edge_attrs
+ edges = edge_attrs
+ if isinstance(preserve_node_attrs, dict):
+ preserve_nodes = False
+ nodes = preserve_node_attrs.get(gname, node_attrs)
+ else:
+ preserve_nodes = preserve_node_attrs
+ nodes = node_attrs
+ if isinstance(preserve_graph_attrs, set):
+ preserve_graph = gname in preserve_graph_attrs
+ else:
+ preserve_graph = preserve_graph_attrs
+ if getattr(graph, "__networkx_backend__", "networkx") != backend_name:
+ bound.arguments[gname] = self._convert_graph(
+ backend_name,
+ graph,
+ edge_attrs=edges,
+ node_attrs=nodes,
+ preserve_edge_attrs=preserve_edges,
+ preserve_node_attrs=preserve_nodes,
+ preserve_graph_attrs=preserve_graph,
+ graph_name=gname,
+ use_cache=use_cache,
+ mutations=mutations,
+ )
+ bound_kwargs = bound.kwargs
+ del bound_kwargs["backend"]
+ return bound.args, bound_kwargs
+
+ def _convert_graph(
+ self,
+ backend_name,
+ graph,
+ *,
+ edge_attrs,
+ node_attrs,
+ preserve_edge_attrs,
+ preserve_node_attrs,
+ preserve_graph_attrs,
+ graph_name,
+ use_cache,
+ mutations,
+ ):
+ if (
+ use_cache
+ and (nx_cache := getattr(graph, "__networkx_cache__", None)) is not None
+ ):
+ cache = nx_cache.setdefault("backends", {}).setdefault(backend_name, {})
+ key = _get_cache_key(
+ edge_attrs=edge_attrs,
+ node_attrs=node_attrs,
+ preserve_edge_attrs=preserve_edge_attrs,
+ preserve_node_attrs=preserve_node_attrs,
+ preserve_graph_attrs=preserve_graph_attrs,
+ )
+ compat_key, rv = _get_from_cache(cache, key, mutations=mutations)
+ if rv is not None:
+ if "cache" not in nx.config.warnings_to_ignore:
+ warnings.warn(
+ "Note: conversions to backend graphs are saved to cache "
+ "(`G.__networkx_cache__` on the original graph) by default."
+ "\n\nThis warning means the cached graph is being used "
+ f"for the {backend_name!r} backend in the "
+ f"call to {self.name}.\n\nFor the cache to be consistent "
+ "(i.e., correct), the input graph must not have been "
+ "manually mutated since the cached graph was created. "
+ "Examples of manually mutating the graph data structures "
+ "resulting in an inconsistent cache include:\n\n"
+ " >>> G[u][v][key] = val\n\n"
+ "and\n\n"
+ " >>> for u, v, d in G.edges(data=True):\n"
+ " ... d[key] = val\n\n"
+ "Using methods such as `G.add_edge(u, v, weight=val)` "
+ "will correctly clear the cache to keep it consistent. "
+ "You may also use `G.__networkx_cache__.clear()` to "
+ "manually clear the cache, or set `G.__networkx_cache__` "
+ "to None to disable caching for G. Enable or disable caching "
+ "globally via `nx.config.cache_converted_graphs` config.\n\n"
+ "To disable this warning:\n\n"
+ ' >>> nx.config.warnings_to_ignore.add("cache")\n'
+ )
+ _logger.debug(
+ "Using cached converted graph (from '%s' to '%s' backend) "
+ "in call to `%s' for '%s' argument",
+ getattr(graph, "__networkx_backend__", None),
+ backend_name,
+ self.name,
+ graph_name,
+ )
+ return rv
+
+ if backend_name == "networkx":
+ # Perhaps we should check that "__networkx_backend__" attribute exists
+ # and return the original object if not.
+ if not hasattr(graph, "__networkx_backend__"):
+ _logger.debug(
+ "Unable to convert input to 'networkx' backend in call to `%s' for "
+ "'%s argument, because it is not from a backend (i.e., it does not "
+ "have `G.__networkx_backend__` attribute). Using the original "
+ "object: %s",
+ self.name,
+ graph_name,
+ graph,
+ )
+ # This may fail, but let it fail in the networkx function
+ return graph
+ backend = _load_backend(graph.__networkx_backend__)
+ rv = backend.convert_to_nx(graph)
+ else:
+ backend = _load_backend(backend_name)
+ rv = backend.convert_from_nx(
+ graph,
+ edge_attrs=edge_attrs,
+ node_attrs=node_attrs,
+ preserve_edge_attrs=preserve_edge_attrs,
+ preserve_node_attrs=preserve_node_attrs,
+ # Always preserve graph attrs when we are caching b/c this should be
+ # cheap and may help prevent extra (unnecessary) conversions. Because
+ # we do this, we don't need `preserve_graph_attrs` in the cache key.
+ preserve_graph_attrs=preserve_graph_attrs or use_cache,
+ name=self.name,
+ graph_name=graph_name,
+ )
+ if use_cache and nx_cache is not None and mutations is None:
+ _set_to_cache(cache, key, rv)
+ _logger.debug(
+ "Caching converted graph (from '%s' to '%s' backend) "
+ "in call to `%s' for '%s' argument",
+ getattr(graph, "__networkx_backend__", None),
+ backend_name,
+ self.name,
+ graph_name,
+ )
+
+ return rv
+
+ def _call_with_backend(self, backend_name, args, kwargs, *, extra_message=None):
+ """Call this dispatchable function with a backend without converting inputs."""
+ if backend_name == "networkx":
+ return self.orig_func(*args, **kwargs)
+ backend = _load_backend(backend_name)
+ _logger.debug(
+ "Using backend '%s' for call to `%s' with arguments: %s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, args, kwargs),
+ )
+ try:
+ return getattr(backend, self.name)(*args, **kwargs)
+ except NotImplementedError as exc:
+ if extra_message is not None:
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s",
+ backend_name,
+ self.name,
+ exc,
+ )
+ raise NotImplementedError(extra_message) from exc
+ raise
+
+ def _convert_and_call(
+ self,
+ backend_name,
+ input_backend_names,
+ args,
+ kwargs,
+ *,
+ extra_message=None,
+ mutations=None,
+ ):
+ """Call this dispatchable function with a backend after converting inputs.
+
+ Parameters
+ ----------
+ backend_name : str
+ input_backend_names : set[str]
+ args : arguments tuple
+ kwargs : keywords dict
+ extra_message : str, optional
+ Additional message to log if NotImplementedError is raised by backend.
+ mutations : list, optional
+ Used to clear objects gotten from cache if inputs will be mutated.
+ """
+ if backend_name == "networkx":
+ func = self.orig_func
+ else:
+ backend = _load_backend(backend_name)
+ func = getattr(backend, self.name)
+ other_backend_names = input_backend_names - {backend_name}
+ _logger.debug(
+ "Converting input graphs from %s backend%s to '%s' backend for call to `%s'",
+ other_backend_names
+ if len(other_backend_names) > 1
+ else f"'{next(iter(other_backend_names))}'",
+ "s" if len(other_backend_names) > 1 else "",
+ backend_name,
+ self.name,
+ )
+ try:
+ converted_args, converted_kwargs = self._convert_arguments(
+ backend_name,
+ args,
+ kwargs,
+ use_cache=nx.config.cache_converted_graphs,
+ mutations=mutations,
+ )
+ except NotImplementedError as exc:
+ # Only log the exception if we are adding an extra message
+ # because we don't want to lose any information.
+ _logger.debug(
+ "Failed to convert graphs from %s to '%s' backend for call to `%s'"
+ + ("" if extra_message is None else ": %s"),
+ input_backend_names,
+ backend_name,
+ self.name,
+ *(() if extra_message is None else (exc,)),
+ )
+ if extra_message is not None:
+ raise NotImplementedError(extra_message) from exc
+ raise
+ if backend_name != "networkx":
+ _logger.debug(
+ "Using backend '%s' for call to `%s' with arguments: %s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, converted_args, converted_kwargs),
+ )
+ try:
+ return func(*converted_args, **converted_kwargs)
+ except NotImplementedError as exc:
+ if extra_message is not None:
+ _logger.debug(
+ "Backend '%s' raised when calling `%s': %s",
+ backend_name,
+ self.name,
+ exc,
+ )
+ raise NotImplementedError(extra_message) from exc
+ raise
+
+ def _convert_and_call_for_tests(
+ self, backend_name, args, kwargs, *, fallback_to_nx=False
+ ):
+ """Call this dispatchable function with a backend; for use with testing."""
+ backend = _load_backend(backend_name)
+ if not self._can_backend_run(backend_name, args, kwargs):
+ if fallback_to_nx or not self.graphs:
+ if fallback_to_nx:
+ _logger.debug(
+ "Falling back to use 'networkx' instead of '%s' backend "
+ "for call to `%s' with arguments: %s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, args, kwargs),
+ )
+ return self.orig_func(*args, **kwargs)
+
+ import pytest
+
+ msg = f"'{self.name}' not implemented by {backend_name}"
+ if hasattr(backend, self.name):
+ msg += " with the given arguments"
+ pytest.xfail(msg)
+
+ from collections.abc import Iterable, Iterator, Mapping
+ from copy import copy, deepcopy
+ from io import BufferedReader, BytesIO, StringIO, TextIOWrapper
+ from itertools import tee
+ from random import Random
+
+ import numpy as np
+ from numpy.random import Generator, RandomState
+ from scipy.sparse import sparray
+
+ # We sometimes compare the backend result to the original result,
+ # so we need two sets of arguments. We tee iterators and copy
+ # random state so that they may be used twice.
+ if not args:
+ args1 = args2 = args
+ else:
+ args1, args2 = zip(
+ *(
+ (arg, deepcopy(arg))
+ if isinstance(arg, RandomState)
+ else (arg, copy(arg))
+ if isinstance(arg, BytesIO | StringIO | Random | Generator)
+ else tee(arg)
+ if isinstance(arg, Iterator)
+ and not isinstance(arg, BufferedReader | TextIOWrapper)
+ else (arg, arg)
+ for arg in args
+ )
+ )
+ if not kwargs:
+ kwargs1 = kwargs2 = kwargs
+ else:
+ kwargs1, kwargs2 = zip(
+ *(
+ ((k, v), (k, deepcopy(v)))
+ if isinstance(v, RandomState)
+ else ((k, v), (k, copy(v)))
+ if isinstance(v, BytesIO | StringIO | Random | Generator)
+ else ((k, (teed := tee(v))[0]), (k, teed[1]))
+ if isinstance(v, Iterator)
+ and not isinstance(v, BufferedReader | TextIOWrapper)
+ else ((k, v), (k, v))
+ for k, v in kwargs.items()
+ )
+ )
+ kwargs1 = dict(kwargs1)
+ kwargs2 = dict(kwargs2)
+ try:
+ converted_args, converted_kwargs = self._convert_arguments(
+ backend_name, args1, kwargs1, use_cache=False, mutations=None
+ )
+ _logger.debug(
+ "Using backend '%s' for call to `%s' with arguments: %s",
+ backend_name,
+ self.name,
+ _LazyArgsRepr(self, converted_args, converted_kwargs),
+ )
+ result = getattr(backend, self.name)(*converted_args, **converted_kwargs)
+ except NotImplementedError as exc:
+ if fallback_to_nx:
+ _logger.debug(
+ "Graph conversion failed; falling back to use 'networkx' instead "
+ "of '%s' backend for call to `%s'",
+ backend_name,
+ self.name,
+ )
+ return self.orig_func(*args2, **kwargs2)
+ import pytest
+
+ pytest.xfail(
+ exc.args[0] if exc.args else f"{self.name} raised {type(exc).__name__}"
+ )
+ # Verify that `self._returns_graph` is correct. This compares the return type
+ # to the type expected from `self._returns_graph`. This handles tuple and list
+ # return types, but *does not* catch functions that yield graphs.
+ if (
+ self._returns_graph
+ != (
+ isinstance(result, nx.Graph)
+ or hasattr(result, "__networkx_backend__")
+ or isinstance(result, tuple | list)
+ and any(
+ isinstance(x, nx.Graph) or hasattr(x, "__networkx_backend__")
+ for x in result
+ )
+ )
+ and not (
+ # May return Graph or None
+ self.name in {"check_planarity", "check_planarity_recursive"}
+ and any(x is None for x in result)
+ )
+ and not (
+ # May return Graph or dict
+ self.name in {"held_karp_ascent"}
+ and any(isinstance(x, dict) for x in result)
+ )
+ and self.name
+ not in {
+ # yields graphs
+ "all_triads",
+ "general_k_edge_subgraphs",
+ # yields graphs or arrays
+ "nonisomorphic_trees",
+ }
+ ):
+ raise RuntimeError(f"`returns_graph` is incorrect for {self.name}")
+
+ def check_result(val, depth=0):
+ if isinstance(val, np.number):
+ raise RuntimeError(
+ f"{self.name} returned a numpy scalar {val} ({type(val)}, depth={depth})"
+ )
+ if isinstance(val, np.ndarray | sparray):
+ return
+ if isinstance(val, nx.Graph):
+ check_result(val._node, depth=depth + 1)
+ check_result(val._adj, depth=depth + 1)
+ return
+ if isinstance(val, Iterator):
+ raise NotImplementedError
+ if isinstance(val, Iterable) and not isinstance(val, str):
+ for x in val:
+ check_result(x, depth=depth + 1)
+ if isinstance(val, Mapping):
+ for x in val.values():
+ check_result(x, depth=depth + 1)
+
+ def check_iterator(it):
+ for val in it:
+ try:
+ check_result(val)
+ except RuntimeError as exc:
+ raise RuntimeError(
+ f"{self.name} returned a numpy scalar {val} ({type(val)})"
+ ) from exc
+ yield val
+
+ if self.name in {"from_edgelist"}:
+ # numpy scalars are explicitly given as values in some tests
+ pass
+ elif isinstance(result, Iterator):
+ result = check_iterator(result)
+ else:
+ try:
+ check_result(result)
+ except RuntimeError as exc:
+ raise RuntimeError(
+ f"{self.name} returned a numpy scalar {result} ({type(result)})"
+ ) from exc
+ check_result(result)
+
+ if self.name in {
+ "edmonds_karp",
+ "barycenter",
+ "contracted_edge",
+ "contracted_nodes",
+ "stochastic_graph",
+ "relabel_nodes",
+ "maximum_branching",
+ "incremental_closeness_centrality",
+ "minimal_branching",
+ "minimum_spanning_arborescence",
+ "recursive_simple_cycles",
+ "connected_double_edge_swap",
+ }:
+ # Special-case algorithms that mutate input graphs
+ bound = self.__signature__.bind(*converted_args, **converted_kwargs)
+ bound.apply_defaults()
+ bound2 = self.__signature__.bind(*args2, **kwargs2)
+ bound2.apply_defaults()
+ if self.name in {
+ "minimal_branching",
+ "minimum_spanning_arborescence",
+ "recursive_simple_cycles",
+ "connected_double_edge_swap",
+ }:
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ G2._adj = G1._adj
+ if G2.is_directed():
+ G2._pred = G1._pred
+ nx._clear_cache(G2)
+ elif self.name == "edmonds_karp":
+ R1 = backend.convert_to_nx(bound.arguments["residual"])
+ R2 = bound2.arguments["residual"]
+ if R1 is not None and R2 is not None:
+ for k, v in R1.edges.items():
+ R2.edges[k]["flow"] = v["flow"]
+ R2.graph.update(R1.graph)
+ nx._clear_cache(R2)
+ elif self.name == "barycenter" and bound.arguments["attr"] is not None:
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ attr = bound.arguments["attr"]
+ for k, v in G1.nodes.items():
+ G2.nodes[k][attr] = v[attr]
+ nx._clear_cache(G2)
+ elif (
+ self.name in {"contracted_nodes", "contracted_edge"}
+ and not bound.arguments["copy"]
+ ):
+ # Edges and nodes changed; node "contraction" and edge "weight" attrs
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ G2.__dict__.update(G1.__dict__)
+ nx._clear_cache(G2)
+ elif self.name == "stochastic_graph" and not bound.arguments["copy"]:
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ for k, v in G1.edges.items():
+ G2.edges[k]["weight"] = v["weight"]
+ nx._clear_cache(G2)
+ elif (
+ self.name == "relabel_nodes"
+ and not bound.arguments["copy"]
+ or self.name in {"incremental_closeness_centrality"}
+ ):
+ G1 = backend.convert_to_nx(bound.arguments["G"])
+ G2 = bound2.arguments["G"]
+ if G1 is G2:
+ return G2
+ G2._node.clear()
+ G2._node.update(G1._node)
+ G2._adj.clear()
+ G2._adj.update(G1._adj)
+ if hasattr(G1, "_pred") and hasattr(G2, "_pred"):
+ G2._pred.clear()
+ G2._pred.update(G1._pred)
+ if hasattr(G1, "_succ") and hasattr(G2, "_succ"):
+ G2._succ.clear()
+ G2._succ.update(G1._succ)
+ nx._clear_cache(G2)
+ if self.name == "relabel_nodes":
+ return G2
+ return backend.convert_to_nx(result)
+
+ converted_result = backend.convert_to_nx(result)
+ if isinstance(converted_result, nx.Graph) and self.name not in {
+ "boykov_kolmogorov",
+ "preflow_push",
+ "quotient_graph",
+ "shortest_augmenting_path",
+ "spectral_graph_forge",
+ # We don't handle tempfile.NamedTemporaryFile arguments
+ "read_gml",
+ "read_graph6",
+ "read_sparse6",
+ # We don't handle io.BufferedReader or io.TextIOWrapper arguments
+ "bipartite_read_edgelist",
+ "read_adjlist",
+ "read_edgelist",
+ "read_graphml",
+ "read_multiline_adjlist",
+ "read_pajek",
+ "from_pydot",
+ "pydot_read_dot",
+ "agraph_read_dot",
+ # graph comparison fails b/c of nan values
+ "read_gexf",
+ }:
+ # For graph return types (e.g. generators), we compare that results are
+ # the same between the backend and networkx, then return the original
+ # networkx result so the iteration order will be consistent in tests.
+ G = self.orig_func(*args2, **kwargs2)
+ if not nx.utils.graphs_equal(G, converted_result):
+ assert G.number_of_nodes() == converted_result.number_of_nodes()
+ assert G.number_of_edges() == converted_result.number_of_edges()
+ assert G.graph == converted_result.graph
+ assert G.nodes == converted_result.nodes
+ assert G.adj == converted_result.adj
+ assert type(G) is type(converted_result)
+ raise AssertionError("Graphs are not equal")
+ return G
+ return converted_result
+
+ def _make_doc(self):
+ """Generate the backends section at the end for functions having an alternate
+ backend implementation(s) using the `backend_info` entry-point."""
+
+ if not self.backends:
+ return self._orig_doc
+ lines = [
+ "Backends",
+ "--------",
+ ]
+ for backend in sorted(self.backends):
+ info = backend_info[backend]
+ if "short_summary" in info:
+ lines.append(f"{backend} : {info['short_summary']}")
+ else:
+ lines.append(backend)
+ if "functions" not in info or self.name not in info["functions"]:
+ lines.append("")
+ continue
+
+ func_info = info["functions"][self.name]
+
+ # Renaming extra_docstring to additional_docs
+ if func_docs := (
+ func_info.get("additional_docs") or func_info.get("extra_docstring")
+ ):
+ lines.extend(
+ f" {line}" if line else line for line in func_docs.split("\n")
+ )
+ add_gap = True
+ else:
+ add_gap = False
+
+ # Renaming extra_parameters to additional_parameters
+ if extra_parameters := (
+ func_info.get("extra_parameters")
+ or func_info.get("additional_parameters")
+ ):
+ if add_gap:
+ lines.append("")
+ lines.append(" Additional parameters:")
+ for param in sorted(extra_parameters):
+ lines.append(f" {param}")
+ if desc := extra_parameters[param]:
+ lines.append(f" {desc}")
+ lines.append("")
+ else:
+ lines.append("")
+
+ if func_url := func_info.get("url"):
+ lines.append(f"[`Source <{func_url}>`_]")
+ lines.append("")
+
+ lines.pop() # Remove last empty line
+ to_add = "\n ".join(lines)
+ if not self._orig_doc:
+ return f"The original docstring for {self.name} was empty.\n\n {to_add}"
+ return f"{self._orig_doc.rstrip()}\n\n {to_add}"
+
+ def __reduce__(self):
+ """Allow this object to be serialized with pickle.
+
+ This uses the global registry `_registered_algorithms` to deserialize.
+ """
+ return _restore_dispatchable, (self.name,)
+
+
+def _restore_dispatchable(name):
+ return _registered_algorithms[name].__wrapped__
+
+
+def _get_cache_key(
+ *,
+ edge_attrs,
+ node_attrs,
+ preserve_edge_attrs,
+ preserve_node_attrs,
+ preserve_graph_attrs,
+):
+ """Return key used by networkx caching given arguments for ``convert_from_nx``."""
+ # edge_attrs: dict | None
+ # node_attrs: dict | None
+ # preserve_edge_attrs: bool (False if edge_attrs is not None)
+ # preserve_node_attrs: bool (False if node_attrs is not None)
+ return (
+ frozenset(edge_attrs.items())
+ if edge_attrs is not None
+ else preserve_edge_attrs,
+ frozenset(node_attrs.items())
+ if node_attrs is not None
+ else preserve_node_attrs,
+ )
+
+
+def _get_from_cache(cache, key, *, backend_name=None, mutations=None):
+ """Search the networkx cache for a graph that is compatible with ``key``.
+
+ Parameters
+ ----------
+ cache : dict
+ If ``backend_name`` is given, then this is treated as ``G.__networkx_cache__``,
+ but if ``backend_name`` is None, then this is treated as the resolved inner
+ cache such as ``G.__networkx_cache__["backends"][backend_name]``.
+ key : tuple
+ Cache key from ``_get_cache_key``.
+ backend_name : str, optional
+ Name of the backend to control how ``cache`` is interpreted.
+ mutations : list, optional
+ Used internally to clear objects gotten from cache if inputs will be mutated.
+
+ Returns
+ -------
+ tuple or None
+ The key of the compatible graph found in the cache.
+ graph or None
+ A compatible graph or None.
+ """
+ if backend_name is not None:
+ cache = cache.get("backends", {}).get(backend_name, {})
+ if not cache:
+ return None, None
+
+ # Do a simple search for a cached graph with compatible data.
+ # For example, if we need a single attribute, then it's okay
+ # to use a cached graph that preserved all attributes.
+ # This looks for an exact match first.
+ edge_key, node_key = key
+ for compat_key in itertools.product(
+ (edge_key, True) if edge_key is not True else (True,),
+ (node_key, True) if node_key is not True else (True,),
+ ):
+ if (rv := cache.get(compat_key)) is not None:
+ if mutations is not None:
+ # Remove this item from the cache (after all conversions) if
+ # the call to this dispatchable function will mutate an input.
+ mutations.append((cache, compat_key))
+ return compat_key, rv
+ if edge_key is not True and node_key is not True:
+ # Iterate over the items in `cache` to see if any are compatible.
+ # For example, if no edge attributes are needed, then a graph
+ # with any edge attribute will suffice. We use the same logic
+ # below (but switched) to clear unnecessary items from the cache.
+ # Use `list(cache.items())` to be thread-safe.
+ for (ekey, nkey), graph in list(cache.items()):
+ if edge_key is False or ekey is True:
+ pass # Cache works for edge data!
+ elif edge_key is True or ekey is False or not edge_key.issubset(ekey):
+ continue # Cache missing required edge data; does not work
+ if node_key is False or nkey is True:
+ pass # Cache works for node data!
+ elif node_key is True or nkey is False or not node_key.issubset(nkey):
+ continue # Cache missing required node data; does not work
+ if mutations is not None:
+ # Remove this item from the cache (after all conversions) if
+ # the call to this dispatchable function will mutate an input.
+ mutations.append((cache, (ekey, nkey)))
+ return (ekey, nkey), graph
+ return None, None
+
+
+def _set_to_cache(cache, key, graph, *, backend_name=None):
+ """Set a backend graph to the cache, and remove unnecessary cached items.
+
+ Parameters
+ ----------
+ cache : dict
+ If ``backend_name`` is given, then this is treated as ``G.__networkx_cache__``,
+ but if ``backend_name`` is None, then this is treated as the resolved inner
+ cache such as ``G.__networkx_cache__["backends"][backend_name]``.
+ key : tuple
+ Cache key from ``_get_cache_key``.
+ graph : graph
+ backend_name : str, optional
+ Name of the backend to control how ``cache`` is interpreted.
+
+ Returns
+ -------
+ dict
+ The items that were removed from the cache.
+ """
+ if backend_name is not None:
+ cache = cache.setdefault("backends", {}).setdefault(backend_name, {})
+ # Remove old cached items that are no longer necessary since they
+ # are dominated/subsumed/outdated by what was just calculated.
+ # This uses the same logic as above, but with keys switched.
+ # Also, don't update the cache here if the call will mutate an input.
+ removed = {}
+ edge_key, node_key = key
+ cache[key] = graph # Set at beginning to be thread-safe
+ for cur_key in list(cache):
+ if cur_key == key:
+ continue
+ ekey, nkey = cur_key
+ if ekey is False or edge_key is True:
+ pass
+ elif ekey is True or edge_key is False or not ekey.issubset(edge_key):
+ continue
+ if nkey is False or node_key is True:
+ pass
+ elif nkey is True or node_key is False or not nkey.issubset(node_key):
+ continue
+ # Use pop instead of del to try to be thread-safe
+ if (graph := cache.pop(cur_key, None)) is not None:
+ removed[cur_key] = graph
+ return removed
+
+
+class _LazyArgsRepr:
+ """Simple wrapper to display arguments of dispatchable functions in logging calls."""
+
+ def __init__(self, func, args, kwargs):
+ self.func = func
+ self.args = args
+ self.kwargs = kwargs
+ self.value = None
+
+ def __repr__(self):
+ if self.value is None:
+ bound = self.func.__signature__.bind_partial(*self.args, **self.kwargs)
+ inner = ", ".join(f"{key}={val!r}" for key, val in bound.arguments.items())
+ self.value = f"({inner})"
+ return self.value
+
+
+if os.environ.get("_NETWORKX_BUILDING_DOCS_"):
+ # When building docs with Sphinx, use the original function with the
+ # dispatched __doc__, b/c Sphinx renders normal Python functions better.
+ # This doesn't show e.g. `*, backend=None, **backend_kwargs` in the
+ # signatures, which is probably okay. It does allow the docstring to be
+ # updated based on the installed backends.
+ _orig_dispatchable = _dispatchable
+
+ def _dispatchable(func=None, **kwargs): # type: ignore[no-redef]
+ if func is None:
+ return partial(_dispatchable, **kwargs)
+ dispatched_func = _orig_dispatchable(func, **kwargs)
+ func.__doc__ = dispatched_func.__doc__
+ return func
+
+ _dispatchable.__doc__ = _orig_dispatchable.__new__.__doc__ # type: ignore[method-assign,assignment]
+ _sig = inspect.signature(_orig_dispatchable.__new__)
+ _dispatchable.__signature__ = _sig.replace( # type: ignore[method-assign,assignment]
+ parameters=[v for k, v in _sig.parameters.items() if k != "cls"]
+ )
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/configs.py b/.venv/lib/python3.12/site-packages/networkx/utils/configs.py
new file mode 100644
index 00000000..24c80f88
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/configs.py
@@ -0,0 +1,387 @@
+import collections
+import os
+import typing
+import warnings
+from dataclasses import dataclass
+
+__all__ = ["Config"]
+
+
+@dataclass(init=False, eq=False, slots=True, kw_only=True, match_args=False)
+class Config:
+ """The base class for NetworkX configuration.
+
+ There are two ways to use this to create configurations. The recommended way
+ is to subclass ``Config`` with docs and annotations.
+
+ >>> class MyConfig(Config):
+ ... '''Breakfast!'''
+ ...
+ ... eggs: int
+ ... spam: int
+ ...
+ ... def _on_setattr(self, key, value):
+ ... assert isinstance(value, int) and value >= 0
+ ... return value
+ >>> cfg = MyConfig(eggs=1, spam=5)
+
+ Another way is to simply pass the initial configuration as keyword arguments to
+ the ``Config`` instance:
+
+ >>> cfg1 = Config(eggs=1, spam=5)
+ >>> cfg1
+ Config(eggs=1, spam=5)
+
+ Once defined, config items may be modified, but can't be added or deleted by default.
+ ``Config`` is a ``Mapping``, and can get and set configs via attributes or brackets:
+
+ >>> cfg.eggs = 2
+ >>> cfg.eggs
+ 2
+ >>> cfg["spam"] = 42
+ >>> cfg["spam"]
+ 42
+
+ For convenience, it can also set configs within a context with the "with" statement:
+
+ >>> with cfg(spam=3):
+ ... print("spam (in context):", cfg.spam)
+ spam (in context): 3
+ >>> print("spam (after context):", cfg.spam)
+ spam (after context): 42
+
+ Subclasses may also define ``_on_setattr`` (as done in the example above)
+ to ensure the value being assigned is valid:
+
+ >>> cfg.spam = -1
+ Traceback (most recent call last):
+ ...
+ AssertionError
+
+ If a more flexible configuration object is needed that allows adding and deleting
+ configurations, then pass ``strict=False`` when defining the subclass:
+
+ >>> class FlexibleConfig(Config, strict=False):
+ ... default_greeting: str = "Hello"
+ >>> flexcfg = FlexibleConfig()
+ >>> flexcfg.name = "Mr. Anderson"
+ >>> flexcfg
+ FlexibleConfig(default_greeting='Hello', name='Mr. Anderson')
+ """
+
+ def __init_subclass__(cls, strict=True):
+ cls._strict = strict
+
+ def __new__(cls, **kwargs):
+ orig_class = cls
+ if cls is Config:
+ # Enable the "simple" case of accepting config definition as keywords
+ cls = type(
+ cls.__name__,
+ (cls,),
+ {"__annotations__": {key: typing.Any for key in kwargs}},
+ )
+ cls = dataclass(
+ eq=False,
+ repr=cls._strict,
+ slots=cls._strict,
+ kw_only=True,
+ match_args=False,
+ )(cls)
+ if not cls._strict:
+ cls.__repr__ = _flexible_repr
+ cls._orig_class = orig_class # Save original class so we can pickle
+ cls._prev = None # Stage previous configs to enable use as context manager
+ cls._context_stack = [] # Stack of previous configs when used as context
+ instance = object.__new__(cls)
+ instance.__init__(**kwargs)
+ return instance
+
+ def _on_setattr(self, key, value):
+ """Process config value and check whether it is valid. Useful for subclasses."""
+ return value
+
+ def _on_delattr(self, key):
+ """Callback for when a config item is being deleted. Useful for subclasses."""
+
+ # Control behavior of attributes
+ def __dir__(self):
+ return self.__dataclass_fields__.keys()
+
+ def __setattr__(self, key, value):
+ if self._strict and key not in self.__dataclass_fields__:
+ raise AttributeError(f"Invalid config name: {key!r}")
+ value = self._on_setattr(key, value)
+ object.__setattr__(self, key, value)
+ self.__class__._prev = None
+
+ def __delattr__(self, key):
+ if self._strict:
+ raise TypeError(
+ f"Configuration items can't be deleted (can't delete {key!r})."
+ )
+ self._on_delattr(key)
+ object.__delattr__(self, key)
+ self.__class__._prev = None
+
+ # Be a `collection.abc.Collection`
+ def __contains__(self, key):
+ return (
+ key in self.__dataclass_fields__ if self._strict else key in self.__dict__
+ )
+
+ def __iter__(self):
+ return iter(self.__dataclass_fields__ if self._strict else self.__dict__)
+
+ def __len__(self):
+ return len(self.__dataclass_fields__ if self._strict else self.__dict__)
+
+ def __reversed__(self):
+ return reversed(self.__dataclass_fields__ if self._strict else self.__dict__)
+
+ # Add dunder methods for `collections.abc.Mapping`
+ def __getitem__(self, key):
+ try:
+ return getattr(self, key)
+ except AttributeError as err:
+ raise KeyError(*err.args) from None
+
+ def __setitem__(self, key, value):
+ try:
+ self.__setattr__(key, value)
+ except AttributeError as err:
+ raise KeyError(*err.args) from None
+
+ def __delitem__(self, key):
+ try:
+ self.__delattr__(key)
+ except AttributeError as err:
+ raise KeyError(*err.args) from None
+
+ _ipython_key_completions_ = __dir__ # config["<TAB>
+
+ # Go ahead and make it a `collections.abc.Mapping`
+ def get(self, key, default=None):
+ return getattr(self, key, default)
+
+ def items(self):
+ return collections.abc.ItemsView(self)
+
+ def keys(self):
+ return collections.abc.KeysView(self)
+
+ def values(self):
+ return collections.abc.ValuesView(self)
+
+ # dataclass can define __eq__ for us, but do it here so it works after pickling
+ def __eq__(self, other):
+ if not isinstance(other, Config):
+ return NotImplemented
+ return self._orig_class == other._orig_class and self.items() == other.items()
+
+ # Make pickle work
+ def __reduce__(self):
+ return self._deserialize, (self._orig_class, dict(self))
+
+ @staticmethod
+ def _deserialize(cls, kwargs):
+ return cls(**kwargs)
+
+ # Allow to be used as context manager
+ def __call__(self, **kwargs):
+ kwargs = {key: self._on_setattr(key, val) for key, val in kwargs.items()}
+ prev = dict(self)
+ for key, val in kwargs.items():
+ setattr(self, key, val)
+ self.__class__._prev = prev
+ return self
+
+ def __enter__(self):
+ if self.__class__._prev is None:
+ raise RuntimeError(
+ "Config being used as a context manager without config items being set. "
+ "Set config items via keyword arguments when calling the config object. "
+ "For example, using config as a context manager should be like:\n\n"
+ ' >>> with cfg(breakfast="spam"):\n'
+ " ... ... # Do stuff\n"
+ )
+ self.__class__._context_stack.append(self.__class__._prev)
+ self.__class__._prev = None
+ return self
+
+ def __exit__(self, exc_type, exc_value, traceback):
+ prev = self.__class__._context_stack.pop()
+ for key, val in prev.items():
+ setattr(self, key, val)
+
+
+def _flexible_repr(self):
+ return (
+ f"{self.__class__.__qualname__}("
+ + ", ".join(f"{key}={val!r}" for key, val in self.__dict__.items())
+ + ")"
+ )
+
+
+# Register, b/c `Mapping.__subclasshook__` returns `NotImplemented`
+collections.abc.Mapping.register(Config)
+
+
+class BackendPriorities(Config, strict=False):
+ """Configuration to control automatic conversion to and calling of backends.
+
+ Priority is given to backends listed earlier.
+
+ Parameters
+ ----------
+ algos : list of backend names
+ This controls "algorithms" such as ``nx.pagerank`` that don't return a graph.
+ generators : list of backend names
+ This controls "generators" such as ``nx.from_pandas_edgelist`` that return a graph.
+ kwargs : variadic keyword arguments of function name to list of backend names
+ This allows each function to be configured separately and will override the config
+ in ``algos`` or ``generators`` if present. The dispatchable function name may be
+ gotten from the ``.name`` attribute such as ``nx.pagerank.name`` (it's typically
+ the same as the name of the function).
+ """
+
+ algos: list[str]
+ generators: list[str]
+
+ def _on_setattr(self, key, value):
+ from .backends import _registered_algorithms, backend_info
+
+ if key in {"algos", "generators"}:
+ pass
+ elif key not in _registered_algorithms:
+ raise AttributeError(
+ f"Invalid config name: {key!r}. Expected 'algos', 'generators', or a name "
+ "of a dispatchable function (e.g. `.name` attribute of the function)."
+ )
+ if not (isinstance(value, list) and all(isinstance(x, str) for x in value)):
+ raise TypeError(
+ f"{key!r} config must be a list of backend names; got {value!r}"
+ )
+ if missing := {x for x in value if x not in backend_info}:
+ missing = ", ".join(map(repr, sorted(missing)))
+ raise ValueError(f"Unknown backend when setting {key!r}: {missing}")
+ return value
+
+ def _on_delattr(self, key):
+ if key in {"algos", "generators"}:
+ raise TypeError(f"{key!r} configuration item can't be deleted.")
+
+
+class NetworkXConfig(Config):
+ """Configuration for NetworkX that controls behaviors such as how to use backends.
+
+ Attribute and bracket notation are supported for getting and setting configurations::
+
+ >>> nx.config.backend_priority == nx.config["backend_priority"]
+ True
+
+ Parameters
+ ----------
+ backend_priority : list of backend names or dict or BackendPriorities
+ Enable automatic conversion of graphs to backend graphs for functions
+ implemented by the backend. Priority is given to backends listed earlier.
+ This is a nested configuration with keys ``algos``, ``generators``, and,
+ optionally, function names. Setting this value to a list of backend names
+ will set ``nx.config.backend_priority.algos``. For more information, see
+ ``help(nx.config.backend_priority)``. Default is empty list.
+
+ backends : Config mapping of backend names to backend Config
+ The keys of the Config mapping are names of all installed NetworkX backends,
+ and the values are their configurations as Config mappings.
+
+ cache_converted_graphs : bool
+ If True, then save converted graphs to the cache of the input graph. Graph
+ conversion may occur when automatically using a backend from `backend_priority`
+ or when using the `backend=` keyword argument to a function call. Caching can
+ improve performance by avoiding repeated conversions, but it uses more memory.
+ Care should be taken to not manually mutate a graph that has cached graphs; for
+ example, ``G[u][v][k] = val`` changes the graph, but does not clear the cache.
+ Using methods such as ``G.add_edge(u, v, weight=val)`` will clear the cache to
+ keep it consistent. ``G.__networkx_cache__.clear()`` manually clears the cache.
+ Default is True.
+
+ fallback_to_nx : bool
+ If True, then "fall back" and run with the default "networkx" implementation
+ for dispatchable functions not implemented by backends of input graphs. When a
+ backend graph is passed to a dispatchable function, the default behavior is to
+ use the implementation from that backend if possible and raise if not. Enabling
+ ``fallback_to_nx`` makes the networkx implementation the fallback to use instead
+ of raising, and will convert the backend graph to a networkx-compatible graph.
+ Default is False.
+
+ warnings_to_ignore : set of strings
+ Control which warnings from NetworkX are not emitted. Valid elements:
+
+ - `"cache"`: when a cached value is used from ``G.__networkx_cache__``.
+
+ Notes
+ -----
+ Environment variables may be used to control some default configurations:
+
+ - ``NETWORKX_BACKEND_PRIORITY``: set ``backend_priority.algos`` from comma-separated names.
+ - ``NETWORKX_CACHE_CONVERTED_GRAPHS``: set ``cache_converted_graphs`` to True if nonempty.
+ - ``NETWORKX_FALLBACK_TO_NX``: set ``fallback_to_nx`` to True if nonempty.
+ - ``NETWORKX_WARNINGS_TO_IGNORE``: set `warnings_to_ignore` from comma-separated names.
+
+ and can be used for finer control of ``backend_priority`` such as:
+
+ - ``NETWORKX_BACKEND_PRIORITY_ALGOS``: same as ``NETWORKX_BACKEND_PRIORITY`` to set ``backend_priority.algos``.
+
+ This is a global configuration. Use with caution when using from multiple threads.
+ """
+
+ backend_priority: BackendPriorities
+ backends: Config
+ cache_converted_graphs: bool
+ fallback_to_nx: bool
+ warnings_to_ignore: set[str]
+
+ def _on_setattr(self, key, value):
+ from .backends import backend_info
+
+ if key == "backend_priority":
+ if isinstance(value, list):
+ getattr(self, key).algos = value
+ value = getattr(self, key)
+ elif isinstance(value, dict):
+ kwargs = value
+ value = BackendPriorities(algos=[], generators=[])
+ for key, val in kwargs.items():
+ setattr(value, key, val)
+ elif not isinstance(value, BackendPriorities):
+ raise TypeError(
+ f"{key!r} config must be a dict of lists of backend names; got {value!r}"
+ )
+ elif key == "backends":
+ if not (
+ isinstance(value, Config)
+ and all(isinstance(key, str) for key in value)
+ and all(isinstance(val, Config) for val in value.values())
+ ):
+ raise TypeError(
+ f"{key!r} config must be a Config of backend configs; got {value!r}"
+ )
+ if missing := {x for x in value if x not in backend_info}:
+ missing = ", ".join(map(repr, sorted(missing)))
+ raise ValueError(f"Unknown backend when setting {key!r}: {missing}")
+ elif key in {"cache_converted_graphs", "fallback_to_nx"}:
+ if not isinstance(value, bool):
+ raise TypeError(f"{key!r} config must be True or False; got {value!r}")
+ elif key == "warnings_to_ignore":
+ if not (isinstance(value, set) and all(isinstance(x, str) for x in value)):
+ raise TypeError(
+ f"{key!r} config must be a set of warning names; got {value!r}"
+ )
+ known_warnings = {"cache"}
+ if missing := {x for x in value if x not in known_warnings}:
+ missing = ", ".join(map(repr, sorted(missing)))
+ raise ValueError(
+ f"Unknown warning when setting {key!r}: {missing}. Valid entries: "
+ + ", ".join(sorted(known_warnings))
+ )
+ return value
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/decorators.py b/.venv/lib/python3.12/site-packages/networkx/utils/decorators.py
new file mode 100644
index 00000000..36ae9be2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/decorators.py
@@ -0,0 +1,1237 @@
+import bz2
+import collections
+import gzip
+import inspect
+import itertools
+import re
+import warnings
+from collections import defaultdict
+from contextlib import contextmanager
+from functools import wraps
+from inspect import Parameter, signature
+from os.path import splitext
+from pathlib import Path
+
+import networkx as nx
+from networkx.utils import create_py_random_state, create_random_state
+
+__all__ = [
+ "not_implemented_for",
+ "open_file",
+ "nodes_or_number",
+ "np_random_state",
+ "py_random_state",
+ "argmap",
+]
+
+
+def not_implemented_for(*graph_types):
+ """Decorator to mark algorithms as not implemented
+
+ Parameters
+ ----------
+ graph_types : container of strings
+ Entries must be one of "directed", "undirected", "multigraph", or "graph".
+
+ Returns
+ -------
+ _require : function
+ The decorated function.
+
+ Raises
+ ------
+ NetworkXNotImplemented
+ If any of the packages cannot be imported
+
+ Notes
+ -----
+ Multiple types are joined logically with "and".
+ For "or" use multiple @not_implemented_for() lines.
+
+ Examples
+ --------
+ Decorate functions like this::
+
+ @not_implemented_for("directed")
+ def sp_function(G):
+ pass
+
+
+ # rule out MultiDiGraph
+ @not_implemented_for("directed", "multigraph")
+ def sp_np_function(G):
+ pass
+
+
+ # rule out all except DiGraph
+ @not_implemented_for("undirected")
+ @not_implemented_for("multigraph")
+ def sp_np_function(G):
+ pass
+ """
+ if ("directed" in graph_types) and ("undirected" in graph_types):
+ raise ValueError("Function not implemented on directed AND undirected graphs?")
+ if ("multigraph" in graph_types) and ("graph" in graph_types):
+ raise ValueError("Function not implemented on graph AND multigraphs?")
+ if not set(graph_types) < {"directed", "undirected", "multigraph", "graph"}:
+ raise KeyError(
+ "use one or more of directed, undirected, multigraph, graph. "
+ f"You used {graph_types}"
+ )
+
+ # 3-way logic: True if "directed" input, False if "undirected" input, else None
+ dval = ("directed" in graph_types) or "undirected" not in graph_types and None
+ mval = ("multigraph" in graph_types) or "graph" not in graph_types and None
+ errmsg = f"not implemented for {' '.join(graph_types)} type"
+
+ def _not_implemented_for(g):
+ if (mval is None or mval == g.is_multigraph()) and (
+ dval is None or dval == g.is_directed()
+ ):
+ raise nx.NetworkXNotImplemented(errmsg)
+
+ return g
+
+ return argmap(_not_implemented_for, 0)
+
+
+# To handle new extensions, define a function accepting a `path` and `mode`.
+# Then add the extension to _dispatch_dict.
+fopeners = {
+ ".gz": gzip.open,
+ ".gzip": gzip.open,
+ ".bz2": bz2.BZ2File,
+}
+_dispatch_dict = defaultdict(lambda: open, **fopeners)
+
+
+def open_file(path_arg, mode="r"):
+ """Decorator to ensure clean opening and closing of files.
+
+ Parameters
+ ----------
+ path_arg : string or int
+ Name or index of the argument that is a path.
+
+ mode : str
+ String for opening mode.
+
+ Returns
+ -------
+ _open_file : function
+ Function which cleanly executes the io.
+
+ Examples
+ --------
+ Decorate functions like this::
+
+ @open_file(0, "r")
+ def read_function(pathname):
+ pass
+
+
+ @open_file(1, "w")
+ def write_function(G, pathname):
+ pass
+
+
+ @open_file(1, "w")
+ def write_function(G, pathname="graph.dot"):
+ pass
+
+
+ @open_file("pathname", "w")
+ def write_function(G, pathname="graph.dot"):
+ pass
+
+
+ @open_file("path", "w+")
+ def another_function(arg, **kwargs):
+ path = kwargs["path"]
+ pass
+
+ Notes
+ -----
+ Note that this decorator solves the problem when a path argument is
+ specified as a string, but it does not handle the situation when the
+ function wants to accept a default of None (and then handle it).
+
+ Here is an example of how to handle this case::
+
+ @open_file("path")
+ def some_function(arg1, arg2, path=None):
+ if path is None:
+ fobj = tempfile.NamedTemporaryFile(delete=False)
+ else:
+ # `path` could have been a string or file object or something
+ # similar. In any event, the decorator has given us a file object
+ # and it will close it for us, if it should.
+ fobj = path
+
+ try:
+ fobj.write("blah")
+ finally:
+ if path is None:
+ fobj.close()
+
+ Normally, we'd want to use "with" to ensure that fobj gets closed.
+ However, the decorator will make `path` a file object for us,
+ and using "with" would undesirably close that file object.
+ Instead, we use a try block, as shown above.
+ When we exit the function, fobj will be closed, if it should be, by the decorator.
+ """
+
+ def _open_file(path):
+ # Now we have the path_arg. There are two types of input to consider:
+ # 1) string representing a path that should be opened
+ # 2) an already opened file object
+ if isinstance(path, str):
+ ext = splitext(path)[1]
+ elif isinstance(path, Path):
+ # path is a pathlib reference to a filename
+ ext = path.suffix
+ path = str(path)
+ else:
+ # could be None, or a file handle, in which case the algorithm will deal with it
+ return path, lambda: None
+
+ fobj = _dispatch_dict[ext](path, mode=mode)
+ return fobj, lambda: fobj.close()
+
+ return argmap(_open_file, path_arg, try_finally=True)
+
+
+def nodes_or_number(which_args):
+ """Decorator to allow number of nodes or container of nodes.
+
+ With this decorator, the specified argument can be either a number or a container
+ of nodes. If it is a number, the nodes used are `range(n)`.
+ This allows `nx.complete_graph(50)` in place of `nx.complete_graph(list(range(50)))`.
+ And it also allows `nx.complete_graph(any_list_of_nodes)`.
+
+ Parameters
+ ----------
+ which_args : string or int or sequence of strings or ints
+ If string, the name of the argument to be treated.
+ If int, the index of the argument to be treated.
+ If more than one node argument is allowed, can be a list of locations.
+
+ Returns
+ -------
+ _nodes_or_numbers : function
+ Function which replaces int args with ranges.
+
+ Examples
+ --------
+ Decorate functions like this::
+
+ @nodes_or_number("nodes")
+ def empty_graph(nodes):
+ # nodes is converted to a list of nodes
+
+ @nodes_or_number(0)
+ def empty_graph(nodes):
+ # nodes is converted to a list of nodes
+
+ @nodes_or_number(["m1", "m2"])
+ def grid_2d_graph(m1, m2, periodic=False):
+ # m1 and m2 are each converted to a list of nodes
+
+ @nodes_or_number([0, 1])
+ def grid_2d_graph(m1, m2, periodic=False):
+ # m1 and m2 are each converted to a list of nodes
+
+ @nodes_or_number(1)
+ def full_rary_tree(r, n)
+ # presumably r is a number. It is not handled by this decorator.
+ # n is converted to a list of nodes
+ """
+
+ def _nodes_or_number(n):
+ try:
+ nodes = list(range(n))
+ except TypeError:
+ nodes = tuple(n)
+ else:
+ if n < 0:
+ raise nx.NetworkXError(f"Negative number of nodes not valid: {n}")
+ return (n, nodes)
+
+ try:
+ iter_wa = iter(which_args)
+ except TypeError:
+ iter_wa = (which_args,)
+
+ return argmap(_nodes_or_number, *iter_wa)
+
+
+def np_random_state(random_state_argument):
+ """Decorator to generate a numpy RandomState or Generator instance.
+
+ The decorator processes the argument indicated by `random_state_argument`
+ using :func:`nx.utils.create_random_state`.
+ The argument value can be a seed (integer), or a `numpy.random.RandomState`
+ or `numpy.random.RandomState` instance or (`None` or `numpy.random`).
+ The latter two options use the global random number generator for `numpy.random`.
+
+ The returned instance is a `numpy.random.RandomState` or `numpy.random.Generator`.
+
+ Parameters
+ ----------
+ random_state_argument : string or int
+ The name or index of the argument to be converted
+ to a `numpy.random.RandomState` instance.
+
+ Returns
+ -------
+ _random_state : function
+ Function whose random_state keyword argument is a RandomState instance.
+
+ Examples
+ --------
+ Decorate functions like this::
+
+ @np_random_state("seed")
+ def random_float(seed=None):
+ return seed.rand()
+
+
+ @np_random_state(0)
+ def random_float(rng=None):
+ return rng.rand()
+
+
+ @np_random_state(1)
+ def random_array(dims, random_state=1):
+ return random_state.rand(*dims)
+
+ See Also
+ --------
+ py_random_state
+ """
+ return argmap(create_random_state, random_state_argument)
+
+
+def py_random_state(random_state_argument):
+ """Decorator to generate a random.Random instance (or equiv).
+
+ This decorator processes `random_state_argument` using
+ :func:`nx.utils.create_py_random_state`.
+ The input value can be a seed (integer), or a random number generator::
+
+ If int, return a random.Random instance set with seed=int.
+ If random.Random instance, return it.
+ If None or the `random` package, return the global random number
+ generator used by `random`.
+ If np.random package, or the default numpy RandomState instance,
+ return the default numpy random number generator wrapped in a
+ `PythonRandomViaNumpyBits` class.
+ If np.random.Generator instance, return it wrapped in a
+ `PythonRandomViaNumpyBits` class.
+
+ # Legacy options
+ If np.random.RandomState instance, return it wrapped in a
+ `PythonRandomInterface` class.
+ If a `PythonRandomInterface` instance, return it
+
+ Parameters
+ ----------
+ random_state_argument : string or int
+ The name of the argument or the index of the argument in args that is
+ to be converted to the random.Random instance or numpy.random.RandomState
+ instance that mimics basic methods of random.Random.
+
+ Returns
+ -------
+ _random_state : function
+ Function whose random_state_argument is converted to a Random instance.
+
+ Examples
+ --------
+ Decorate functions like this::
+
+ @py_random_state("random_state")
+ def random_float(random_state=None):
+ return random_state.rand()
+
+
+ @py_random_state(0)
+ def random_float(rng=None):
+ return rng.rand()
+
+
+ @py_random_state(1)
+ def random_array(dims, seed=12345):
+ return seed.rand(*dims)
+
+ See Also
+ --------
+ np_random_state
+ """
+
+ return argmap(create_py_random_state, random_state_argument)
+
+
+class argmap:
+ """A decorator to apply a map to arguments before calling the function
+
+ This class provides a decorator that maps (transforms) arguments of the function
+ before the function is called. Thus for example, we have similar code
+ in many functions to determine whether an argument is the number of nodes
+ to be created, or a list of nodes to be handled. The decorator provides
+ the code to accept either -- transforming the indicated argument into a
+ list of nodes before the actual function is called.
+
+ This decorator class allows us to process single or multiple arguments.
+ The arguments to be processed can be specified by string, naming the argument,
+ or by index, specifying the item in the args list.
+
+ Parameters
+ ----------
+ func : callable
+ The function to apply to arguments
+
+ *args : iterable of (int, str or tuple)
+ A list of parameters, specified either as strings (their names), ints
+ (numerical indices) or tuples, which may contain ints, strings, and
+ (recursively) tuples. Each indicates which parameters the decorator
+ should map. Tuples indicate that the map function takes (and returns)
+ multiple parameters in the same order and nested structure as indicated
+ here.
+
+ try_finally : bool (default: False)
+ When True, wrap the function call in a try-finally block with code
+ for the finally block created by `func`. This is used when the map
+ function constructs an object (like a file handle) that requires
+ post-processing (like closing).
+
+ Note: try_finally decorators cannot be used to decorate generator
+ functions.
+
+ Examples
+ --------
+ Most of these examples use `@argmap(...)` to apply the decorator to
+ the function defined on the next line.
+ In the NetworkX codebase however, `argmap` is used within a function to
+ construct a decorator. That is, the decorator defines a mapping function
+ and then uses `argmap` to build and return a decorated function.
+ A simple example is a decorator that specifies which currency to report money.
+ The decorator (named `convert_to`) would be used like::
+
+ @convert_to("US_Dollars", "income")
+ def show_me_the_money(name, income):
+ print(f"{name} : {income}")
+
+ And the code to create the decorator might be::
+
+ def convert_to(currency, which_arg):
+ def _convert(amount):
+ if amount.currency != currency:
+ amount = amount.to_currency(currency)
+ return amount
+
+ return argmap(_convert, which_arg)
+
+ Despite this common idiom for argmap, most of the following examples
+ use the `@argmap(...)` idiom to save space.
+
+ Here's an example use of argmap to sum the elements of two of the functions
+ arguments. The decorated function::
+
+ @argmap(sum, "xlist", "zlist")
+ def foo(xlist, y, zlist):
+ return xlist - y + zlist
+
+ is syntactic sugar for::
+
+ def foo(xlist, y, zlist):
+ x = sum(xlist)
+ z = sum(zlist)
+ return x - y + z
+
+ and is equivalent to (using argument indexes)::
+
+ @argmap(sum, "xlist", 2)
+ def foo(xlist, y, zlist):
+ return xlist - y + zlist
+
+ or::
+
+ @argmap(sum, "zlist", 0)
+ def foo(xlist, y, zlist):
+ return xlist - y + zlist
+
+ Transforming functions can be applied to multiple arguments, such as::
+
+ def swap(x, y):
+ return y, x
+
+ # the 2-tuple tells argmap that the map `swap` has 2 inputs/outputs.
+ @argmap(swap, ("a", "b")):
+ def foo(a, b, c):
+ return a / b * c
+
+ is equivalent to::
+
+ def foo(a, b, c):
+ a, b = swap(a, b)
+ return a / b * c
+
+ More generally, the applied arguments can be nested tuples of strings or ints.
+ The syntax `@argmap(some_func, ("a", ("b", "c")))` would expect `some_func` to
+ accept 2 inputs with the second expected to be a 2-tuple. It should then return
+ 2 outputs with the second a 2-tuple. The returns values would replace input "a"
+ "b" and "c" respectively. Similarly for `@argmap(some_func, (0, ("b", 2)))`.
+
+ Also, note that an index larger than the number of named parameters is allowed
+ for variadic functions. For example::
+
+ def double(a):
+ return 2 * a
+
+
+ @argmap(double, 3)
+ def overflow(a, *args):
+ return a, args
+
+
+ print(overflow(1, 2, 3, 4, 5, 6)) # output is 1, (2, 3, 8, 5, 6)
+
+ **Try Finally**
+
+ Additionally, this `argmap` class can be used to create a decorator that
+ initiates a try...finally block. The decorator must be written to return
+ both the transformed argument and a closing function.
+ This feature was included to enable the `open_file` decorator which might
+ need to close the file or not depending on whether it had to open that file.
+ This feature uses the keyword-only `try_finally` argument to `@argmap`.
+
+ For example this map opens a file and then makes sure it is closed::
+
+ def open_file(fn):
+ f = open(fn)
+ return f, lambda: f.close()
+
+ The decorator applies that to the function `foo`::
+
+ @argmap(open_file, "file", try_finally=True)
+ def foo(file):
+ print(file.read())
+
+ is syntactic sugar for::
+
+ def foo(file):
+ file, close_file = open_file(file)
+ try:
+ print(file.read())
+ finally:
+ close_file()
+
+ and is equivalent to (using indexes)::
+
+ @argmap(open_file, 0, try_finally=True)
+ def foo(file):
+ print(file.read())
+
+ Here's an example of the try_finally feature used to create a decorator::
+
+ def my_closing_decorator(which_arg):
+ def _opener(path):
+ if path is None:
+ path = open(path)
+ fclose = path.close
+ else:
+ # assume `path` handles the closing
+ fclose = lambda: None
+ return path, fclose
+
+ return argmap(_opener, which_arg, try_finally=True)
+
+ which can then be used as::
+
+ @my_closing_decorator("file")
+ def fancy_reader(file=None):
+ # this code doesn't need to worry about closing the file
+ print(file.read())
+
+ Decorators with try_finally = True cannot be used with generator functions,
+ because the `finally` block is evaluated before the generator is exhausted::
+
+ @argmap(open_file, "file", try_finally=True)
+ def file_to_lines(file):
+ for line in file.readlines():
+ yield line
+
+ is equivalent to::
+
+ def file_to_lines_wrapped(file):
+ for line in file.readlines():
+ yield line
+
+
+ def file_to_lines_wrapper(file):
+ try:
+ file = open_file(file)
+ return file_to_lines_wrapped(file)
+ finally:
+ file.close()
+
+ which behaves similarly to::
+
+ def file_to_lines_whoops(file):
+ file = open_file(file)
+ file.close()
+ for line in file.readlines():
+ yield line
+
+ because the `finally` block of `file_to_lines_wrapper` is executed before
+ the caller has a chance to exhaust the iterator.
+
+ Notes
+ -----
+ An object of this class is callable and intended to be used when
+ defining a decorator. Generally, a decorator takes a function as input
+ and constructs a function as output. Specifically, an `argmap` object
+ returns the input function decorated/wrapped so that specified arguments
+ are mapped (transformed) to new values before the decorated function is called.
+
+ As an overview, the argmap object returns a new function with all the
+ dunder values of the original function (like `__doc__`, `__name__`, etc).
+ Code for this decorated function is built based on the original function's
+ signature. It starts by mapping the input arguments to potentially new
+ values. Then it calls the decorated function with these new values in place
+ of the indicated arguments that have been mapped. The return value of the
+ original function is then returned. This new function is the function that
+ is actually called by the user.
+
+ Three additional features are provided.
+ 1) The code is lazily compiled. That is, the new function is returned
+ as an object without the code compiled, but with all information
+ needed so it can be compiled upon it's first invocation. This saves
+ time on import at the cost of additional time on the first call of
+ the function. Subsequent calls are then just as fast as normal.
+
+ 2) If the "try_finally" keyword-only argument is True, a try block
+ follows each mapped argument, matched on the other side of the wrapped
+ call, by a finally block closing that mapping. We expect func to return
+ a 2-tuple: the mapped value and a function to be called in the finally
+ clause. This feature was included so the `open_file` decorator could
+ provide a file handle to the decorated function and close the file handle
+ after the function call. It even keeps track of whether to close the file
+ handle or not based on whether it had to open the file or the input was
+ already open. So, the decorated function does not need to include any
+ code to open or close files.
+
+ 3) The maps applied can process multiple arguments. For example,
+ you could swap two arguments using a mapping, or transform
+ them to their sum and their difference. This was included to allow
+ a decorator in the `quality.py` module that checks that an input
+ `partition` is a valid partition of the nodes of the input graph `G`.
+ In this example, the map has inputs `(G, partition)`. After checking
+ for a valid partition, the map either raises an exception or leaves
+ the inputs unchanged. Thus many functions that make this check can
+ use the decorator rather than copy the checking code into each function.
+ More complicated nested argument structures are described below.
+
+ The remaining notes describe the code structure and methods for this
+ class in broad terms to aid in understanding how to use it.
+
+ Instantiating an `argmap` object simply stores the mapping function and
+ the input identifiers of which arguments to map. The resulting decorator
+ is ready to use this map to decorate any function. Calling that object
+ (`argmap.__call__`, but usually done via `@my_decorator`) a lazily
+ compiled thin wrapper of the decorated function is constructed,
+ wrapped with the necessary function dunder attributes like `__doc__`
+ and `__name__`. That thinly wrapped function is returned as the
+ decorated function. When that decorated function is called, the thin
+ wrapper of code calls `argmap._lazy_compile` which compiles the decorated
+ function (using `argmap.compile`) and replaces the code of the thin
+ wrapper with the newly compiled code. This saves the compilation step
+ every import of networkx, at the cost of compiling upon the first call
+ to the decorated function.
+
+ When the decorated function is compiled, the code is recursively assembled
+ using the `argmap.assemble` method. The recursive nature is needed in
+ case of nested decorators. The result of the assembly is a number of
+ useful objects.
+
+ sig : the function signature of the original decorated function as
+ constructed by :func:`argmap.signature`. This is constructed
+ using `inspect.signature` but enhanced with attribute
+ strings `sig_def` and `sig_call`, and other information
+ specific to mapping arguments of this function.
+ This information is used to construct a string of code defining
+ the new decorated function.
+
+ wrapped_name : a unique internally used name constructed by argmap
+ for the decorated function.
+
+ functions : a dict of the functions used inside the code of this
+ decorated function, to be used as `globals` in `exec`.
+ This dict is recursively updated to allow for nested decorating.
+
+ mapblock : code (as a list of strings) to map the incoming argument
+ values to their mapped values.
+
+ finallys : code (as a list of strings) to provide the possibly nested
+ set of finally clauses if needed.
+
+ mutable_args : a bool indicating whether the `sig.args` tuple should be
+ converted to a list so mutation can occur.
+
+ After this recursive assembly process, the `argmap.compile` method
+ constructs code (as strings) to convert the tuple `sig.args` to a list
+ if needed. It joins the defining code with appropriate indents and
+ compiles the result. Finally, this code is evaluated and the original
+ wrapper's implementation is replaced with the compiled version (see
+ `argmap._lazy_compile` for more details).
+
+ Other `argmap` methods include `_name` and `_count` which allow internally
+ generated names to be unique within a python session.
+ The methods `_flatten` and `_indent` process the nested lists of strings
+ into properly indented python code ready to be compiled.
+
+ More complicated nested tuples of arguments also allowed though
+ usually not used. For the simple 2 argument case, the argmap
+ input ("a", "b") implies the mapping function will take 2 arguments
+ and return a 2-tuple of mapped values. A more complicated example
+ with argmap input `("a", ("b", "c"))` requires the mapping function
+ take 2 inputs, with the second being a 2-tuple. It then must output
+ the 3 mapped values in the same nested structure `(newa, (newb, newc))`.
+ This level of generality is not often needed, but was convenient
+ to implement when handling the multiple arguments.
+
+ See Also
+ --------
+ not_implemented_for
+ open_file
+ nodes_or_number
+ py_random_state
+ networkx.algorithms.community.quality.require_partition
+
+ """
+
+ def __init__(self, func, *args, try_finally=False):
+ self._func = func
+ self._args = args
+ self._finally = try_finally
+
+ @staticmethod
+ def _lazy_compile(func):
+ """Compile the source of a wrapped function
+
+ Assemble and compile the decorated function, and intrusively replace its
+ code with the compiled version's. The thinly wrapped function becomes
+ the decorated function.
+
+ Parameters
+ ----------
+ func : callable
+ A function returned by argmap.__call__ which is in the process
+ of being called for the first time.
+
+ Returns
+ -------
+ func : callable
+ The same function, with a new __code__ object.
+
+ Notes
+ -----
+ It was observed in NetworkX issue #4732 [1] that the import time of
+ NetworkX was significantly bloated by the use of decorators: over half
+ of the import time was being spent decorating functions. This was
+ somewhat improved by a change made to the `decorator` library, at the
+ cost of a relatively heavy-weight call to `inspect.Signature.bind`
+ for each call to the decorated function.
+
+ The workaround we arrived at is to do minimal work at the time of
+ decoration. When the decorated function is called for the first time,
+ we compile a function with the same function signature as the wrapped
+ function. The resulting decorated function is faster than one made by
+ the `decorator` library, so that the overhead of the first call is
+ 'paid off' after a small number of calls.
+
+ References
+ ----------
+
+ [1] https://github.com/networkx/networkx/issues/4732
+
+ """
+ real_func = func.__argmap__.compile(func.__wrapped__)
+ func.__code__ = real_func.__code__
+ func.__globals__.update(real_func.__globals__)
+ func.__dict__.update(real_func.__dict__)
+ return func
+
+ def __call__(self, f):
+ """Construct a lazily decorated wrapper of f.
+
+ The decorated function will be compiled when it is called for the first time,
+ and it will replace its own __code__ object so subsequent calls are fast.
+
+ Parameters
+ ----------
+ f : callable
+ A function to be decorated.
+
+ Returns
+ -------
+ func : callable
+ The decorated function.
+
+ See Also
+ --------
+ argmap._lazy_compile
+ """
+
+ def func(*args, __wrapper=None, **kwargs):
+ return argmap._lazy_compile(__wrapper)(*args, **kwargs)
+
+ # standard function-wrapping stuff
+ func.__name__ = f.__name__
+ func.__doc__ = f.__doc__
+ func.__defaults__ = f.__defaults__
+ func.__kwdefaults__.update(f.__kwdefaults__ or {})
+ func.__module__ = f.__module__
+ func.__qualname__ = f.__qualname__
+ func.__dict__.update(f.__dict__)
+ func.__wrapped__ = f
+
+ # now that we've wrapped f, we may have picked up some __dict__ or
+ # __kwdefaults__ items that were set by a previous argmap. Thus, we set
+ # these values after those update() calls.
+
+ # If we attempt to access func from within itself, that happens through
+ # a closure -- which trips an error when we replace func.__code__. The
+ # standard workaround for functions which can't see themselves is to use
+ # a Y-combinator, as we do here.
+ func.__kwdefaults__["_argmap__wrapper"] = func
+
+ # this self-reference is here because functools.wraps preserves
+ # everything in __dict__, and we don't want to mistake a non-argmap
+ # wrapper for an argmap wrapper
+ func.__self__ = func
+
+ # this is used to variously call self.assemble and self.compile
+ func.__argmap__ = self
+
+ if hasattr(f, "__argmap__"):
+ func.__is_generator = f.__is_generator
+ else:
+ func.__is_generator = inspect.isgeneratorfunction(f)
+
+ if self._finally and func.__is_generator:
+ raise nx.NetworkXError("argmap cannot decorate generators with try_finally")
+
+ return func
+
+ __count = 0
+
+ @classmethod
+ def _count(cls):
+ """Maintain a globally-unique identifier for function names and "file" names
+
+ Note that this counter is a class method reporting a class variable
+ so the count is unique within a Python session. It could differ from
+ session to session for a specific decorator depending on the order
+ that the decorators are created. But that doesn't disrupt `argmap`.
+
+ This is used in two places: to construct unique variable names
+ in the `_name` method and to construct unique fictitious filenames
+ in the `_compile` method.
+
+ Returns
+ -------
+ count : int
+ An integer unique to this Python session (simply counts from zero)
+ """
+ cls.__count += 1
+ return cls.__count
+
+ _bad_chars = re.compile("[^a-zA-Z0-9_]")
+
+ @classmethod
+ def _name(cls, f):
+ """Mangle the name of a function to be unique but somewhat human-readable
+
+ The names are unique within a Python session and set using `_count`.
+
+ Parameters
+ ----------
+ f : str or object
+
+ Returns
+ -------
+ name : str
+ The mangled version of `f.__name__` (if `f.__name__` exists) or `f`
+
+ """
+ f = f.__name__ if hasattr(f, "__name__") else f
+ fname = re.sub(cls._bad_chars, "_", f)
+ return f"argmap_{fname}_{cls._count()}"
+
+ def compile(self, f):
+ """Compile the decorated function.
+
+ Called once for a given decorated function -- collects the code from all
+ argmap decorators in the stack, and compiles the decorated function.
+
+ Much of the work done here uses the `assemble` method to allow recursive
+ treatment of multiple argmap decorators on a single decorated function.
+ That flattens the argmap decorators, collects the source code to construct
+ a single decorated function, then compiles/executes/returns that function.
+
+ The source code for the decorated function is stored as an attribute
+ `_code` on the function object itself.
+
+ Note that Python's `compile` function requires a filename, but this
+ code is constructed without a file, so a fictitious filename is used
+ to describe where the function comes from. The name is something like:
+ "argmap compilation 4".
+
+ Parameters
+ ----------
+ f : callable
+ The function to be decorated
+
+ Returns
+ -------
+ func : callable
+ The decorated file
+
+ """
+ sig, wrapped_name, functions, mapblock, finallys, mutable_args = self.assemble(
+ f
+ )
+
+ call = f"{sig.call_sig.format(wrapped_name)}#"
+ mut_args = f"{sig.args} = list({sig.args})" if mutable_args else ""
+ body = argmap._indent(sig.def_sig, mut_args, mapblock, call, finallys)
+ code = "\n".join(body)
+
+ locl = {}
+ globl = dict(functions.values())
+ filename = f"{self.__class__} compilation {self._count()}"
+ compiled = compile(code, filename, "exec")
+ exec(compiled, globl, locl)
+ func = locl[sig.name]
+ func._code = code
+ return func
+
+ def assemble(self, f):
+ """Collects components of the source for the decorated function wrapping f.
+
+ If `f` has multiple argmap decorators, we recursively assemble the stack of
+ decorators into a single flattened function.
+
+ This method is part of the `compile` method's process yet separated
+ from that method to allow recursive processing. The outputs are
+ strings, dictionaries and lists that collect needed info to
+ flatten any nested argmap-decoration.
+
+ Parameters
+ ----------
+ f : callable
+ The function to be decorated. If f is argmapped, we assemble it.
+
+ Returns
+ -------
+ sig : argmap.Signature
+ The function signature as an `argmap.Signature` object.
+ wrapped_name : str
+ The mangled name used to represent the wrapped function in the code
+ being assembled.
+ functions : dict
+ A dictionary mapping id(g) -> (mangled_name(g), g) for functions g
+ referred to in the code being assembled. These need to be present
+ in the ``globals`` scope of ``exec`` when defining the decorated
+ function.
+ mapblock : list of lists and/or strings
+ Code that implements mapping of parameters including any try blocks
+ if needed. This code will precede the decorated function call.
+ finallys : list of lists and/or strings
+ Code that implements the finally blocks to post-process the
+ arguments (usually close any files if needed) after the
+ decorated function is called.
+ mutable_args : bool
+ True if the decorator needs to modify positional arguments
+ via their indices. The compile method then turns the argument
+ tuple into a list so that the arguments can be modified.
+ """
+
+ # first, we check if f is already argmapped -- if that's the case,
+ # build up the function recursively.
+ # > mapblock is generally a list of function calls of the sort
+ # arg = func(arg)
+ # in addition to some try-blocks if needed.
+ # > finallys is a recursive list of finally blocks of the sort
+ # finally:
+ # close_func_1()
+ # finally:
+ # close_func_2()
+ # > functions is a dict of functions used in the scope of our decorated
+ # function. It will be used to construct globals used in compilation.
+ # We make functions[id(f)] = name_of_f, f to ensure that a given
+ # function is stored and named exactly once even if called by
+ # nested decorators.
+ if hasattr(f, "__argmap__") and f.__self__ is f:
+ (
+ sig,
+ wrapped_name,
+ functions,
+ mapblock,
+ finallys,
+ mutable_args,
+ ) = f.__argmap__.assemble(f.__wrapped__)
+ functions = dict(functions) # shallow-copy just in case
+ else:
+ sig = self.signature(f)
+ wrapped_name = self._name(f)
+ mapblock, finallys = [], []
+ functions = {id(f): (wrapped_name, f)}
+ mutable_args = False
+
+ if id(self._func) in functions:
+ fname, _ = functions[id(self._func)]
+ else:
+ fname, _ = functions[id(self._func)] = self._name(self._func), self._func
+
+ # this is a bit complicated -- we can call functions with a variety of
+ # nested arguments, so long as their input and output are tuples with
+ # the same nested structure. e.g. ("a", "b") maps arguments a and b.
+ # A more complicated nesting like (0, (3, 4)) maps arguments 0, 3, 4
+ # expecting the mapping to output new values in the same nested shape.
+ # The ability to argmap multiple arguments was necessary for
+ # the decorator `nx.algorithms.community.quality.require_partition`, and
+ # while we're not taking full advantage of the ability to handle
+ # multiply-nested tuples, it was convenient to implement this in
+ # generality because the recursive call to `get_name` is necessary in
+ # any case.
+ applied = set()
+
+ def get_name(arg, first=True):
+ nonlocal mutable_args
+ if isinstance(arg, tuple):
+ name = ", ".join(get_name(x, False) for x in arg)
+ return name if first else f"({name})"
+ if arg in applied:
+ raise nx.NetworkXError(f"argument {arg} is specified multiple times")
+ applied.add(arg)
+ if arg in sig.names:
+ return sig.names[arg]
+ elif isinstance(arg, str):
+ if sig.kwargs is None:
+ raise nx.NetworkXError(
+ f"name {arg} is not a named parameter and this function doesn't have kwargs"
+ )
+ return f"{sig.kwargs}[{arg!r}]"
+ else:
+ if sig.args is None:
+ raise nx.NetworkXError(
+ f"index {arg} not a parameter index and this function doesn't have args"
+ )
+ mutable_args = True
+ return f"{sig.args}[{arg - sig.n_positional}]"
+
+ if self._finally:
+ # here's where we handle try_finally decorators. Such a decorator
+ # returns a mapped argument and a function to be called in a
+ # finally block. This feature was required by the open_file
+ # decorator. The below generates the code
+ #
+ # name, final = func(name) #<--append to mapblock
+ # try: #<--append to mapblock
+ # ... more argmapping and try blocks
+ # return WRAPPED_FUNCTION(...)
+ # ... more finally blocks
+ # finally: #<--prepend to finallys
+ # final() #<--prepend to finallys
+ #
+ for a in self._args:
+ name = get_name(a)
+ final = self._name(name)
+ mapblock.append(f"{name}, {final} = {fname}({name})")
+ mapblock.append("try:")
+ finallys = ["finally:", f"{final}()#", "#", finallys]
+ else:
+ mapblock.extend(
+ f"{name} = {fname}({name})" for name in map(get_name, self._args)
+ )
+
+ return sig, wrapped_name, functions, mapblock, finallys, mutable_args
+
+ @classmethod
+ def signature(cls, f):
+ r"""Construct a Signature object describing `f`
+
+ Compute a Signature so that we can write a function wrapping f with
+ the same signature and call-type.
+
+ Parameters
+ ----------
+ f : callable
+ A function to be decorated
+
+ Returns
+ -------
+ sig : argmap.Signature
+ The Signature of f
+
+ Notes
+ -----
+ The Signature is a namedtuple with names:
+
+ name : a unique version of the name of the decorated function
+ signature : the inspect.signature of the decorated function
+ def_sig : a string used as code to define the new function
+ call_sig : a string used as code to call the decorated function
+ names : a dict keyed by argument name and index to the argument's name
+ n_positional : the number of positional arguments in the signature
+ args : the name of the VAR_POSITIONAL argument if any, i.e. \*theseargs
+ kwargs : the name of the VAR_KEYWORDS argument if any, i.e. \*\*kwargs
+
+ These named attributes of the signature are used in `assemble` and `compile`
+ to construct a string of source code for the decorated function.
+
+ """
+ sig = inspect.signature(f, follow_wrapped=False)
+ def_sig = []
+ call_sig = []
+ names = {}
+
+ kind = None
+ args = None
+ kwargs = None
+ npos = 0
+ for i, param in enumerate(sig.parameters.values()):
+ # parameters can be position-only, keyword-or-position, keyword-only
+ # in any combination, but only in the order as above. we do edge
+ # detection to add the appropriate punctuation
+ prev = kind
+ kind = param.kind
+ if prev == param.POSITIONAL_ONLY != kind:
+ # the last token was position-only, but this one isn't
+ def_sig.append("/")
+ if (
+ param.VAR_POSITIONAL
+ != prev
+ != param.KEYWORD_ONLY
+ == kind
+ != param.VAR_POSITIONAL
+ ):
+ # param is the first keyword-only arg and isn't starred
+ def_sig.append("*")
+
+ # star arguments as appropriate
+ if kind == param.VAR_POSITIONAL:
+ name = "*" + param.name
+ args = param.name
+ count = 0
+ elif kind == param.VAR_KEYWORD:
+ name = "**" + param.name
+ kwargs = param.name
+ count = 0
+ else:
+ names[i] = names[param.name] = param.name
+ name = param.name
+ count = 1
+
+ # assign to keyword-only args in the function call
+ if kind == param.KEYWORD_ONLY:
+ call_sig.append(f"{name} = {name}")
+ else:
+ npos += count
+ call_sig.append(name)
+
+ def_sig.append(name)
+
+ fname = cls._name(f)
+ def_sig = f'def {fname}({", ".join(def_sig)}):'
+
+ call_sig = f"return {{}}({', '.join(call_sig)})"
+
+ return cls.Signature(fname, sig, def_sig, call_sig, names, npos, args, kwargs)
+
+ Signature = collections.namedtuple(
+ "Signature",
+ [
+ "name",
+ "signature",
+ "def_sig",
+ "call_sig",
+ "names",
+ "n_positional",
+ "args",
+ "kwargs",
+ ],
+ )
+
+ @staticmethod
+ def _flatten(nestlist, visited):
+ """flattens a recursive list of lists that doesn't have cyclic references
+
+ Parameters
+ ----------
+ nestlist : iterable
+ A recursive list of objects to be flattened into a single iterable
+
+ visited : set
+ A set of object ids which have been walked -- initialize with an
+ empty set
+
+ Yields
+ ------
+ Non-list objects contained in nestlist
+
+ """
+ for thing in nestlist:
+ if isinstance(thing, list):
+ if id(thing) in visited:
+ raise ValueError("A cycle was found in nestlist. Be a tree.")
+ else:
+ visited.add(id(thing))
+ yield from argmap._flatten(thing, visited)
+ else:
+ yield thing
+
+ _tabs = " " * 64
+
+ @staticmethod
+ def _indent(*lines):
+ """Indent list of code lines to make executable Python code
+
+ Indents a tree-recursive list of strings, following the rule that one
+ space is added to the tab after a line that ends in a colon, and one is
+ removed after a line that ends in an hashmark.
+
+ Parameters
+ ----------
+ *lines : lists and/or strings
+ A recursive list of strings to be assembled into properly indented
+ code.
+
+ Returns
+ -------
+ code : str
+
+ Examples
+ --------
+
+ argmap._indent(*["try:", "try:", "pass#", "finally:", "pass#", "#",
+ "finally:", "pass#"])
+
+ renders to
+
+ '''try:
+ try:
+ pass#
+ finally:
+ pass#
+ #
+ finally:
+ pass#'''
+ """
+ depth = 0
+ for line in argmap._flatten(lines, set()):
+ yield f"{argmap._tabs[:depth]}{line}"
+ depth += (line[-1:] == ":") - (line[-1:] == "#")
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/heaps.py b/.venv/lib/python3.12/site-packages/networkx/utils/heaps.py
new file mode 100644
index 00000000..3db27906
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/heaps.py
@@ -0,0 +1,340 @@
+"""
+Min-heaps.
+"""
+
+from heapq import heappop, heappush
+from itertools import count
+
+import networkx as nx
+
+__all__ = ["MinHeap", "PairingHeap", "BinaryHeap"]
+
+
+class MinHeap:
+ """Base class for min-heaps.
+
+ A MinHeap stores a collection of key-value pairs ordered by their values.
+ It supports querying the minimum pair, inserting a new pair, decreasing the
+ value in an existing pair and deleting the minimum pair.
+ """
+
+ class _Item:
+ """Used by subclassess to represent a key-value pair."""
+
+ __slots__ = ("key", "value")
+
+ def __init__(self, key, value):
+ self.key = key
+ self.value = value
+
+ def __repr__(self):
+ return repr((self.key, self.value))
+
+ def __init__(self):
+ """Initialize a new min-heap."""
+ self._dict = {}
+
+ def min(self):
+ """Query the minimum key-value pair.
+
+ Returns
+ -------
+ key, value : tuple
+ The key-value pair with the minimum value in the heap.
+
+ Raises
+ ------
+ NetworkXError
+ If the heap is empty.
+ """
+ raise NotImplementedError
+
+ def pop(self):
+ """Delete the minimum pair in the heap.
+
+ Returns
+ -------
+ key, value : tuple
+ The key-value pair with the minimum value in the heap.
+
+ Raises
+ ------
+ NetworkXError
+ If the heap is empty.
+ """
+ raise NotImplementedError
+
+ def get(self, key, default=None):
+ """Returns the value associated with a key.
+
+ Parameters
+ ----------
+ key : hashable object
+ The key to be looked up.
+
+ default : object
+ Default value to return if the key is not present in the heap.
+ Default value: None.
+
+ Returns
+ -------
+ value : object.
+ The value associated with the key.
+ """
+ raise NotImplementedError
+
+ def insert(self, key, value, allow_increase=False):
+ """Insert a new key-value pair or modify the value in an existing
+ pair.
+
+ Parameters
+ ----------
+ key : hashable object
+ The key.
+
+ value : object comparable with existing values.
+ The value.
+
+ allow_increase : bool
+ Whether the value is allowed to increase. If False, attempts to
+ increase an existing value have no effect. Default value: False.
+
+ Returns
+ -------
+ decreased : bool
+ True if a pair is inserted or the existing value is decreased.
+ """
+ raise NotImplementedError
+
+ def __nonzero__(self):
+ """Returns whether the heap if empty."""
+ return bool(self._dict)
+
+ def __bool__(self):
+ """Returns whether the heap if empty."""
+ return bool(self._dict)
+
+ def __len__(self):
+ """Returns the number of key-value pairs in the heap."""
+ return len(self._dict)
+
+ def __contains__(self, key):
+ """Returns whether a key exists in the heap.
+
+ Parameters
+ ----------
+ key : any hashable object.
+ The key to be looked up.
+ """
+ return key in self._dict
+
+
+class PairingHeap(MinHeap):
+ """A pairing heap."""
+
+ class _Node(MinHeap._Item):
+ """A node in a pairing heap.
+
+ A tree in a pairing heap is stored using the left-child, right-sibling
+ representation.
+ """
+
+ __slots__ = ("left", "next", "prev", "parent")
+
+ def __init__(self, key, value):
+ super().__init__(key, value)
+ # The leftmost child.
+ self.left = None
+ # The next sibling.
+ self.next = None
+ # The previous sibling.
+ self.prev = None
+ # The parent.
+ self.parent = None
+
+ def __init__(self):
+ """Initialize a pairing heap."""
+ super().__init__()
+ self._root = None
+
+ def min(self):
+ if self._root is None:
+ raise nx.NetworkXError("heap is empty.")
+ return (self._root.key, self._root.value)
+
+ def pop(self):
+ if self._root is None:
+ raise nx.NetworkXError("heap is empty.")
+ min_node = self._root
+ self._root = self._merge_children(self._root)
+ del self._dict[min_node.key]
+ return (min_node.key, min_node.value)
+
+ def get(self, key, default=None):
+ node = self._dict.get(key)
+ return node.value if node is not None else default
+
+ def insert(self, key, value, allow_increase=False):
+ node = self._dict.get(key)
+ root = self._root
+ if node is not None:
+ if value < node.value:
+ node.value = value
+ if node is not root and value < node.parent.value:
+ self._cut(node)
+ self._root = self._link(root, node)
+ return True
+ elif allow_increase and value > node.value:
+ node.value = value
+ child = self._merge_children(node)
+ # Nonstandard step: Link the merged subtree with the root. See
+ # below for the standard step.
+ if child is not None:
+ self._root = self._link(self._root, child)
+ # Standard step: Perform a decrease followed by a pop as if the
+ # value were the smallest in the heap. Then insert the new
+ # value into the heap.
+ # if node is not root:
+ # self._cut(node)
+ # if child is not None:
+ # root = self._link(root, child)
+ # self._root = self._link(root, node)
+ # else:
+ # self._root = (self._link(node, child)
+ # if child is not None else node)
+ return False
+ else:
+ # Insert a new key.
+ node = self._Node(key, value)
+ self._dict[key] = node
+ self._root = self._link(root, node) if root is not None else node
+ return True
+
+ def _link(self, root, other):
+ """Link two nodes, making the one with the smaller value the parent of
+ the other.
+ """
+ if other.value < root.value:
+ root, other = other, root
+ next = root.left
+ other.next = next
+ if next is not None:
+ next.prev = other
+ other.prev = None
+ root.left = other
+ other.parent = root
+ return root
+
+ def _merge_children(self, root):
+ """Merge the subtrees of the root using the standard two-pass method.
+ The resulting subtree is detached from the root.
+ """
+ node = root.left
+ root.left = None
+ if node is not None:
+ link = self._link
+ # Pass 1: Merge pairs of consecutive subtrees from left to right.
+ # At the end of the pass, only the prev pointers of the resulting
+ # subtrees have meaningful values. The other pointers will be fixed
+ # in pass 2.
+ prev = None
+ while True:
+ next = node.next
+ if next is None:
+ node.prev = prev
+ break
+ next_next = next.next
+ node = link(node, next)
+ node.prev = prev
+ prev = node
+ if next_next is None:
+ break
+ node = next_next
+ # Pass 2: Successively merge the subtrees produced by pass 1 from
+ # right to left with the rightmost one.
+ prev = node.prev
+ while prev is not None:
+ prev_prev = prev.prev
+ node = link(prev, node)
+ prev = prev_prev
+ # Now node can become the new root. Its has no parent nor siblings.
+ node.prev = None
+ node.next = None
+ node.parent = None
+ return node
+
+ def _cut(self, node):
+ """Cut a node from its parent."""
+ prev = node.prev
+ next = node.next
+ if prev is not None:
+ prev.next = next
+ else:
+ node.parent.left = next
+ node.prev = None
+ if next is not None:
+ next.prev = prev
+ node.next = None
+ node.parent = None
+
+
+class BinaryHeap(MinHeap):
+ """A binary heap."""
+
+ def __init__(self):
+ """Initialize a binary heap."""
+ super().__init__()
+ self._heap = []
+ self._count = count()
+
+ def min(self):
+ dict = self._dict
+ if not dict:
+ raise nx.NetworkXError("heap is empty")
+ heap = self._heap
+ pop = heappop
+ # Repeatedly remove stale key-value pairs until a up-to-date one is
+ # met.
+ while True:
+ value, _, key = heap[0]
+ if key in dict and value == dict[key]:
+ break
+ pop(heap)
+ return (key, value)
+
+ def pop(self):
+ dict = self._dict
+ if not dict:
+ raise nx.NetworkXError("heap is empty")
+ heap = self._heap
+ pop = heappop
+ # Repeatedly remove stale key-value pairs until a up-to-date one is
+ # met.
+ while True:
+ value, _, key = heap[0]
+ pop(heap)
+ if key in dict and value == dict[key]:
+ break
+ del dict[key]
+ return (key, value)
+
+ def get(self, key, default=None):
+ return self._dict.get(key, default)
+
+ def insert(self, key, value, allow_increase=False):
+ dict = self._dict
+ if key in dict:
+ old_value = dict[key]
+ if value < old_value or (allow_increase and value > old_value):
+ # Since there is no way to efficiently obtain the location of a
+ # key-value pair in the heap, insert a new pair even if ones
+ # with the same key may already be present. Deem the old ones
+ # as stale and skip them when the minimum pair is queried.
+ dict[key] = value
+ heappush(self._heap, (value, next(self._count), key))
+ return value < old_value
+ return False
+ else:
+ dict[key] = value
+ heappush(self._heap, (value, next(self._count), key))
+ return True
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/mapped_queue.py b/.venv/lib/python3.12/site-packages/networkx/utils/mapped_queue.py
new file mode 100644
index 00000000..0dcea368
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/mapped_queue.py
@@ -0,0 +1,297 @@
+"""Priority queue class with updatable priorities."""
+
+import heapq
+
+__all__ = ["MappedQueue"]
+
+
+class _HeapElement:
+ """This proxy class separates the heap element from its priority.
+
+ The idea is that using a 2-tuple (priority, element) works
+ for sorting, but not for dict lookup because priorities are
+ often floating point values so round-off can mess up equality.
+
+ So, we need inequalities to look at the priority (for sorting)
+ and equality (and hash) to look at the element to enable
+ updates to the priority.
+
+ Unfortunately, this class can be tricky to work with if you forget that
+ `__lt__` compares the priority while `__eq__` compares the element.
+ In `greedy_modularity_communities()` the following code is
+ used to check that two _HeapElements differ in either element or priority:
+
+ if d_oldmax != row_max or d_oldmax.priority != row_max.priority:
+
+ If the priorities are the same, this implementation uses the element
+ as a tiebreaker. This provides compatibility with older systems that
+ use tuples to combine priority and elements.
+ """
+
+ __slots__ = ["priority", "element", "_hash"]
+
+ def __init__(self, priority, element):
+ self.priority = priority
+ self.element = element
+ self._hash = hash(element)
+
+ def __lt__(self, other):
+ try:
+ other_priority = other.priority
+ except AttributeError:
+ return self.priority < other
+ # assume comparing to another _HeapElement
+ if self.priority == other_priority:
+ try:
+ return self.element < other.element
+ except TypeError as err:
+ raise TypeError(
+ "Consider using a tuple, with a priority value that can be compared."
+ )
+ return self.priority < other_priority
+
+ def __gt__(self, other):
+ try:
+ other_priority = other.priority
+ except AttributeError:
+ return self.priority > other
+ # assume comparing to another _HeapElement
+ if self.priority == other_priority:
+ try:
+ return self.element > other.element
+ except TypeError as err:
+ raise TypeError(
+ "Consider using a tuple, with a priority value that can be compared."
+ )
+ return self.priority > other_priority
+
+ def __eq__(self, other):
+ try:
+ return self.element == other.element
+ except AttributeError:
+ return self.element == other
+
+ def __hash__(self):
+ return self._hash
+
+ def __getitem__(self, indx):
+ return self.priority if indx == 0 else self.element[indx - 1]
+
+ def __iter__(self):
+ yield self.priority
+ try:
+ yield from self.element
+ except TypeError:
+ yield self.element
+
+ def __repr__(self):
+ return f"_HeapElement({self.priority}, {self.element})"
+
+
+class MappedQueue:
+ """The MappedQueue class implements a min-heap with removal and update-priority.
+
+ The min heap uses heapq as well as custom written _siftup and _siftdown
+ methods to allow the heap positions to be tracked by an additional dict
+ keyed by element to position. The smallest element can be popped in O(1) time,
+ new elements can be pushed in O(log n) time, and any element can be removed
+ or updated in O(log n) time. The queue cannot contain duplicate elements
+ and an attempt to push an element already in the queue will have no effect.
+
+ MappedQueue complements the heapq package from the python standard
+ library. While MappedQueue is designed for maximum compatibility with
+ heapq, it adds element removal, lookup, and priority update.
+
+ Parameters
+ ----------
+ data : dict or iterable
+
+ Examples
+ --------
+
+ A `MappedQueue` can be created empty, or optionally, given a dictionary
+ of initial elements and priorities. The methods `push`, `pop`,
+ `remove`, and `update` operate on the queue.
+
+ >>> colors_nm = {"red": 665, "blue": 470, "green": 550}
+ >>> q = MappedQueue(colors_nm)
+ >>> q.remove("red")
+ >>> q.update("green", "violet", 400)
+ >>> q.push("indigo", 425)
+ True
+ >>> [q.pop().element for i in range(len(q.heap))]
+ ['violet', 'indigo', 'blue']
+
+ A `MappedQueue` can also be initialized with a list or other iterable. The priority is assumed
+ to be the sort order of the items in the list.
+
+ >>> q = MappedQueue([916, 50, 4609, 493, 237])
+ >>> q.remove(493)
+ >>> q.update(237, 1117)
+ >>> [q.pop() for i in range(len(q.heap))]
+ [50, 916, 1117, 4609]
+
+ An exception is raised if the elements are not comparable.
+
+ >>> q = MappedQueue([100, "a"])
+ Traceback (most recent call last):
+ ...
+ TypeError: '<' not supported between instances of 'int' and 'str'
+
+ To avoid the exception, use a dictionary to assign priorities to the elements.
+
+ >>> q = MappedQueue({100: 0, "a": 1})
+
+ References
+ ----------
+ .. [1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001).
+ Introduction to algorithms second edition.
+ .. [2] Knuth, D. E. (1997). The art of computer programming (Vol. 3).
+ Pearson Education.
+ """
+
+ def __init__(self, data=None):
+ """Priority queue class with updatable priorities."""
+ if data is None:
+ self.heap = []
+ elif isinstance(data, dict):
+ self.heap = [_HeapElement(v, k) for k, v in data.items()]
+ else:
+ self.heap = list(data)
+ self.position = {}
+ self._heapify()
+
+ def _heapify(self):
+ """Restore heap invariant and recalculate map."""
+ heapq.heapify(self.heap)
+ self.position = {elt: pos for pos, elt in enumerate(self.heap)}
+ if len(self.heap) != len(self.position):
+ raise AssertionError("Heap contains duplicate elements")
+
+ def __len__(self):
+ return len(self.heap)
+
+ def push(self, elt, priority=None):
+ """Add an element to the queue."""
+ if priority is not None:
+ elt = _HeapElement(priority, elt)
+ # If element is already in queue, do nothing
+ if elt in self.position:
+ return False
+ # Add element to heap and dict
+ pos = len(self.heap)
+ self.heap.append(elt)
+ self.position[elt] = pos
+ # Restore invariant by sifting down
+ self._siftdown(0, pos)
+ return True
+
+ def pop(self):
+ """Remove and return the smallest element in the queue."""
+ # Remove smallest element
+ elt = self.heap[0]
+ del self.position[elt]
+ # If elt is last item, remove and return
+ if len(self.heap) == 1:
+ self.heap.pop()
+ return elt
+ # Replace root with last element
+ last = self.heap.pop()
+ self.heap[0] = last
+ self.position[last] = 0
+ # Restore invariant by sifting up
+ self._siftup(0)
+ # Return smallest element
+ return elt
+
+ def update(self, elt, new, priority=None):
+ """Replace an element in the queue with a new one."""
+ if priority is not None:
+ new = _HeapElement(priority, new)
+ # Replace
+ pos = self.position[elt]
+ self.heap[pos] = new
+ del self.position[elt]
+ self.position[new] = pos
+ # Restore invariant by sifting up
+ self._siftup(pos)
+
+ def remove(self, elt):
+ """Remove an element from the queue."""
+ # Find and remove element
+ try:
+ pos = self.position[elt]
+ del self.position[elt]
+ except KeyError:
+ # Not in queue
+ raise
+ # If elt is last item, remove and return
+ if pos == len(self.heap) - 1:
+ self.heap.pop()
+ return
+ # Replace elt with last element
+ last = self.heap.pop()
+ self.heap[pos] = last
+ self.position[last] = pos
+ # Restore invariant by sifting up
+ self._siftup(pos)
+
+ def _siftup(self, pos):
+ """Move smaller child up until hitting a leaf.
+
+ Built to mimic code for heapq._siftup
+ only updating position dict too.
+ """
+ heap, position = self.heap, self.position
+ end_pos = len(heap)
+ startpos = pos
+ newitem = heap[pos]
+ # Shift up the smaller child until hitting a leaf
+ child_pos = (pos << 1) + 1 # start with leftmost child position
+ while child_pos < end_pos:
+ # Set child_pos to index of smaller child.
+ child = heap[child_pos]
+ right_pos = child_pos + 1
+ if right_pos < end_pos:
+ right = heap[right_pos]
+ if not child < right:
+ child = right
+ child_pos = right_pos
+ # Move the smaller child up.
+ heap[pos] = child
+ position[child] = pos
+ pos = child_pos
+ child_pos = (pos << 1) + 1
+ # pos is a leaf position. Put newitem there, and bubble it up
+ # to its final resting place (by sifting its parents down).
+ while pos > 0:
+ parent_pos = (pos - 1) >> 1
+ parent = heap[parent_pos]
+ if not newitem < parent:
+ break
+ heap[pos] = parent
+ position[parent] = pos
+ pos = parent_pos
+ heap[pos] = newitem
+ position[newitem] = pos
+
+ def _siftdown(self, start_pos, pos):
+ """Restore invariant. keep swapping with parent until smaller.
+
+ Built to mimic code for heapq._siftdown
+ only updating position dict too.
+ """
+ heap, position = self.heap, self.position
+ newitem = heap[pos]
+ # Follow the path to the root, moving parents down until finding a place
+ # newitem fits.
+ while pos > start_pos:
+ parent_pos = (pos - 1) >> 1
+ parent = heap[parent_pos]
+ if not newitem < parent:
+ break
+ heap[pos] = parent
+ position[parent] = pos
+ pos = parent_pos
+ heap[pos] = newitem
+ position[newitem] = pos
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/misc.py b/.venv/lib/python3.12/site-packages/networkx/utils/misc.py
new file mode 100644
index 00000000..b42d8908
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/misc.py
@@ -0,0 +1,653 @@
+"""
+Miscellaneous Helpers for NetworkX.
+
+These are not imported into the base networkx namespace but
+can be accessed, for example, as
+
+>>> import networkx
+>>> networkx.utils.make_list_of_ints({1, 2, 3})
+[1, 2, 3]
+>>> networkx.utils.arbitrary_element({5, 1, 7}) # doctest: +SKIP
+1
+"""
+
+import random
+import sys
+import uuid
+import warnings
+from collections import defaultdict, deque
+from collections.abc import Iterable, Iterator, Sized
+from itertools import chain, tee
+
+import networkx as nx
+
+__all__ = [
+ "flatten",
+ "make_list_of_ints",
+ "dict_to_numpy_array",
+ "arbitrary_element",
+ "pairwise",
+ "groups",
+ "create_random_state",
+ "create_py_random_state",
+ "PythonRandomInterface",
+ "PythonRandomViaNumpyBits",
+ "nodes_equal",
+ "edges_equal",
+ "graphs_equal",
+ "_clear_cache",
+]
+
+
+# some cookbook stuff
+# used in deciding whether something is a bunch of nodes, edges, etc.
+# see G.add_nodes and others in Graph Class in networkx/base.py
+
+
+def flatten(obj, result=None):
+ """Return flattened version of (possibly nested) iterable object."""
+ if not isinstance(obj, Iterable | Sized) or isinstance(obj, str):
+ return obj
+ if result is None:
+ result = []
+ for item in obj:
+ if not isinstance(item, Iterable | Sized) or isinstance(item, str):
+ result.append(item)
+ else:
+ flatten(item, result)
+ return tuple(result)
+
+
+def make_list_of_ints(sequence):
+ """Return list of ints from sequence of integral numbers.
+
+ All elements of the sequence must satisfy int(element) == element
+ or a ValueError is raised. Sequence is iterated through once.
+
+ If sequence is a list, the non-int values are replaced with ints.
+ So, no new list is created
+ """
+ if not isinstance(sequence, list):
+ result = []
+ for i in sequence:
+ errmsg = f"sequence is not all integers: {i}"
+ try:
+ ii = int(i)
+ except ValueError:
+ raise nx.NetworkXError(errmsg) from None
+ if ii != i:
+ raise nx.NetworkXError(errmsg)
+ result.append(ii)
+ return result
+ # original sequence is a list... in-place conversion to ints
+ for indx, i in enumerate(sequence):
+ errmsg = f"sequence is not all integers: {i}"
+ if isinstance(i, int):
+ continue
+ try:
+ ii = int(i)
+ except ValueError:
+ raise nx.NetworkXError(errmsg) from None
+ if ii != i:
+ raise nx.NetworkXError(errmsg)
+ sequence[indx] = ii
+ return sequence
+
+
+def dict_to_numpy_array(d, mapping=None):
+ """Convert a dictionary of dictionaries to a numpy array
+ with optional mapping."""
+ try:
+ return _dict_to_numpy_array2(d, mapping)
+ except (AttributeError, TypeError):
+ # AttributeError is when no mapping was provided and v.keys() fails.
+ # TypeError is when a mapping was provided and d[k1][k2] fails.
+ return _dict_to_numpy_array1(d, mapping)
+
+
+def _dict_to_numpy_array2(d, mapping=None):
+ """Convert a dictionary of dictionaries to a 2d numpy array
+ with optional mapping.
+
+ """
+ import numpy as np
+
+ if mapping is None:
+ s = set(d.keys())
+ for k, v in d.items():
+ s.update(v.keys())
+ mapping = dict(zip(s, range(len(s))))
+ n = len(mapping)
+ a = np.zeros((n, n))
+ for k1, i in mapping.items():
+ for k2, j in mapping.items():
+ try:
+ a[i, j] = d[k1][k2]
+ except KeyError:
+ pass
+ return a
+
+
+def _dict_to_numpy_array1(d, mapping=None):
+ """Convert a dictionary of numbers to a 1d numpy array with optional mapping."""
+ import numpy as np
+
+ if mapping is None:
+ s = set(d.keys())
+ mapping = dict(zip(s, range(len(s))))
+ n = len(mapping)
+ a = np.zeros(n)
+ for k1, i in mapping.items():
+ i = mapping[k1]
+ a[i] = d[k1]
+ return a
+
+
+def arbitrary_element(iterable):
+ """Returns an arbitrary element of `iterable` without removing it.
+
+ This is most useful for "peeking" at an arbitrary element of a set,
+ but can be used for any list, dictionary, etc., as well.
+
+ Parameters
+ ----------
+ iterable : `abc.collections.Iterable` instance
+ Any object that implements ``__iter__``, e.g. set, dict, list, tuple,
+ etc.
+
+ Returns
+ -------
+ The object that results from ``next(iter(iterable))``
+
+ Raises
+ ------
+ ValueError
+ If `iterable` is an iterator (because the current implementation of
+ this function would consume an element from the iterator).
+
+ Examples
+ --------
+ Arbitrary elements from common Iterable objects:
+
+ >>> nx.utils.arbitrary_element([1, 2, 3]) # list
+ 1
+ >>> nx.utils.arbitrary_element((1, 2, 3)) # tuple
+ 1
+ >>> nx.utils.arbitrary_element({1, 2, 3}) # set
+ 1
+ >>> d = {k: v for k, v in zip([1, 2, 3], [3, 2, 1])}
+ >>> nx.utils.arbitrary_element(d) # dict_keys
+ 1
+ >>> nx.utils.arbitrary_element(d.values()) # dict values
+ 3
+
+ `str` is also an Iterable:
+
+ >>> nx.utils.arbitrary_element("hello")
+ 'h'
+
+ :exc:`ValueError` is raised if `iterable` is an iterator:
+
+ >>> iterator = iter([1, 2, 3]) # Iterator, *not* Iterable
+ >>> nx.utils.arbitrary_element(iterator)
+ Traceback (most recent call last):
+ ...
+ ValueError: cannot return an arbitrary item from an iterator
+
+ Notes
+ -----
+ This function does not return a *random* element. If `iterable` is
+ ordered, sequential calls will return the same value::
+
+ >>> l = [1, 2, 3]
+ >>> nx.utils.arbitrary_element(l)
+ 1
+ >>> nx.utils.arbitrary_element(l)
+ 1
+
+ """
+ if isinstance(iterable, Iterator):
+ raise ValueError("cannot return an arbitrary item from an iterator")
+ # Another possible implementation is ``for x in iterable: return x``.
+ return next(iter(iterable))
+
+
+# Recipe from the itertools documentation.
+def pairwise(iterable, cyclic=False):
+ "s -> (s0, s1), (s1, s2), (s2, s3), ..."
+ a, b = tee(iterable)
+ first = next(b, None)
+ if cyclic is True:
+ return zip(a, chain(b, (first,)))
+ return zip(a, b)
+
+
+def groups(many_to_one):
+ """Converts a many-to-one mapping into a one-to-many mapping.
+
+ `many_to_one` must be a dictionary whose keys and values are all
+ :term:`hashable`.
+
+ The return value is a dictionary mapping values from `many_to_one`
+ to sets of keys from `many_to_one` that have that value.
+
+ Examples
+ --------
+ >>> from networkx.utils import groups
+ >>> many_to_one = {"a": 1, "b": 1, "c": 2, "d": 3, "e": 3}
+ >>> groups(many_to_one) # doctest: +SKIP
+ {1: {'a', 'b'}, 2: {'c'}, 3: {'e', 'd'}}
+ """
+ one_to_many = defaultdict(set)
+ for v, k in many_to_one.items():
+ one_to_many[k].add(v)
+ return dict(one_to_many)
+
+
+def create_random_state(random_state=None):
+ """Returns a numpy.random.RandomState or numpy.random.Generator instance
+ depending on input.
+
+ Parameters
+ ----------
+ random_state : int or NumPy RandomState or Generator instance, optional (default=None)
+ If int, return a numpy.random.RandomState instance set with seed=int.
+ if `numpy.random.RandomState` instance, return it.
+ if `numpy.random.Generator` instance, return it.
+ if None or numpy.random, return the global random number generator used
+ by numpy.random.
+ """
+ import numpy as np
+
+ if random_state is None or random_state is np.random:
+ return np.random.mtrand._rand
+ if isinstance(random_state, np.random.RandomState):
+ return random_state
+ if isinstance(random_state, int):
+ return np.random.RandomState(random_state)
+ if isinstance(random_state, np.random.Generator):
+ return random_state
+ msg = (
+ f"{random_state} cannot be used to create a numpy.random.RandomState or\n"
+ "numpy.random.Generator instance"
+ )
+ raise ValueError(msg)
+
+
+class PythonRandomViaNumpyBits(random.Random):
+ """Provide the random.random algorithms using a numpy.random bit generator
+
+ The intent is to allow people to contribute code that uses Python's random
+ library, but still allow users to provide a single easily controlled random
+ bit-stream for all work with NetworkX. This implementation is based on helpful
+ comments and code from Robert Kern on NumPy's GitHub Issue #24458.
+
+ This implementation supersedes that of `PythonRandomInterface` which rewrote
+ methods to account for subtle differences in API between `random` and
+ `numpy.random`. Instead this subclasses `random.Random` and overwrites
+ the methods `random`, `getrandbits`, `getstate`, `setstate` and `seed`.
+ It makes them use the rng values from an input numpy `RandomState` or `Generator`.
+ Those few methods allow the rest of the `random.Random` methods to provide
+ the API interface of `random.random` while using randomness generated by
+ a numpy generator.
+ """
+
+ def __init__(self, rng=None):
+ try:
+ import numpy as np
+ except ImportError:
+ msg = "numpy not found, only random.random available."
+ warnings.warn(msg, ImportWarning)
+
+ if rng is None:
+ self._rng = np.random.mtrand._rand
+ else:
+ self._rng = rng
+
+ # Not necessary, given our overriding of gauss() below, but it's
+ # in the superclass and nominally public, so initialize it here.
+ self.gauss_next = None
+
+ def random(self):
+ """Get the next random number in the range 0.0 <= X < 1.0."""
+ return self._rng.random()
+
+ def getrandbits(self, k):
+ """getrandbits(k) -> x. Generates an int with k random bits."""
+ if k < 0:
+ raise ValueError("number of bits must be non-negative")
+ numbytes = (k + 7) // 8 # bits / 8 and rounded up
+ x = int.from_bytes(self._rng.bytes(numbytes), "big")
+ return x >> (numbytes * 8 - k) # trim excess bits
+
+ def getstate(self):
+ return self._rng.__getstate__()
+
+ def setstate(self, state):
+ self._rng.__setstate__(state)
+
+ def seed(self, *args, **kwds):
+ "Do nothing override method."
+ raise NotImplementedError("seed() not implemented in PythonRandomViaNumpyBits")
+
+
+##################################################################
+class PythonRandomInterface:
+ """PythonRandomInterface is included for backward compatibility
+ New code should use PythonRandomViaNumpyBits instead.
+ """
+
+ def __init__(self, rng=None):
+ try:
+ import numpy as np
+ except ImportError:
+ msg = "numpy not found, only random.random available."
+ warnings.warn(msg, ImportWarning)
+
+ if rng is None:
+ self._rng = np.random.mtrand._rand
+ else:
+ self._rng = rng
+
+ def random(self):
+ return self._rng.random()
+
+ def uniform(self, a, b):
+ return a + (b - a) * self._rng.random()
+
+ def randrange(self, a, b=None):
+ import numpy as np
+
+ if b is None:
+ a, b = 0, a
+ if b > 9223372036854775807: # from np.iinfo(np.int64).max
+ tmp_rng = PythonRandomViaNumpyBits(self._rng)
+ return tmp_rng.randrange(a, b)
+
+ if isinstance(self._rng, np.random.Generator):
+ return self._rng.integers(a, b)
+ return self._rng.randint(a, b)
+
+ # NOTE: the numpy implementations of `choice` don't support strings, so
+ # this cannot be replaced with self._rng.choice
+ def choice(self, seq):
+ import numpy as np
+
+ if isinstance(self._rng, np.random.Generator):
+ idx = self._rng.integers(0, len(seq))
+ else:
+ idx = self._rng.randint(0, len(seq))
+ return seq[idx]
+
+ def gauss(self, mu, sigma):
+ return self._rng.normal(mu, sigma)
+
+ def shuffle(self, seq):
+ return self._rng.shuffle(seq)
+
+ # Some methods don't match API for numpy RandomState.
+ # Commented out versions are not used by NetworkX
+
+ def sample(self, seq, k):
+ return self._rng.choice(list(seq), size=(k,), replace=False)
+
+ def randint(self, a, b):
+ import numpy as np
+
+ if b > 9223372036854775807: # from np.iinfo(np.int64).max
+ tmp_rng = PythonRandomViaNumpyBits(self._rng)
+ return tmp_rng.randint(a, b)
+
+ if isinstance(self._rng, np.random.Generator):
+ return self._rng.integers(a, b + 1)
+ return self._rng.randint(a, b + 1)
+
+ # exponential as expovariate with 1/argument,
+ def expovariate(self, scale):
+ return self._rng.exponential(1 / scale)
+
+ # pareto as paretovariate with 1/argument,
+ def paretovariate(self, shape):
+ return self._rng.pareto(shape)
+
+
+# weibull as weibullvariate multiplied by beta,
+# def weibullvariate(self, alpha, beta):
+# return self._rng.weibull(alpha) * beta
+#
+# def triangular(self, low, high, mode):
+# return self._rng.triangular(low, mode, high)
+#
+# def choices(self, seq, weights=None, cum_weights=None, k=1):
+# return self._rng.choice(seq
+
+
+def create_py_random_state(random_state=None):
+ """Returns a random.Random instance depending on input.
+
+ Parameters
+ ----------
+ random_state : int or random number generator or None (default=None)
+ - If int, return a `random.Random` instance set with seed=int.
+ - If `random.Random` instance, return it.
+ - If None or the `np.random` package, return the global random number
+ generator used by `np.random`.
+ - If an `np.random.Generator` instance, or the `np.random` package, or
+ the global numpy random number generator, then return it.
+ wrapped in a `PythonRandomViaNumpyBits` class.
+ - If a `PythonRandomViaNumpyBits` instance, return it.
+ - If a `PythonRandomInterface` instance, return it.
+ - If a `np.random.RandomState` instance and not the global numpy default,
+ return it wrapped in `PythonRandomInterface` for backward bit-stream
+ matching with legacy code.
+
+ Notes
+ -----
+ - A diagram intending to illustrate the relationships behind our support
+ for numpy random numbers is called
+ `NetworkX Numpy Random Numbers <https://excalidraw.com/#room=b5303f2b03d3af7ccc6a,e5ZDIWdWWCTTsg8OqoRvPA>`_.
+ - More discussion about this support also appears in
+ `gh-6869#comment <https://github.com/networkx/networkx/pull/6869#issuecomment-1944799534>`_.
+ - Wrappers of numpy.random number generators allow them to mimic the Python random
+ number generation algorithms. For example, Python can create arbitrarily large
+ random ints, and the wrappers use Numpy bit-streams with CPython's random module
+ to choose arbitrarily large random integers too.
+ - We provide two wrapper classes:
+ `PythonRandomViaNumpyBits` is usually what you want and is always used for
+ `np.Generator` instances. But for users who need to recreate random numbers
+ produced in NetworkX 3.2 or earlier, we maintain the `PythonRandomInterface`
+ wrapper as well. We use it only used if passed a (non-default) `np.RandomState`
+ instance pre-initialized from a seed. Otherwise the newer wrapper is used.
+ """
+ if random_state is None or random_state is random:
+ return random._inst
+ if isinstance(random_state, random.Random):
+ return random_state
+ if isinstance(random_state, int):
+ return random.Random(random_state)
+
+ try:
+ import numpy as np
+ except ImportError:
+ pass
+ else:
+ if isinstance(random_state, PythonRandomInterface | PythonRandomViaNumpyBits):
+ return random_state
+ if isinstance(random_state, np.random.Generator):
+ return PythonRandomViaNumpyBits(random_state)
+ if random_state is np.random:
+ return PythonRandomViaNumpyBits(np.random.mtrand._rand)
+
+ if isinstance(random_state, np.random.RandomState):
+ if random_state is np.random.mtrand._rand:
+ return PythonRandomViaNumpyBits(random_state)
+ # Only need older interface if specially constructed RandomState used
+ return PythonRandomInterface(random_state)
+
+ msg = f"{random_state} cannot be used to generate a random.Random instance"
+ raise ValueError(msg)
+
+
+def nodes_equal(nodes1, nodes2):
+ """Check if nodes are equal.
+
+ Equality here means equal as Python objects.
+ Node data must match if included.
+ The order of nodes is not relevant.
+
+ Parameters
+ ----------
+ nodes1, nodes2 : iterables of nodes, or (node, datadict) tuples
+
+ Returns
+ -------
+ bool
+ True if nodes are equal, False otherwise.
+ """
+ nlist1 = list(nodes1)
+ nlist2 = list(nodes2)
+ try:
+ d1 = dict(nlist1)
+ d2 = dict(nlist2)
+ except (ValueError, TypeError):
+ d1 = dict.fromkeys(nlist1)
+ d2 = dict.fromkeys(nlist2)
+ return d1 == d2
+
+
+def edges_equal(edges1, edges2):
+ """Check if edges are equal.
+
+ Equality here means equal as Python objects.
+ Edge data must match if included.
+ The order of the edges is not relevant.
+
+ Parameters
+ ----------
+ edges1, edges2 : iterables of with u, v nodes as
+ edge tuples (u, v), or
+ edge tuples with data dicts (u, v, d), or
+ edge tuples with keys and data dicts (u, v, k, d)
+
+ Returns
+ -------
+ bool
+ True if edges are equal, False otherwise.
+ """
+ from collections import defaultdict
+
+ d1 = defaultdict(dict)
+ d2 = defaultdict(dict)
+ c1 = 0
+ for c1, e in enumerate(edges1):
+ u, v = e[0], e[1]
+ data = [e[2:]]
+ if v in d1[u]:
+ data = d1[u][v] + data
+ d1[u][v] = data
+ d1[v][u] = data
+ c2 = 0
+ for c2, e in enumerate(edges2):
+ u, v = e[0], e[1]
+ data = [e[2:]]
+ if v in d2[u]:
+ data = d2[u][v] + data
+ d2[u][v] = data
+ d2[v][u] = data
+ if c1 != c2:
+ return False
+ # can check one direction because lengths are the same.
+ for n, nbrdict in d1.items():
+ for nbr, datalist in nbrdict.items():
+ if n not in d2:
+ return False
+ if nbr not in d2[n]:
+ return False
+ d2datalist = d2[n][nbr]
+ for data in datalist:
+ if datalist.count(data) != d2datalist.count(data):
+ return False
+ return True
+
+
+def graphs_equal(graph1, graph2):
+ """Check if graphs are equal.
+
+ Equality here means equal as Python objects (not isomorphism).
+ Node, edge and graph data must match.
+
+ Parameters
+ ----------
+ graph1, graph2 : graph
+
+ Returns
+ -------
+ bool
+ True if graphs are equal, False otherwise.
+ """
+ return (
+ graph1.adj == graph2.adj
+ and graph1.nodes == graph2.nodes
+ and graph1.graph == graph2.graph
+ )
+
+
+def _clear_cache(G):
+ """Clear the cache of a graph (currently stores converted graphs).
+
+ Caching is controlled via ``nx.config.cache_converted_graphs`` configuration.
+ """
+ if cache := getattr(G, "__networkx_cache__", None):
+ cache.clear()
+
+
+def check_create_using(create_using, *, directed=None, multigraph=None, default=None):
+ """Assert that create_using has good properties
+
+ This checks for desired directedness and multi-edge properties.
+ It returns `create_using` unless that is `None` when it returns
+ the optionally specified default value.
+
+ Parameters
+ ----------
+ create_using : None, graph class or instance
+ The input value of create_using for a function.
+ directed : None or bool
+ Whether to check `create_using.is_directed() == directed`.
+ If None, do not assert directedness.
+ multigraph : None or bool
+ Whether to check `create_using.is_multigraph() == multigraph`.
+ If None, do not assert multi-edge property.
+ default : None or graph class
+ The graph class to return if create_using is None.
+
+ Returns
+ -------
+ create_using : graph class or instance
+ The provided graph class or instance, or if None, the `default` value.
+
+ Raises
+ ------
+ NetworkXError
+ When `create_using` doesn't match the properties specified by `directed`
+ or `multigraph` parameters.
+ """
+ if default is None:
+ default = nx.Graph
+ G = create_using if create_using is not None else default
+
+ G_directed = G.is_directed(None) if isinstance(G, type) else G.is_directed()
+ G_multigraph = G.is_multigraph(None) if isinstance(G, type) else G.is_multigraph()
+
+ if directed is not None:
+ if directed and not G_directed:
+ raise nx.NetworkXError("create_using must be directed")
+ if not directed and G_directed:
+ raise nx.NetworkXError("create_using must not be directed")
+
+ if multigraph is not None:
+ if multigraph and not G_multigraph:
+ raise nx.NetworkXError("create_using must be a multi-graph")
+ if not multigraph and G_multigraph:
+ raise nx.NetworkXError("create_using must not be a multi-graph")
+ return G
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/random_sequence.py b/.venv/lib/python3.12/site-packages/networkx/utils/random_sequence.py
new file mode 100644
index 00000000..20a7b5e0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/random_sequence.py
@@ -0,0 +1,164 @@
+"""
+Utilities for generating random numbers, random sequences, and
+random selections.
+"""
+
+import networkx as nx
+from networkx.utils import py_random_state
+
+__all__ = [
+ "powerlaw_sequence",
+ "zipf_rv",
+ "cumulative_distribution",
+ "discrete_sequence",
+ "random_weighted_sample",
+ "weighted_choice",
+]
+
+
+# The same helpers for choosing random sequences from distributions
+# uses Python's random module
+# https://docs.python.org/3/library/random.html
+
+
+@py_random_state(2)
+def powerlaw_sequence(n, exponent=2.0, seed=None):
+ """
+ Return sample sequence of length n from a power law distribution.
+ """
+ return [seed.paretovariate(exponent - 1) for i in range(n)]
+
+
+@py_random_state(2)
+def zipf_rv(alpha, xmin=1, seed=None):
+ r"""Returns a random value chosen from the Zipf distribution.
+
+ The return value is an integer drawn from the probability distribution
+
+ .. math::
+
+ p(x)=\frac{x^{-\alpha}}{\zeta(\alpha, x_{\min})},
+
+ where $\zeta(\alpha, x_{\min})$ is the Hurwitz zeta function.
+
+ Parameters
+ ----------
+ alpha : float
+ Exponent value of the distribution
+ xmin : int
+ Minimum value
+ seed : integer, random_state, or None (default)
+ Indicator of random number generation state.
+ See :ref:`Randomness<randomness>`.
+
+ Returns
+ -------
+ x : int
+ Random value from Zipf distribution
+
+ Raises
+ ------
+ ValueError:
+ If xmin < 1 or
+ If alpha <= 1
+
+ Notes
+ -----
+ The rejection algorithm generates random values for a the power-law
+ distribution in uniformly bounded expected time dependent on
+ parameters. See [1]_ for details on its operation.
+
+ Examples
+ --------
+ >>> nx.utils.zipf_rv(alpha=2, xmin=3, seed=42)
+ 8
+
+ References
+ ----------
+ .. [1] Luc Devroye, Non-Uniform Random Variate Generation,
+ Springer-Verlag, New York, 1986.
+ """
+ if xmin < 1:
+ raise ValueError("xmin < 1")
+ if alpha <= 1:
+ raise ValueError("a <= 1.0")
+ a1 = alpha - 1.0
+ b = 2**a1
+ while True:
+ u = 1.0 - seed.random() # u in (0,1]
+ v = seed.random() # v in [0,1)
+ x = int(xmin * u ** -(1.0 / a1))
+ t = (1.0 + (1.0 / x)) ** a1
+ if v * x * (t - 1.0) / (b - 1.0) <= t / b:
+ break
+ return x
+
+
+def cumulative_distribution(distribution):
+ """Returns normalized cumulative distribution from discrete distribution."""
+
+ cdf = [0.0]
+ psum = sum(distribution)
+ for i in range(len(distribution)):
+ cdf.append(cdf[i] + distribution[i] / psum)
+ return cdf
+
+
+@py_random_state(3)
+def discrete_sequence(n, distribution=None, cdistribution=None, seed=None):
+ """
+ Return sample sequence of length n from a given discrete distribution
+ or discrete cumulative distribution.
+
+ One of the following must be specified.
+
+ distribution = histogram of values, will be normalized
+
+ cdistribution = normalized discrete cumulative distribution
+
+ """
+ import bisect
+
+ if cdistribution is not None:
+ cdf = cdistribution
+ elif distribution is not None:
+ cdf = cumulative_distribution(distribution)
+ else:
+ raise nx.NetworkXError(
+ "discrete_sequence: distribution or cdistribution missing"
+ )
+
+ # get a uniform random number
+ inputseq = [seed.random() for i in range(n)]
+
+ # choose from CDF
+ seq = [bisect.bisect_left(cdf, s) - 1 for s in inputseq]
+ return seq
+
+
+@py_random_state(2)
+def random_weighted_sample(mapping, k, seed=None):
+ """Returns k items without replacement from a weighted sample.
+
+ The input is a dictionary of items with weights as values.
+ """
+ if k > len(mapping):
+ raise ValueError("sample larger than population")
+ sample = set()
+ while len(sample) < k:
+ sample.add(weighted_choice(mapping, seed))
+ return list(sample)
+
+
+@py_random_state(1)
+def weighted_choice(mapping, seed=None):
+ """Returns a single element from a weighted sample.
+
+ The input is a dictionary of items with weights as values.
+ """
+ # use roulette method
+ rnd = seed.random() * sum(mapping.values())
+ for k, w in mapping.items():
+ rnd -= w
+ if rnd < 0:
+ return k
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/rcm.py b/.venv/lib/python3.12/site-packages/networkx/utils/rcm.py
new file mode 100644
index 00000000..e7366fff
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/rcm.py
@@ -0,0 +1,159 @@
+"""
+Cuthill-McKee ordering of graph nodes to produce sparse matrices
+"""
+
+from collections import deque
+from operator import itemgetter
+
+import networkx as nx
+
+from ..utils import arbitrary_element
+
+__all__ = ["cuthill_mckee_ordering", "reverse_cuthill_mckee_ordering"]
+
+
+def cuthill_mckee_ordering(G, heuristic=None):
+ """Generate an ordering (permutation) of the graph nodes to make
+ a sparse matrix.
+
+ Uses the Cuthill-McKee heuristic (based on breadth-first search) [1]_.
+
+ Parameters
+ ----------
+ G : graph
+ A NetworkX graph
+
+ heuristic : function, optional
+ Function to choose starting node for RCM algorithm. If None
+ a node from a pseudo-peripheral pair is used. A user-defined function
+ can be supplied that takes a graph object and returns a single node.
+
+ Returns
+ -------
+ nodes : generator
+ Generator of nodes in Cuthill-McKee ordering.
+
+ Examples
+ --------
+ >>> from networkx.utils import cuthill_mckee_ordering
+ >>> G = nx.path_graph(4)
+ >>> rcm = list(cuthill_mckee_ordering(G))
+ >>> A = nx.adjacency_matrix(G, nodelist=rcm)
+
+ Smallest degree node as heuristic function:
+
+ >>> def smallest_degree(G):
+ ... return min(G, key=G.degree)
+ >>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree))
+
+
+ See Also
+ --------
+ reverse_cuthill_mckee_ordering
+
+ Notes
+ -----
+ The optimal solution the bandwidth reduction is NP-complete [2]_.
+
+
+ References
+ ----------
+ .. [1] E. Cuthill and J. McKee.
+ Reducing the bandwidth of sparse symmetric matrices,
+ In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969.
+ http://doi.acm.org/10.1145/800195.805928
+ .. [2] Steven S. Skiena. 1997. The Algorithm Design Manual.
+ Springer-Verlag New York, Inc., New York, NY, USA.
+ """
+ for c in nx.connected_components(G):
+ yield from connected_cuthill_mckee_ordering(G.subgraph(c), heuristic)
+
+
+def reverse_cuthill_mckee_ordering(G, heuristic=None):
+ """Generate an ordering (permutation) of the graph nodes to make
+ a sparse matrix.
+
+ Uses the reverse Cuthill-McKee heuristic (based on breadth-first search)
+ [1]_.
+
+ Parameters
+ ----------
+ G : graph
+ A NetworkX graph
+
+ heuristic : function, optional
+ Function to choose starting node for RCM algorithm. If None
+ a node from a pseudo-peripheral pair is used. A user-defined function
+ can be supplied that takes a graph object and returns a single node.
+
+ Returns
+ -------
+ nodes : generator
+ Generator of nodes in reverse Cuthill-McKee ordering.
+
+ Examples
+ --------
+ >>> from networkx.utils import reverse_cuthill_mckee_ordering
+ >>> G = nx.path_graph(4)
+ >>> rcm = list(reverse_cuthill_mckee_ordering(G))
+ >>> A = nx.adjacency_matrix(G, nodelist=rcm)
+
+ Smallest degree node as heuristic function:
+
+ >>> def smallest_degree(G):
+ ... return min(G, key=G.degree)
+ >>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))
+
+
+ See Also
+ --------
+ cuthill_mckee_ordering
+
+ Notes
+ -----
+ The optimal solution the bandwidth reduction is NP-complete [2]_.
+
+ References
+ ----------
+ .. [1] E. Cuthill and J. McKee.
+ Reducing the bandwidth of sparse symmetric matrices,
+ In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969.
+ http://doi.acm.org/10.1145/800195.805928
+ .. [2] Steven S. Skiena. 1997. The Algorithm Design Manual.
+ Springer-Verlag New York, Inc., New York, NY, USA.
+ """
+ return reversed(list(cuthill_mckee_ordering(G, heuristic=heuristic)))
+
+
+def connected_cuthill_mckee_ordering(G, heuristic=None):
+ # the cuthill mckee algorithm for connected graphs
+ if heuristic is None:
+ start = pseudo_peripheral_node(G)
+ else:
+ start = heuristic(G)
+ visited = {start}
+ queue = deque([start])
+ while queue:
+ parent = queue.popleft()
+ yield parent
+ nd = sorted(G.degree(set(G[parent]) - visited), key=itemgetter(1))
+ children = [n for n, d in nd]
+ visited.update(children)
+ queue.extend(children)
+
+
+def pseudo_peripheral_node(G):
+ # helper for cuthill-mckee to find a node in a "pseudo peripheral pair"
+ # to use as good starting node
+ u = arbitrary_element(G)
+ lp = 0
+ v = u
+ while True:
+ spl = dict(nx.shortest_path_length(G, v))
+ l = max(spl.values())
+ if l <= lp:
+ break
+ lp = l
+ farthest = (n for n, dist in spl.items() if dist == l)
+ v, deg = min(G.degree(farthest), key=itemgetter(1))
+ return v
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/__init__.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test__init.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test__init.py
new file mode 100644
index 00000000..ecbcce36
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test__init.py
@@ -0,0 +1,11 @@
+import pytest
+
+
+def test_utils_namespace():
+ """Ensure objects are not unintentionally exposed in utils namespace."""
+ with pytest.raises(ImportError):
+ from networkx.utils import nx
+ with pytest.raises(ImportError):
+ from networkx.utils import sys
+ with pytest.raises(ImportError):
+ from networkx.utils import defaultdict, deque
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_backends.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_backends.py
new file mode 100644
index 00000000..ad006f00
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_backends.py
@@ -0,0 +1,170 @@
+import pickle
+
+import pytest
+
+import networkx as nx
+
+sp = pytest.importorskip("scipy")
+pytest.importorskip("numpy")
+
+
+def test_dispatch_kwds_vs_args():
+ G = nx.path_graph(4)
+ nx.pagerank(G)
+ nx.pagerank(G=G)
+ with pytest.raises(TypeError):
+ nx.pagerank()
+
+
+def test_pickle():
+ count = 0
+ for name, func in nx.utils.backends._registered_algorithms.items():
+ pickled = pickle.dumps(func.__wrapped__)
+ assert pickle.loads(pickled) is func.__wrapped__
+ try:
+ # Some functions can't be pickled, but it's not b/c of _dispatchable
+ pickled = pickle.dumps(func)
+ except pickle.PicklingError:
+ continue
+ assert pickle.loads(pickled) is func
+ count += 1
+ assert count > 0
+ assert pickle.loads(pickle.dumps(nx.inverse_line_graph)) is nx.inverse_line_graph
+
+
+@pytest.mark.skipif(
+ "not nx.config.backend_priority.algos "
+ "or nx.config.backend_priority.algos[0] != 'nx_loopback'"
+)
+def test_graph_converter_needs_backend():
+ # When testing, `nx.from_scipy_sparse_array` will *always* call the backend
+ # implementation if it's implemented. If `backend=` isn't given, then the result
+ # will be converted back to NetworkX via `convert_to_nx`.
+ # If not testing, then calling `nx.from_scipy_sparse_array` w/o `backend=` will
+ # always call the original version. `backend=` is *required* to call the backend.
+ from networkx.classes.tests.dispatch_interface import (
+ LoopbackBackendInterface,
+ LoopbackGraph,
+ )
+
+ A = sp.sparse.coo_array([[0, 3, 2], [3, 0, 1], [2, 1, 0]])
+
+ side_effects = []
+
+ def from_scipy_sparse_array(self, *args, **kwargs):
+ side_effects.append(1) # Just to prove this was called
+ return self.convert_from_nx(
+ self.__getattr__("from_scipy_sparse_array")(*args, **kwargs),
+ preserve_edge_attrs=True,
+ preserve_node_attrs=True,
+ preserve_graph_attrs=True,
+ )
+
+ @staticmethod
+ def convert_to_nx(obj, *, name=None):
+ if type(obj) is nx.Graph:
+ return obj
+ return nx.Graph(obj)
+
+ # *This mutates LoopbackBackendInterface!*
+ orig_convert_to_nx = LoopbackBackendInterface.convert_to_nx
+ LoopbackBackendInterface.convert_to_nx = convert_to_nx
+ LoopbackBackendInterface.from_scipy_sparse_array = from_scipy_sparse_array
+
+ try:
+ assert side_effects == []
+ assert type(nx.from_scipy_sparse_array(A)) is nx.Graph
+ assert side_effects == [1]
+ assert (
+ type(nx.from_scipy_sparse_array(A, backend="nx_loopback")) is LoopbackGraph
+ )
+ assert side_effects == [1, 1]
+ # backend="networkx" is default implementation
+ assert type(nx.from_scipy_sparse_array(A, backend="networkx")) is nx.Graph
+ assert side_effects == [1, 1]
+ finally:
+ LoopbackBackendInterface.convert_to_nx = staticmethod(orig_convert_to_nx)
+ del LoopbackBackendInterface.from_scipy_sparse_array
+ with pytest.raises(ImportError, match="backend is not installed"):
+ nx.from_scipy_sparse_array(A, backend="bad-backend-name")
+
+
+@pytest.mark.skipif(
+ "not nx.config.backend_priority.algos "
+ "or nx.config.backend_priority.algos[0] != 'nx_loopback'"
+)
+def test_networkx_backend():
+ """Test using `backend="networkx"` in a dispatchable function."""
+ # (Implementing this test is harder than it should be)
+ from networkx.classes.tests.dispatch_interface import (
+ LoopbackBackendInterface,
+ LoopbackGraph,
+ )
+
+ G = LoopbackGraph()
+ G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4)])
+
+ @staticmethod
+ def convert_to_nx(obj, *, name=None):
+ if isinstance(obj, LoopbackGraph):
+ new_graph = nx.Graph()
+ new_graph.__dict__.update(obj.__dict__)
+ return new_graph
+ return obj
+
+ # *This mutates LoopbackBackendInterface!*
+ # This uses the same trick as in the previous test.
+ orig_convert_to_nx = LoopbackBackendInterface.convert_to_nx
+ LoopbackBackendInterface.convert_to_nx = convert_to_nx
+ try:
+ G2 = nx.ego_graph(G, 0, backend="networkx")
+ assert type(G2) is nx.Graph
+ finally:
+ LoopbackBackendInterface.convert_to_nx = staticmethod(orig_convert_to_nx)
+
+
+def test_dispatchable_are_functions():
+ assert type(nx.pagerank) is type(nx.pagerank.orig_func)
+
+
+@pytest.mark.skipif("not nx.utils.backends.backends")
+def test_mixing_backend_graphs():
+ from networkx.classes.tests import dispatch_interface
+
+ G = nx.Graph()
+ G.add_edge(1, 2)
+ G.add_edge(2, 3)
+ H = nx.Graph()
+ H.add_edge(2, 3)
+ rv = nx.intersection(G, H)
+ assert set(nx.intersection(G, H)) == {2, 3}
+ G2 = dispatch_interface.convert(G)
+ H2 = dispatch_interface.convert(H)
+ if "nx_loopback" in nx.config.backend_priority:
+ # Auto-convert
+ assert set(nx.intersection(G2, H)) == {2, 3}
+ assert set(nx.intersection(G, H2)) == {2, 3}
+ elif not nx.config.backend_priority and "nx_loopback" not in nx.config.backends:
+ # G2 and H2 are backend objects for a backend that is not registered!
+ with pytest.raises(ImportError, match="backend is not installed"):
+ nx.intersection(G2, H)
+ with pytest.raises(ImportError, match="backend is not installed"):
+ nx.intersection(G, H2)
+ # It would be nice to test passing graphs from *different* backends,
+ # but we are not set up to do this yet.
+
+
+def test_bad_backend_name():
+ """Using `backend=` raises with unknown backend even if there are no backends."""
+ with pytest.raises(
+ ImportError, match="'this_backend_does_not_exist' backend is not installed"
+ ):
+ nx.null_graph(backend="this_backend_does_not_exist")
+
+
+def test_fallback_to_nx():
+ with pytest.warns(DeprecationWarning, match="_fallback_to_nx"):
+ # Check as class property
+ assert nx._dispatchable._fallback_to_nx == nx.config.fallback_to_nx
+ # Check as instance property
+ assert nx.pagerank.__wrapped__._fallback_to_nx == nx.config.fallback_to_nx
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_config.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_config.py
new file mode 100644
index 00000000..7416b0ac
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_config.py
@@ -0,0 +1,231 @@
+import collections
+import pickle
+
+import pytest
+
+import networkx as nx
+from networkx.utils.configs import BackendPriorities, Config
+
+
+# Define this at module level so we can test pickling
+class ExampleConfig(Config):
+ """Example configuration."""
+
+ x: int
+ y: str
+
+ def _on_setattr(self, key, value):
+ if key == "x" and value <= 0:
+ raise ValueError("x must be positive")
+ if key == "y" and not isinstance(value, str):
+ raise TypeError("y must be a str")
+ return value
+
+
+class EmptyConfig(Config):
+ pass
+
+
+@pytest.mark.parametrize("cfg", [EmptyConfig(), Config()])
+def test_config_empty(cfg):
+ assert dir(cfg) == []
+ with pytest.raises(AttributeError):
+ cfg.x = 1
+ with pytest.raises(KeyError):
+ cfg["x"] = 1
+ with pytest.raises(AttributeError):
+ cfg.x
+ with pytest.raises(KeyError):
+ cfg["x"]
+ assert len(cfg) == 0
+ assert "x" not in cfg
+ assert cfg == cfg
+ assert cfg.get("x", 2) == 2
+ assert set(cfg.keys()) == set()
+ assert set(cfg.values()) == set()
+ assert set(cfg.items()) == set()
+ cfg2 = pickle.loads(pickle.dumps(cfg))
+ assert cfg == cfg2
+ assert isinstance(cfg, collections.abc.Collection)
+ assert isinstance(cfg, collections.abc.Mapping)
+
+
+def test_config_subclass():
+ with pytest.raises(TypeError, match="missing 2 required keyword-only"):
+ ExampleConfig()
+ with pytest.raises(ValueError, match="x must be positive"):
+ ExampleConfig(x=0, y="foo")
+ with pytest.raises(TypeError, match="unexpected keyword"):
+ ExampleConfig(x=1, y="foo", z="bad config")
+ with pytest.raises(TypeError, match="unexpected keyword"):
+ EmptyConfig(z="bad config")
+ cfg = ExampleConfig(x=1, y="foo")
+ assert cfg.x == 1
+ assert cfg["x"] == 1
+ assert cfg["y"] == "foo"
+ assert cfg.y == "foo"
+ assert "x" in cfg
+ assert "y" in cfg
+ assert "z" not in cfg
+ assert len(cfg) == 2
+ assert set(iter(cfg)) == {"x", "y"}
+ assert set(cfg.keys()) == {"x", "y"}
+ assert set(cfg.values()) == {1, "foo"}
+ assert set(cfg.items()) == {("x", 1), ("y", "foo")}
+ assert dir(cfg) == ["x", "y"]
+ cfg.x = 2
+ cfg["y"] = "bar"
+ assert cfg["x"] == 2
+ assert cfg.y == "bar"
+ with pytest.raises(TypeError, match="can't be deleted"):
+ del cfg.x
+ with pytest.raises(TypeError, match="can't be deleted"):
+ del cfg["y"]
+ assert cfg.x == 2
+ assert cfg == cfg
+ assert cfg == ExampleConfig(x=2, y="bar")
+ assert cfg != ExampleConfig(x=3, y="baz")
+ assert cfg != Config(x=2, y="bar")
+ with pytest.raises(TypeError, match="y must be a str"):
+ cfg["y"] = 5
+ with pytest.raises(ValueError, match="x must be positive"):
+ cfg.x = -5
+ assert cfg.get("x", 10) == 2
+ with pytest.raises(AttributeError):
+ cfg.z = 5
+ with pytest.raises(KeyError):
+ cfg["z"] = 5
+ with pytest.raises(AttributeError):
+ cfg.z
+ with pytest.raises(KeyError):
+ cfg["z"]
+ cfg2 = pickle.loads(pickle.dumps(cfg))
+ assert cfg == cfg2
+ assert cfg.__doc__ == "Example configuration."
+ assert cfg2.__doc__ == "Example configuration."
+
+
+def test_config_defaults():
+ class DefaultConfig(Config):
+ x: int = 0
+ y: int
+
+ cfg = DefaultConfig(y=1)
+ assert cfg.x == 0
+ cfg = DefaultConfig(x=2, y=1)
+ assert cfg.x == 2
+
+
+def test_nxconfig():
+ assert isinstance(nx.config.backend_priority, BackendPriorities)
+ assert isinstance(nx.config.backend_priority.algos, list)
+ assert isinstance(nx.config.backends, Config)
+ with pytest.raises(TypeError, match="must be a list of backend names"):
+ nx.config.backend_priority.algos = "nx_loopback"
+ with pytest.raises(ValueError, match="Unknown backend when setting"):
+ nx.config.backend_priority.algos = ["this_almost_certainly_is_not_a_backend"]
+ with pytest.raises(TypeError, match="must be a Config of backend configs"):
+ nx.config.backends = {}
+ with pytest.raises(TypeError, match="must be a Config of backend configs"):
+ nx.config.backends = Config(plausible_backend_name={})
+ with pytest.raises(ValueError, match="Unknown backend when setting"):
+ nx.config.backends = Config(this_almost_certainly_is_not_a_backend=Config())
+ with pytest.raises(TypeError, match="must be True or False"):
+ nx.config.cache_converted_graphs = "bad value"
+ with pytest.raises(TypeError, match="must be a set of "):
+ nx.config.warnings_to_ignore = 7
+ with pytest.raises(ValueError, match="Unknown warning "):
+ nx.config.warnings_to_ignore = {"bad value"}
+
+
+def test_not_strict():
+ class FlexibleConfig(Config, strict=False):
+ x: int
+
+ cfg = FlexibleConfig(x=1)
+ assert "_strict" not in cfg
+ assert len(cfg) == 1
+ assert list(cfg) == ["x"]
+ assert list(cfg.keys()) == ["x"]
+ assert list(cfg.values()) == [1]
+ assert list(cfg.items()) == [("x", 1)]
+ assert cfg.x == 1
+ assert cfg["x"] == 1
+ assert "x" in cfg
+ assert hasattr(cfg, "x")
+ assert "FlexibleConfig(x=1)" in repr(cfg)
+ assert cfg == FlexibleConfig(x=1)
+ del cfg.x
+ assert "FlexibleConfig()" in repr(cfg)
+ assert len(cfg) == 0
+ assert not hasattr(cfg, "x")
+ assert "x" not in cfg
+ assert not hasattr(cfg, "y")
+ assert "y" not in cfg
+ cfg.y = 2
+ assert len(cfg) == 1
+ assert list(cfg) == ["y"]
+ assert list(cfg.keys()) == ["y"]
+ assert list(cfg.values()) == [2]
+ assert list(cfg.items()) == [("y", 2)]
+ assert cfg.y == 2
+ assert cfg["y"] == 2
+ assert hasattr(cfg, "y")
+ assert "y" in cfg
+ del cfg["y"]
+ assert len(cfg) == 0
+ assert list(cfg) == []
+ with pytest.raises(AttributeError, match="y"):
+ del cfg.y
+ with pytest.raises(KeyError, match="y"):
+ del cfg["y"]
+ with pytest.raises(TypeError, match="missing 1 required keyword-only"):
+ FlexibleConfig()
+ # Be strict when first creating the config object
+ with pytest.raises(TypeError, match="unexpected keyword argument 'y'"):
+ FlexibleConfig(x=1, y=2)
+
+ class FlexibleConfigWithDefault(Config, strict=False):
+ x: int = 0
+
+ assert FlexibleConfigWithDefault().x == 0
+ assert FlexibleConfigWithDefault(x=1)["x"] == 1
+
+
+def test_context():
+ cfg = Config(x=1)
+ with cfg(x=2) as c:
+ assert c.x == 2
+ c.x = 3
+ assert cfg.x == 3
+ assert cfg.x == 1
+
+ with cfg(x=2) as c:
+ assert c == cfg
+ assert cfg.x == 2
+ with cfg(x=3) as c2:
+ assert c2 == cfg
+ assert cfg.x == 3
+ with pytest.raises(RuntimeError, match="context manager without"):
+ with cfg as c3: # Forgot to call `cfg(...)`
+ pass
+ assert cfg.x == 3
+ assert cfg.x == 2
+ assert cfg.x == 1
+
+ c = cfg(x=4) # Not yet as context (not recommended, but possible)
+ assert c == cfg
+ assert cfg.x == 4
+ # Cheat by looking at internal data; context stack should only grow with __enter__
+ assert cfg._prev is not None
+ assert cfg._context_stack == []
+ with c:
+ assert c == cfg
+ assert cfg.x == 4
+ assert cfg.x == 1
+ # Cheat again; there was no preceding `cfg(...)` call this time
+ assert cfg._prev is None
+ with pytest.raises(RuntimeError, match="context manager without"):
+ with cfg:
+ pass
+ assert cfg.x == 1
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_decorators.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_decorators.py
new file mode 100644
index 00000000..0a4aeabf
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_decorators.py
@@ -0,0 +1,510 @@
+import os
+import pathlib
+import random
+import tempfile
+
+import pytest
+
+import networkx as nx
+from networkx.utils.decorators import (
+ argmap,
+ not_implemented_for,
+ np_random_state,
+ open_file,
+ py_random_state,
+)
+from networkx.utils.misc import PythonRandomInterface, PythonRandomViaNumpyBits
+
+
+def test_not_implemented_decorator():
+ @not_implemented_for("directed")
+ def test_d(G):
+ pass
+
+ test_d(nx.Graph())
+ with pytest.raises(nx.NetworkXNotImplemented):
+ test_d(nx.DiGraph())
+
+ @not_implemented_for("undirected")
+ def test_u(G):
+ pass
+
+ test_u(nx.DiGraph())
+ with pytest.raises(nx.NetworkXNotImplemented):
+ test_u(nx.Graph())
+
+ @not_implemented_for("multigraph")
+ def test_m(G):
+ pass
+
+ test_m(nx.Graph())
+ with pytest.raises(nx.NetworkXNotImplemented):
+ test_m(nx.MultiGraph())
+
+ @not_implemented_for("graph")
+ def test_g(G):
+ pass
+
+ test_g(nx.MultiGraph())
+ with pytest.raises(nx.NetworkXNotImplemented):
+ test_g(nx.Graph())
+
+ # not MultiDiGraph (multiple arguments => AND)
+ @not_implemented_for("directed", "multigraph")
+ def test_not_md(G):
+ pass
+
+ test_not_md(nx.Graph())
+ test_not_md(nx.DiGraph())
+ test_not_md(nx.MultiGraph())
+ with pytest.raises(nx.NetworkXNotImplemented):
+ test_not_md(nx.MultiDiGraph())
+
+ # Graph only (multiple decorators => OR)
+ @not_implemented_for("directed")
+ @not_implemented_for("multigraph")
+ def test_graph_only(G):
+ pass
+
+ test_graph_only(nx.Graph())
+ with pytest.raises(nx.NetworkXNotImplemented):
+ test_graph_only(nx.DiGraph())
+ with pytest.raises(nx.NetworkXNotImplemented):
+ test_graph_only(nx.MultiGraph())
+ with pytest.raises(nx.NetworkXNotImplemented):
+ test_graph_only(nx.MultiDiGraph())
+
+ with pytest.raises(ValueError):
+ not_implemented_for("directed", "undirected")
+
+ with pytest.raises(ValueError):
+ not_implemented_for("multigraph", "graph")
+
+
+def test_not_implemented_decorator_key():
+ with pytest.raises(KeyError):
+
+ @not_implemented_for("foo")
+ def test1(G):
+ pass
+
+ test1(nx.Graph())
+
+
+def test_not_implemented_decorator_raise():
+ with pytest.raises(nx.NetworkXNotImplemented):
+
+ @not_implemented_for("graph")
+ def test1(G):
+ pass
+
+ test1(nx.Graph())
+
+
+class TestOpenFileDecorator:
+ def setup_method(self):
+ self.text = ["Blah... ", "BLAH ", "BLAH!!!!"]
+ self.fobj = tempfile.NamedTemporaryFile("wb+", delete=False)
+ self.name = self.fobj.name
+
+ def teardown_method(self):
+ self.fobj.close()
+ os.unlink(self.name)
+
+ def write(self, path):
+ for text in self.text:
+ path.write(text.encode("ascii"))
+
+ @open_file(1, "r")
+ def read(self, path):
+ return path.readlines()[0]
+
+ @staticmethod
+ @open_file(0, "wb")
+ def writer_arg0(path):
+ path.write(b"demo")
+
+ @open_file(1, "wb+")
+ def writer_arg1(self, path):
+ self.write(path)
+
+ @open_file(2, "wb")
+ def writer_arg2default(self, x, path=None):
+ if path is None:
+ with tempfile.NamedTemporaryFile("wb+") as fh:
+ self.write(fh)
+ else:
+ self.write(path)
+
+ @open_file(4, "wb")
+ def writer_arg4default(self, x, y, other="hello", path=None, **kwargs):
+ if path is None:
+ with tempfile.NamedTemporaryFile("wb+") as fh:
+ self.write(fh)
+ else:
+ self.write(path)
+
+ @open_file("path", "wb")
+ def writer_kwarg(self, **kwargs):
+ path = kwargs.get("path", None)
+ if path is None:
+ with tempfile.NamedTemporaryFile("wb+") as fh:
+ self.write(fh)
+ else:
+ self.write(path)
+
+ def test_writer_arg0_str(self):
+ self.writer_arg0(self.name)
+
+ def test_writer_arg0_fobj(self):
+ self.writer_arg0(self.fobj)
+
+ def test_writer_arg0_pathlib(self):
+ self.writer_arg0(pathlib.Path(self.name))
+
+ def test_writer_arg1_str(self):
+ self.writer_arg1(self.name)
+ assert self.read(self.name) == "".join(self.text)
+
+ def test_writer_arg1_fobj(self):
+ self.writer_arg1(self.fobj)
+ assert not self.fobj.closed
+ self.fobj.close()
+ assert self.read(self.name) == "".join(self.text)
+
+ def test_writer_arg2default_str(self):
+ self.writer_arg2default(0, path=None)
+ self.writer_arg2default(0, path=self.name)
+ assert self.read(self.name) == "".join(self.text)
+
+ def test_writer_arg2default_fobj(self):
+ self.writer_arg2default(0, path=self.fobj)
+ assert not self.fobj.closed
+ self.fobj.close()
+ assert self.read(self.name) == "".join(self.text)
+
+ def test_writer_arg2default_fobj_path_none(self):
+ self.writer_arg2default(0, path=None)
+
+ def test_writer_arg4default_fobj(self):
+ self.writer_arg4default(0, 1, dog="dog", other="other")
+ self.writer_arg4default(0, 1, dog="dog", other="other", path=self.name)
+ assert self.read(self.name) == "".join(self.text)
+
+ def test_writer_kwarg_str(self):
+ self.writer_kwarg(path=self.name)
+ assert self.read(self.name) == "".join(self.text)
+
+ def test_writer_kwarg_fobj(self):
+ self.writer_kwarg(path=self.fobj)
+ self.fobj.close()
+ assert self.read(self.name) == "".join(self.text)
+
+ def test_writer_kwarg_path_none(self):
+ self.writer_kwarg(path=None)
+
+
+class TestRandomState:
+ @classmethod
+ def setup_class(cls):
+ global np
+ np = pytest.importorskip("numpy")
+
+ @np_random_state(1)
+ def instantiate_np_random_state(self, random_state):
+ allowed = (np.random.RandomState, np.random.Generator)
+ assert isinstance(random_state, allowed)
+ return random_state.random()
+
+ @py_random_state(1)
+ def instantiate_py_random_state(self, random_state):
+ allowed = (random.Random, PythonRandomInterface, PythonRandomViaNumpyBits)
+ assert isinstance(random_state, allowed)
+ return random_state.random()
+
+ def test_random_state_None(self):
+ np.random.seed(42)
+ rv = np.random.random()
+ np.random.seed(42)
+ assert rv == self.instantiate_np_random_state(None)
+
+ random.seed(42)
+ rv = random.random()
+ random.seed(42)
+ assert rv == self.instantiate_py_random_state(None)
+
+ def test_random_state_np_random(self):
+ np.random.seed(42)
+ rv = np.random.random()
+ np.random.seed(42)
+ assert rv == self.instantiate_np_random_state(np.random)
+ np.random.seed(42)
+ assert rv == self.instantiate_py_random_state(np.random)
+
+ def test_random_state_int(self):
+ np.random.seed(42)
+ np_rv = np.random.random()
+ random.seed(42)
+ py_rv = random.random()
+
+ np.random.seed(42)
+ seed = 1
+ rval = self.instantiate_np_random_state(seed)
+ rval_expected = np.random.RandomState(seed).rand()
+ assert rval == rval_expected
+ # test that global seed wasn't changed in function
+ assert np_rv == np.random.random()
+
+ random.seed(42)
+ rval = self.instantiate_py_random_state(seed)
+ rval_expected = random.Random(seed).random()
+ assert rval == rval_expected
+ # test that global seed wasn't changed in function
+ assert py_rv == random.random()
+
+ def test_random_state_np_random_Generator(self):
+ np.random.seed(42)
+ np_rv = np.random.random()
+ np.random.seed(42)
+ seed = 1
+
+ rng = np.random.default_rng(seed)
+ rval = self.instantiate_np_random_state(rng)
+ rval_expected = np.random.default_rng(seed).random()
+ assert rval == rval_expected
+
+ rval = self.instantiate_py_random_state(rng)
+ rval_expected = np.random.default_rng(seed).random(size=2)[1]
+ assert rval == rval_expected
+ # test that global seed wasn't changed in function
+ assert np_rv == np.random.random()
+
+ def test_random_state_np_random_RandomState(self):
+ np.random.seed(42)
+ np_rv = np.random.random()
+ np.random.seed(42)
+ seed = 1
+
+ rng = np.random.RandomState(seed)
+ rval = self.instantiate_np_random_state(rng)
+ rval_expected = np.random.RandomState(seed).random()
+ assert rval == rval_expected
+
+ rval = self.instantiate_py_random_state(rng)
+ rval_expected = np.random.RandomState(seed).random(size=2)[1]
+ assert rval == rval_expected
+ # test that global seed wasn't changed in function
+ assert np_rv == np.random.random()
+
+ def test_random_state_py_random(self):
+ seed = 1
+ rng = random.Random(seed)
+ rv = self.instantiate_py_random_state(rng)
+ assert rv == random.Random(seed).random()
+
+ pytest.raises(ValueError, self.instantiate_np_random_state, rng)
+
+
+def test_random_state_string_arg_index():
+ with pytest.raises(nx.NetworkXError):
+
+ @np_random_state("a")
+ def make_random_state(rs):
+ pass
+
+ rstate = make_random_state(1)
+
+
+def test_py_random_state_string_arg_index():
+ with pytest.raises(nx.NetworkXError):
+
+ @py_random_state("a")
+ def make_random_state(rs):
+ pass
+
+ rstate = make_random_state(1)
+
+
+def test_random_state_invalid_arg_index():
+ with pytest.raises(nx.NetworkXError):
+
+ @np_random_state(2)
+ def make_random_state(rs):
+ pass
+
+ rstate = make_random_state(1)
+
+
+def test_py_random_state_invalid_arg_index():
+ with pytest.raises(nx.NetworkXError):
+
+ @py_random_state(2)
+ def make_random_state(rs):
+ pass
+
+ rstate = make_random_state(1)
+
+
+class TestArgmap:
+ class ArgmapError(RuntimeError):
+ pass
+
+ def test_trivial_function(self):
+ def do_not_call(x):
+ raise ArgmapError("do not call this function")
+
+ @argmap(do_not_call)
+ def trivial_argmap():
+ return 1
+
+ assert trivial_argmap() == 1
+
+ def test_trivial_iterator(self):
+ def do_not_call(x):
+ raise ArgmapError("do not call this function")
+
+ @argmap(do_not_call)
+ def trivial_argmap():
+ yield from (1, 2, 3)
+
+ assert tuple(trivial_argmap()) == (1, 2, 3)
+
+ def test_contextmanager(self):
+ container = []
+
+ def contextmanager(x):
+ nonlocal container
+ return x, lambda: container.append(x)
+
+ @argmap(contextmanager, 0, 1, 2, try_finally=True)
+ def foo(x, y, z):
+ return x, y, z
+
+ x, y, z = foo("a", "b", "c")
+
+ # context exits are called in reverse
+ assert container == ["c", "b", "a"]
+
+ def test_tryfinally_generator(self):
+ container = []
+
+ def singleton(x):
+ return (x,)
+
+ with pytest.raises(nx.NetworkXError):
+
+ @argmap(singleton, 0, 1, 2, try_finally=True)
+ def foo(x, y, z):
+ yield from (x, y, z)
+
+ @argmap(singleton, 0, 1, 2)
+ def foo(x, y, z):
+ return x + y + z
+
+ q = foo("a", "b", "c")
+
+ assert q == ("a", "b", "c")
+
+ def test_actual_vararg(self):
+ @argmap(lambda x: -x, 4)
+ def foo(x, y, *args):
+ return (x, y) + tuple(args)
+
+ assert foo(1, 2, 3, 4, 5, 6) == (1, 2, 3, 4, -5, 6)
+
+ def test_signature_destroying_intermediate_decorator(self):
+ def add_one_to_first_bad_decorator(f):
+ """Bad because it doesn't wrap the f signature (clobbers it)"""
+
+ def decorated(a, *args, **kwargs):
+ return f(a + 1, *args, **kwargs)
+
+ return decorated
+
+ add_two_to_second = argmap(lambda b: b + 2, 1)
+
+ @add_two_to_second
+ @add_one_to_first_bad_decorator
+ def add_one_and_two(a, b):
+ return a, b
+
+ assert add_one_and_two(5, 5) == (6, 7)
+
+ def test_actual_kwarg(self):
+ @argmap(lambda x: -x, "arg")
+ def foo(*, arg):
+ return arg
+
+ assert foo(arg=3) == -3
+
+ def test_nested_tuple(self):
+ def xform(x, y):
+ u, v = y
+ return x + u + v, (x + u, x + v)
+
+ # we're testing args and kwargs here, too
+ @argmap(xform, (0, ("t", 2)))
+ def foo(a, *args, **kwargs):
+ return a, args, kwargs
+
+ a, args, kwargs = foo(1, 2, 3, t=4)
+
+ assert a == 1 + 4 + 3
+ assert args == (2, 1 + 3)
+ assert kwargs == {"t": 1 + 4}
+
+ def test_flatten(self):
+ assert tuple(argmap._flatten([[[[[], []], [], []], [], [], []]], set())) == ()
+
+ rlist = ["a", ["b", "c"], [["d"], "e"], "f"]
+ assert "".join(argmap._flatten(rlist, set())) == "abcdef"
+
+ def test_indent(self):
+ code = "\n".join(
+ argmap._indent(
+ *[
+ "try:",
+ "try:",
+ "pass#",
+ "finally:",
+ "pass#",
+ "#",
+ "finally:",
+ "pass#",
+ ]
+ )
+ )
+ assert (
+ code
+ == """try:
+ try:
+ pass#
+ finally:
+ pass#
+ #
+finally:
+ pass#"""
+ )
+
+ def test_immediate_raise(self):
+ @not_implemented_for("directed")
+ def yield_nodes(G):
+ yield from G
+
+ G = nx.Graph([(1, 2)])
+ D = nx.DiGraph()
+
+ # test first call (argmap is compiled and executed)
+ with pytest.raises(nx.NetworkXNotImplemented):
+ node_iter = yield_nodes(D)
+
+ # test second call (argmap is only executed)
+ with pytest.raises(nx.NetworkXNotImplemented):
+ node_iter = yield_nodes(D)
+
+ # ensure that generators still make generators
+ node_iter = yield_nodes(G)
+ next(node_iter)
+ next(node_iter)
+ with pytest.raises(StopIteration):
+ next(node_iter)
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_heaps.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_heaps.py
new file mode 100644
index 00000000..5ea38716
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_heaps.py
@@ -0,0 +1,131 @@
+import pytest
+
+import networkx as nx
+from networkx.utils import BinaryHeap, PairingHeap
+
+
+class X:
+ def __eq__(self, other):
+ raise self is other
+
+ def __ne__(self, other):
+ raise self is not other
+
+ def __lt__(self, other):
+ raise TypeError("cannot compare")
+
+ def __le__(self, other):
+ raise TypeError("cannot compare")
+
+ def __ge__(self, other):
+ raise TypeError("cannot compare")
+
+ def __gt__(self, other):
+ raise TypeError("cannot compare")
+
+ def __hash__(self):
+ return hash(id(self))
+
+
+x = X()
+
+
+data = [ # min should not invent an element.
+ ("min", nx.NetworkXError),
+ # Popping an empty heap should fail.
+ ("pop", nx.NetworkXError),
+ # Getting nonexisting elements should return None.
+ ("get", 0, None),
+ ("get", x, None),
+ ("get", None, None),
+ # Inserting a new key should succeed.
+ ("insert", x, 1, True),
+ ("get", x, 1),
+ ("min", (x, 1)),
+ # min should not pop the top element.
+ ("min", (x, 1)),
+ # Inserting a new key of different type should succeed.
+ ("insert", 1, -2.0, True),
+ # int and float values should interop.
+ ("min", (1, -2.0)),
+ # pop removes minimum-valued element.
+ ("insert", 3, -(10**100), True),
+ ("insert", 4, 5, True),
+ ("pop", (3, -(10**100))),
+ ("pop", (1, -2.0)),
+ # Decrease-insert should succeed.
+ ("insert", 4, -50, True),
+ ("insert", 4, -60, False, True),
+ # Decrease-insert should not create duplicate keys.
+ ("pop", (4, -60)),
+ ("pop", (x, 1)),
+ # Popping all elements should empty the heap.
+ ("min", nx.NetworkXError),
+ ("pop", nx.NetworkXError),
+ # Non-value-changing insert should fail.
+ ("insert", x, 0, True),
+ ("insert", x, 0, False, False),
+ ("min", (x, 0)),
+ ("insert", x, 0, True, False),
+ ("min", (x, 0)),
+ # Failed insert should not create duplicate keys.
+ ("pop", (x, 0)),
+ ("pop", nx.NetworkXError),
+ # Increase-insert should succeed when allowed.
+ ("insert", None, 0, True),
+ ("insert", 2, -1, True),
+ ("min", (2, -1)),
+ ("insert", 2, 1, True, False),
+ ("min", (None, 0)),
+ # Increase-insert should fail when disallowed.
+ ("insert", None, 2, False, False),
+ ("min", (None, 0)),
+ # Failed increase-insert should not create duplicate keys.
+ ("pop", (None, 0)),
+ ("pop", (2, 1)),
+ ("min", nx.NetworkXError),
+ ("pop", nx.NetworkXError),
+]
+
+
+def _test_heap_class(cls, *args, **kwargs):
+ heap = cls(*args, **kwargs)
+ # Basic behavioral test
+ for op in data:
+ if op[-1] is not nx.NetworkXError:
+ assert op[-1] == getattr(heap, op[0])(*op[1:-1])
+ else:
+ pytest.raises(op[-1], getattr(heap, op[0]), *op[1:-1])
+ # Coverage test.
+ for i in range(99, -1, -1):
+ assert heap.insert(i, i)
+ for i in range(50):
+ assert heap.pop() == (i, i)
+ for i in range(100):
+ assert heap.insert(i, i) == (i < 50)
+ for i in range(100):
+ assert not heap.insert(i, i + 1)
+ for i in range(50):
+ assert heap.pop() == (i, i)
+ for i in range(100):
+ assert heap.insert(i, i + 1) == (i < 50)
+ for i in range(49):
+ assert heap.pop() == (i, i + 1)
+ assert sorted([heap.pop(), heap.pop()]) == [(49, 50), (50, 50)]
+ for i in range(51, 100):
+ assert not heap.insert(i, i + 1, True)
+ for i in range(51, 70):
+ assert heap.pop() == (i, i + 1)
+ for i in range(100):
+ assert heap.insert(i, i)
+ for i in range(100):
+ assert heap.pop() == (i, i)
+ pytest.raises(nx.NetworkXError, heap.pop)
+
+
+def test_PairingHeap():
+ _test_heap_class(PairingHeap)
+
+
+def test_BinaryHeap():
+ _test_heap_class(BinaryHeap)
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_mapped_queue.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_mapped_queue.py
new file mode 100644
index 00000000..ca9b7e42
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_mapped_queue.py
@@ -0,0 +1,268 @@
+import pytest
+
+from networkx.utils.mapped_queue import MappedQueue, _HeapElement
+
+
+def test_HeapElement_gtlt():
+ bar = _HeapElement(1.1, "a")
+ foo = _HeapElement(1, "b")
+ assert foo < bar
+ assert bar > foo
+ assert foo < 1.1
+ assert 1 < bar
+
+
+def test_HeapElement_gtlt_tied_priority():
+ bar = _HeapElement(1, "a")
+ foo = _HeapElement(1, "b")
+ assert foo > bar
+ assert bar < foo
+
+
+def test_HeapElement_eq():
+ bar = _HeapElement(1.1, "a")
+ foo = _HeapElement(1, "a")
+ assert foo == bar
+ assert bar == foo
+ assert foo == "a"
+
+
+def test_HeapElement_iter():
+ foo = _HeapElement(1, "a")
+ bar = _HeapElement(1.1, (3, 2, 1))
+ assert list(foo) == [1, "a"]
+ assert list(bar) == [1.1, 3, 2, 1]
+
+
+def test_HeapElement_getitem():
+ foo = _HeapElement(1, "a")
+ bar = _HeapElement(1.1, (3, 2, 1))
+ assert foo[1] == "a"
+ assert foo[0] == 1
+ assert bar[0] == 1.1
+ assert bar[2] == 2
+ assert bar[3] == 1
+ pytest.raises(IndexError, bar.__getitem__, 4)
+ pytest.raises(IndexError, foo.__getitem__, 2)
+
+
+class TestMappedQueue:
+ def setup_method(self):
+ pass
+
+ def _check_map(self, q):
+ assert q.position == {elt: pos for pos, elt in enumerate(q.heap)}
+
+ def _make_mapped_queue(self, h):
+ q = MappedQueue()
+ q.heap = h
+ q.position = {elt: pos for pos, elt in enumerate(h)}
+ return q
+
+ def test_heapify(self):
+ h = [5, 4, 3, 2, 1, 0]
+ q = self._make_mapped_queue(h)
+ q._heapify()
+ self._check_map(q)
+
+ def test_init(self):
+ h = [5, 4, 3, 2, 1, 0]
+ q = MappedQueue(h)
+ self._check_map(q)
+
+ def test_incomparable(self):
+ h = [5, 4, "a", 2, 1, 0]
+ pytest.raises(TypeError, MappedQueue, h)
+
+ def test_len(self):
+ h = [5, 4, 3, 2, 1, 0]
+ q = MappedQueue(h)
+ self._check_map(q)
+ assert len(q) == 6
+
+ def test_siftup_leaf(self):
+ h = [2]
+ h_sifted = [2]
+ q = self._make_mapped_queue(h)
+ q._siftup(0)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_siftup_one_child(self):
+ h = [2, 0]
+ h_sifted = [0, 2]
+ q = self._make_mapped_queue(h)
+ q._siftup(0)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_siftup_left_child(self):
+ h = [2, 0, 1]
+ h_sifted = [0, 2, 1]
+ q = self._make_mapped_queue(h)
+ q._siftup(0)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_siftup_right_child(self):
+ h = [2, 1, 0]
+ h_sifted = [0, 1, 2]
+ q = self._make_mapped_queue(h)
+ q._siftup(0)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_siftup_multiple(self):
+ h = [0, 1, 2, 4, 3, 5, 6]
+ h_sifted = [0, 1, 2, 4, 3, 5, 6]
+ q = self._make_mapped_queue(h)
+ q._siftup(0)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_siftdown_leaf(self):
+ h = [2]
+ h_sifted = [2]
+ q = self._make_mapped_queue(h)
+ q._siftdown(0, 0)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_siftdown_single(self):
+ h = [1, 0]
+ h_sifted = [0, 1]
+ q = self._make_mapped_queue(h)
+ q._siftdown(0, len(h) - 1)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_siftdown_multiple(self):
+ h = [1, 2, 3, 4, 5, 6, 7, 0]
+ h_sifted = [0, 1, 3, 2, 5, 6, 7, 4]
+ q = self._make_mapped_queue(h)
+ q._siftdown(0, len(h) - 1)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_push(self):
+ to_push = [6, 1, 4, 3, 2, 5, 0]
+ h_sifted = [0, 2, 1, 6, 3, 5, 4]
+ q = MappedQueue()
+ for elt in to_push:
+ q.push(elt)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_push_duplicate(self):
+ to_push = [2, 1, 0]
+ h_sifted = [0, 2, 1]
+ q = MappedQueue()
+ for elt in to_push:
+ inserted = q.push(elt)
+ assert inserted
+ assert q.heap == h_sifted
+ self._check_map(q)
+ inserted = q.push(1)
+ assert not inserted
+
+ def test_pop(self):
+ h = [3, 4, 6, 0, 1, 2, 5]
+ h_sorted = sorted(h)
+ q = self._make_mapped_queue(h)
+ q._heapify()
+ popped = [q.pop() for _ in range(len(h))]
+ assert popped == h_sorted
+ self._check_map(q)
+
+ def test_remove_leaf(self):
+ h = [0, 2, 1, 6, 3, 5, 4]
+ h_removed = [0, 2, 1, 6, 4, 5]
+ q = self._make_mapped_queue(h)
+ removed = q.remove(3)
+ assert q.heap == h_removed
+
+ def test_remove_root(self):
+ h = [0, 2, 1, 6, 3, 5, 4]
+ h_removed = [1, 2, 4, 6, 3, 5]
+ q = self._make_mapped_queue(h)
+ removed = q.remove(0)
+ assert q.heap == h_removed
+
+ def test_update_leaf(self):
+ h = [0, 20, 10, 60, 30, 50, 40]
+ h_updated = [0, 15, 10, 60, 20, 50, 40]
+ q = self._make_mapped_queue(h)
+ removed = q.update(30, 15)
+ assert q.heap == h_updated
+
+ def test_update_root(self):
+ h = [0, 20, 10, 60, 30, 50, 40]
+ h_updated = [10, 20, 35, 60, 30, 50, 40]
+ q = self._make_mapped_queue(h)
+ removed = q.update(0, 35)
+ assert q.heap == h_updated
+
+
+class TestMappedDict(TestMappedQueue):
+ def _make_mapped_queue(self, h):
+ priority_dict = {elt: elt for elt in h}
+ return MappedQueue(priority_dict)
+
+ def test_init(self):
+ d = {5: 0, 4: 1, "a": 2, 2: 3, 1: 4}
+ q = MappedQueue(d)
+ assert q.position == d
+
+ def test_ties(self):
+ d = {5: 0, 4: 1, 3: 2, 2: 3, 1: 4}
+ q = MappedQueue(d)
+ assert q.position == {elt: pos for pos, elt in enumerate(q.heap)}
+
+ def test_pop(self):
+ d = {5: 0, 4: 1, 3: 2, 2: 3, 1: 4}
+ q = MappedQueue(d)
+ assert q.pop() == _HeapElement(0, 5)
+ assert q.position == {elt: pos for pos, elt in enumerate(q.heap)}
+
+ def test_empty_pop(self):
+ q = MappedQueue()
+ pytest.raises(IndexError, q.pop)
+
+ def test_incomparable_ties(self):
+ d = {5: 0, 4: 0, "a": 0, 2: 0, 1: 0}
+ pytest.raises(TypeError, MappedQueue, d)
+
+ def test_push(self):
+ to_push = [6, 1, 4, 3, 2, 5, 0]
+ h_sifted = [0, 2, 1, 6, 3, 5, 4]
+ q = MappedQueue()
+ for elt in to_push:
+ q.push(elt, priority=elt)
+ assert q.heap == h_sifted
+ self._check_map(q)
+
+ def test_push_duplicate(self):
+ to_push = [2, 1, 0]
+ h_sifted = [0, 2, 1]
+ q = MappedQueue()
+ for elt in to_push:
+ inserted = q.push(elt, priority=elt)
+ assert inserted
+ assert q.heap == h_sifted
+ self._check_map(q)
+ inserted = q.push(1, priority=1)
+ assert not inserted
+
+ def test_update_leaf(self):
+ h = [0, 20, 10, 60, 30, 50, 40]
+ h_updated = [0, 15, 10, 60, 20, 50, 40]
+ q = self._make_mapped_queue(h)
+ removed = q.update(30, 15, priority=15)
+ assert q.heap == h_updated
+
+ def test_update_root(self):
+ h = [0, 20, 10, 60, 30, 50, 40]
+ h_updated = [10, 20, 35, 60, 30, 50, 40]
+ q = self._make_mapped_queue(h)
+ removed = q.update(0, 35, priority=35)
+ assert q.heap == h_updated
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py
new file mode 100644
index 00000000..eff36b2a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_misc.py
@@ -0,0 +1,268 @@
+import random
+from copy import copy
+
+import pytest
+
+import networkx as nx
+from networkx.utils import (
+ PythonRandomInterface,
+ PythonRandomViaNumpyBits,
+ arbitrary_element,
+ create_py_random_state,
+ create_random_state,
+ dict_to_numpy_array,
+ discrete_sequence,
+ flatten,
+ groups,
+ make_list_of_ints,
+ pairwise,
+ powerlaw_sequence,
+)
+from networkx.utils.misc import _dict_to_numpy_array1, _dict_to_numpy_array2
+
+nested_depth = (
+ 1,
+ 2,
+ (3, 4, ((5, 6, (7,), (8, (9, 10), 11), (12, 13, (14, 15)), 16), 17), 18, 19),
+ 20,
+)
+
+nested_set = {
+ (1, 2, 3, 4),
+ (5, 6, 7, 8, 9),
+ (10, 11, (12, 13, 14), (15, 16, 17, 18)),
+ 19,
+ 20,
+}
+
+nested_mixed = [
+ 1,
+ (2, 3, {4, (5, 6), 7}, [8, 9]),
+ {10: "foo", 11: "bar", (12, 13): "baz"},
+ {(14, 15): "qwe", 16: "asd"},
+ (17, (18, "19"), 20),
+]
+
+
+@pytest.mark.parametrize("result", [None, [], ["existing"], ["existing1", "existing2"]])
+@pytest.mark.parametrize("nested", [nested_depth, nested_mixed, nested_set])
+def test_flatten(nested, result):
+ if result is None:
+ val = flatten(nested, result)
+ assert len(val) == 20
+ else:
+ _result = copy(result) # because pytest passes parameters as is
+ nexisting = len(_result)
+ val = flatten(nested, _result)
+ assert len(val) == len(_result) == 20 + nexisting
+
+ assert issubclass(type(val), tuple)
+
+
+def test_make_list_of_ints():
+ mylist = [1, 2, 3.0, 42, -2]
+ assert make_list_of_ints(mylist) is mylist
+ assert make_list_of_ints(mylist) == mylist
+ assert type(make_list_of_ints(mylist)[2]) is int
+ pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3, "kermit"])
+ pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3.1])
+
+
+def test_random_number_distribution():
+ # smoke test only
+ z = powerlaw_sequence(20, exponent=2.5)
+ z = discrete_sequence(20, distribution=[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3])
+
+
+class TestNumpyArray:
+ @classmethod
+ def setup_class(cls):
+ global np
+ np = pytest.importorskip("numpy")
+
+ def test_numpy_to_list_of_ints(self):
+ a = np.array([1, 2, 3], dtype=np.int64)
+ b = np.array([1.0, 2, 3])
+ c = np.array([1.1, 2, 3])
+ assert type(make_list_of_ints(a)) == list
+ assert make_list_of_ints(b) == list(b)
+ B = make_list_of_ints(b)
+ assert type(B[0]) == int
+ pytest.raises(nx.NetworkXError, make_list_of_ints, c)
+
+ def test__dict_to_numpy_array1(self):
+ d = {"a": 1, "b": 2}
+ a = _dict_to_numpy_array1(d, mapping={"a": 0, "b": 1})
+ np.testing.assert_allclose(a, np.array([1, 2]))
+ a = _dict_to_numpy_array1(d, mapping={"b": 0, "a": 1})
+ np.testing.assert_allclose(a, np.array([2, 1]))
+
+ a = _dict_to_numpy_array1(d)
+ np.testing.assert_allclose(a.sum(), 3)
+
+ def test__dict_to_numpy_array2(self):
+ d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}}
+
+ mapping = {"a": 1, "b": 0}
+ a = _dict_to_numpy_array2(d, mapping=mapping)
+ np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]]))
+
+ a = _dict_to_numpy_array2(d)
+ np.testing.assert_allclose(a.sum(), 33)
+
+ def test_dict_to_numpy_array_a(self):
+ d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}}
+
+ mapping = {"a": 0, "b": 1}
+ a = dict_to_numpy_array(d, mapping=mapping)
+ np.testing.assert_allclose(a, np.array([[1, 2], [10, 20]]))
+
+ mapping = {"a": 1, "b": 0}
+ a = dict_to_numpy_array(d, mapping=mapping)
+ np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]]))
+
+ a = _dict_to_numpy_array2(d)
+ np.testing.assert_allclose(a.sum(), 33)
+
+ def test_dict_to_numpy_array_b(self):
+ d = {"a": 1, "b": 2}
+
+ mapping = {"a": 0, "b": 1}
+ a = dict_to_numpy_array(d, mapping=mapping)
+ np.testing.assert_allclose(a, np.array([1, 2]))
+
+ a = _dict_to_numpy_array1(d)
+ np.testing.assert_allclose(a.sum(), 3)
+
+
+def test_pairwise():
+ nodes = range(4)
+ node_pairs = [(0, 1), (1, 2), (2, 3)]
+ node_pairs_cycle = node_pairs + [(3, 0)]
+ assert list(pairwise(nodes)) == node_pairs
+ assert list(pairwise(iter(nodes))) == node_pairs
+ assert list(pairwise(nodes, cyclic=True)) == node_pairs_cycle
+ empty_iter = iter(())
+ assert list(pairwise(empty_iter)) == []
+ empty_iter = iter(())
+ assert list(pairwise(empty_iter, cyclic=True)) == []
+
+
+def test_groups():
+ many_to_one = dict(zip("abcde", [0, 0, 1, 1, 2]))
+ actual = groups(many_to_one)
+ expected = {0: {"a", "b"}, 1: {"c", "d"}, 2: {"e"}}
+ assert actual == expected
+ assert {} == groups({})
+
+
+def test_create_random_state():
+ np = pytest.importorskip("numpy")
+ rs = np.random.RandomState
+
+ assert isinstance(create_random_state(1), rs)
+ assert isinstance(create_random_state(None), rs)
+ assert isinstance(create_random_state(np.random), rs)
+ assert isinstance(create_random_state(rs(1)), rs)
+ # Support for numpy.random.Generator
+ rng = np.random.default_rng()
+ assert isinstance(create_random_state(rng), np.random.Generator)
+ pytest.raises(ValueError, create_random_state, "a")
+
+ assert np.all(rs(1).rand(10) == create_random_state(1).rand(10))
+
+
+def test_create_py_random_state():
+ pyrs = random.Random
+
+ assert isinstance(create_py_random_state(1), pyrs)
+ assert isinstance(create_py_random_state(None), pyrs)
+ assert isinstance(create_py_random_state(pyrs(1)), pyrs)
+ pytest.raises(ValueError, create_py_random_state, "a")
+
+ np = pytest.importorskip("numpy")
+
+ rs = np.random.RandomState
+ rng = np.random.default_rng(1000)
+ rng_explicit = np.random.Generator(np.random.SFC64())
+ old_nprs = PythonRandomInterface
+ nprs = PythonRandomViaNumpyBits
+ assert isinstance(create_py_random_state(np.random), nprs)
+ assert isinstance(create_py_random_state(rs(1)), old_nprs)
+ assert isinstance(create_py_random_state(rng), nprs)
+ assert isinstance(create_py_random_state(rng_explicit), nprs)
+ # test default rng input
+ assert isinstance(PythonRandomInterface(), old_nprs)
+ assert isinstance(PythonRandomViaNumpyBits(), nprs)
+
+ # VeryLargeIntegers Smoke test (they raise error for np.random)
+ int64max = 9223372036854775807 # from np.iinfo(np.int64).max
+ for r in (rng, rs(1)):
+ prs = create_py_random_state(r)
+ prs.randrange(3, int64max + 5)
+ prs.randint(3, int64max + 5)
+
+
+def test_PythonRandomInterface_RandomState():
+ np = pytest.importorskip("numpy")
+
+ seed = 42
+ rs = np.random.RandomState
+ rng = PythonRandomInterface(rs(seed))
+ rs42 = rs(seed)
+
+ # make sure these functions are same as expected outcome
+ assert rng.randrange(3, 5) == rs42.randint(3, 5)
+ assert rng.choice([1, 2, 3]) == rs42.choice([1, 2, 3])
+ assert rng.gauss(0, 1) == rs42.normal(0, 1)
+ assert rng.expovariate(1.5) == rs42.exponential(1 / 1.5)
+ assert np.all(rng.shuffle([1, 2, 3]) == rs42.shuffle([1, 2, 3]))
+ assert np.all(
+ rng.sample([1, 2, 3], 2) == rs42.choice([1, 2, 3], (2,), replace=False)
+ )
+ assert np.all(
+ [rng.randint(3, 5) for _ in range(100)]
+ == [rs42.randint(3, 6) for _ in range(100)]
+ )
+ assert rng.random() == rs42.random_sample()
+
+
+def test_PythonRandomInterface_Generator():
+ np = pytest.importorskip("numpy")
+
+ seed = 42
+ rng = np.random.default_rng(seed)
+ pri = PythonRandomInterface(np.random.default_rng(seed))
+
+ # make sure these functions are same as expected outcome
+ assert pri.randrange(3, 5) == rng.integers(3, 5)
+ assert pri.choice([1, 2, 3]) == rng.choice([1, 2, 3])
+ assert pri.gauss(0, 1) == rng.normal(0, 1)
+ assert pri.expovariate(1.5) == rng.exponential(1 / 1.5)
+ assert np.all(pri.shuffle([1, 2, 3]) == rng.shuffle([1, 2, 3]))
+ assert np.all(
+ pri.sample([1, 2, 3], 2) == rng.choice([1, 2, 3], (2,), replace=False)
+ )
+ assert np.all(
+ [pri.randint(3, 5) for _ in range(100)]
+ == [rng.integers(3, 6) for _ in range(100)]
+ )
+ assert pri.random() == rng.random()
+
+
+@pytest.mark.parametrize(
+ ("iterable_type", "expected"), ((list, 1), (tuple, 1), (str, "["), (set, 1))
+)
+def test_arbitrary_element(iterable_type, expected):
+ iterable = iterable_type([1, 2, 3])
+ assert arbitrary_element(iterable) == expected
+
+
+@pytest.mark.parametrize(
+ "iterator",
+ ((i for i in range(3)), iter([1, 2, 3])), # generator
+)
+def test_arbitrary_element_raises(iterator):
+ """Value error is raised when input is an iterator."""
+ with pytest.raises(ValueError, match="from an iterator"):
+ arbitrary_element(iterator)
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_random_sequence.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_random_sequence.py
new file mode 100644
index 00000000..1d1b9579
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_random_sequence.py
@@ -0,0 +1,38 @@
+import pytest
+
+from networkx.utils import (
+ powerlaw_sequence,
+ random_weighted_sample,
+ weighted_choice,
+ zipf_rv,
+)
+
+
+def test_degree_sequences():
+ seq = powerlaw_sequence(10, seed=1)
+ seq = powerlaw_sequence(10)
+ assert len(seq) == 10
+
+
+def test_zipf_rv():
+ r = zipf_rv(2.3, xmin=2, seed=1)
+ r = zipf_rv(2.3, 2, 1)
+ r = zipf_rv(2.3)
+ assert type(r), int
+ pytest.raises(ValueError, zipf_rv, 0.5)
+ pytest.raises(ValueError, zipf_rv, 2, xmin=0)
+
+
+def test_random_weighted_sample():
+ mapping = {"a": 10, "b": 20}
+ s = random_weighted_sample(mapping, 2, seed=1)
+ s = random_weighted_sample(mapping, 2)
+ assert sorted(s) == sorted(mapping.keys())
+ pytest.raises(ValueError, random_weighted_sample, mapping, 3)
+
+
+def test_random_weighted_choice():
+ mapping = {"a": 10, "b": 0}
+ c = weighted_choice(mapping, seed=1)
+ c = weighted_choice(mapping)
+ assert c == "a"
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_rcm.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_rcm.py
new file mode 100644
index 00000000..88702b36
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_rcm.py
@@ -0,0 +1,63 @@
+import networkx as nx
+from networkx.utils import reverse_cuthill_mckee_ordering
+
+
+def test_reverse_cuthill_mckee():
+ # example graph from
+ # http://www.boost.org/doc/libs/1_37_0/libs/graph/example/cuthill_mckee_ordering.cpp
+ G = nx.Graph(
+ [
+ (0, 3),
+ (0, 5),
+ (1, 2),
+ (1, 4),
+ (1, 6),
+ (1, 9),
+ (2, 3),
+ (2, 4),
+ (3, 5),
+ (3, 8),
+ (4, 6),
+ (5, 6),
+ (5, 7),
+ (6, 7),
+ ]
+ )
+ rcm = list(reverse_cuthill_mckee_ordering(G))
+ assert rcm in [[0, 8, 5, 7, 3, 6, 2, 4, 1, 9], [0, 8, 5, 7, 3, 6, 4, 2, 1, 9]]
+
+
+def test_rcm_alternate_heuristic():
+ # example from
+ G = nx.Graph(
+ [
+ (0, 0),
+ (0, 4),
+ (1, 1),
+ (1, 2),
+ (1, 5),
+ (1, 7),
+ (2, 2),
+ (2, 4),
+ (3, 3),
+ (3, 6),
+ (4, 4),
+ (5, 5),
+ (5, 7),
+ (6, 6),
+ (7, 7),
+ ]
+ )
+
+ answers = [
+ [6, 3, 5, 7, 1, 2, 4, 0],
+ [6, 3, 7, 5, 1, 2, 4, 0],
+ [7, 5, 1, 2, 4, 0, 6, 3],
+ ]
+
+ def smallest_degree(G):
+ deg, node = min((d, n) for n, d in G.degree())
+ return node
+
+ rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))
+ assert rcm in answers
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_unionfind.py b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_unionfind.py
new file mode 100644
index 00000000..2d30580f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/tests/test_unionfind.py
@@ -0,0 +1,55 @@
+import networkx as nx
+
+
+def test_unionfind():
+ # Fixed by: 2cddd5958689bdecdcd89b91ac9aaf6ce0e4f6b8
+ # Previously (in 2.x), the UnionFind class could handle mixed types.
+ # But in Python 3.x, this causes a TypeError such as:
+ # TypeError: unorderable types: str() > int()
+ #
+ # Now we just make sure that no exception is raised.
+ x = nx.utils.UnionFind()
+ x.union(0, "a")
+
+
+def test_subtree_union():
+ # See https://github.com/networkx/networkx/pull/3224
+ # (35db1b551ee65780794a357794f521d8768d5049).
+ # Test if subtree unions hare handled correctly by to_sets().
+ uf = nx.utils.UnionFind()
+ uf.union(1, 2)
+ uf.union(3, 4)
+ uf.union(4, 5)
+ uf.union(1, 5)
+ assert list(uf.to_sets()) == [{1, 2, 3, 4, 5}]
+
+
+def test_unionfind_weights():
+ # Tests if weights are computed correctly with unions of many elements
+ uf = nx.utils.UnionFind()
+ uf.union(1, 4, 7)
+ uf.union(2, 5, 8)
+ uf.union(3, 6, 9)
+ uf.union(1, 2, 3, 4, 5, 6, 7, 8, 9)
+ assert uf.weights[uf[1]] == 9
+
+
+def test_unbalanced_merge_weights():
+ # Tests if the largest set's root is used as the new root when merging
+ uf = nx.utils.UnionFind()
+ uf.union(1, 2, 3)
+ uf.union(4, 5, 6, 7, 8, 9)
+ assert uf.weights[uf[1]] == 3
+ assert uf.weights[uf[4]] == 6
+ largest_root = uf[4]
+ uf.union(1, 4)
+ assert uf[1] == largest_root
+ assert uf.weights[largest_root] == 9
+
+
+def test_empty_union():
+ # Tests if a null-union does nothing.
+ uf = nx.utils.UnionFind((0, 1))
+ uf.union()
+ assert uf[0] == 0
+ assert uf[1] == 1
diff --git a/.venv/lib/python3.12/site-packages/networkx/utils/union_find.py b/.venv/lib/python3.12/site-packages/networkx/utils/union_find.py
new file mode 100644
index 00000000..2a07129f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/utils/union_find.py
@@ -0,0 +1,106 @@
+"""
+Union-find data structure.
+"""
+
+from networkx.utils import groups
+
+
+class UnionFind:
+ """Union-find data structure.
+
+ Each unionFind instance X maintains a family of disjoint sets of
+ hashable objects, supporting the following two methods:
+
+ - X[item] returns a name for the set containing the given item.
+ Each set is named by an arbitrarily-chosen one of its members; as
+ long as the set remains unchanged it will keep the same name. If
+ the item is not yet part of a set in X, a new singleton set is
+ created for it.
+
+ - X.union(item1, item2, ...) merges the sets containing each item
+ into a single larger set. If any item is not yet part of a set
+ in X, it is added to X as one of the members of the merged set.
+
+ Union-find data structure. Based on Josiah Carlson's code,
+ https://code.activestate.com/recipes/215912/
+ with significant additional changes by D. Eppstein.
+ http://www.ics.uci.edu/~eppstein/PADS/UnionFind.py
+
+ """
+
+ def __init__(self, elements=None):
+ """Create a new empty union-find structure.
+
+ If *elements* is an iterable, this structure will be initialized
+ with the discrete partition on the given set of elements.
+
+ """
+ if elements is None:
+ elements = ()
+ self.parents = {}
+ self.weights = {}
+ for x in elements:
+ self.weights[x] = 1
+ self.parents[x] = x
+
+ def __getitem__(self, object):
+ """Find and return the name of the set containing the object."""
+
+ # check for previously unknown object
+ if object not in self.parents:
+ self.parents[object] = object
+ self.weights[object] = 1
+ return object
+
+ # find path of objects leading to the root
+ path = []
+ root = self.parents[object]
+ while root != object:
+ path.append(object)
+ object = root
+ root = self.parents[object]
+
+ # compress the path and return
+ for ancestor in path:
+ self.parents[ancestor] = root
+ return root
+
+ def __iter__(self):
+ """Iterate through all items ever found or unioned by this structure."""
+ return iter(self.parents)
+
+ def to_sets(self):
+ """Iterates over the sets stored in this structure.
+
+ For example::
+
+ >>> partition = UnionFind("xyz")
+ >>> sorted(map(sorted, partition.to_sets()))
+ [['x'], ['y'], ['z']]
+ >>> partition.union("x", "y")
+ >>> sorted(map(sorted, partition.to_sets()))
+ [['x', 'y'], ['z']]
+
+ """
+ # Ensure fully pruned paths
+ for x in self.parents:
+ _ = self[x] # Evaluated for side-effect only
+
+ yield from groups(self.parents).values()
+
+ def union(self, *objects):
+ """Find the sets containing the objects and merge them all."""
+ # Find the heaviest root according to its weight.
+ roots = iter(
+ sorted(
+ {self[x] for x in objects}, key=lambda r: self.weights[r], reverse=True
+ )
+ )
+ try:
+ root = next(roots)
+ except StopIteration:
+ return
+
+ for r in roots:
+ self.weights[root] += self.weights[r]
+ self.parents[r] = root