aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_scipy.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/tests/test_convert_scipy.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/tests/test_convert_scipy.py282
1 files changed, 282 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_scipy.py b/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_scipy.py
new file mode 100644
index 00000000..aa513b85
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_scipy.py
@@ -0,0 +1,282 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+sp = pytest.importorskip("scipy")
+
+import networkx as nx
+from networkx.generators.classic import barbell_graph, cycle_graph, path_graph
+from networkx.utils import graphs_equal
+
+
+class TestConvertScipy:
+ def setup_method(self):
+ self.G1 = barbell_graph(10, 3)
+ self.G2 = cycle_graph(10, create_using=nx.DiGraph)
+
+ self.G3 = self.create_weighted(nx.Graph())
+ self.G4 = self.create_weighted(nx.DiGraph())
+
+ def test_exceptions(self):
+ class G:
+ format = None
+
+ pytest.raises(nx.NetworkXError, nx.to_networkx_graph, G)
+
+ def create_weighted(self, G):
+ g = cycle_graph(4)
+ e = list(g.edges())
+ source = [u for u, v in e]
+ dest = [v for u, v in e]
+ weight = [s + 10 for s in source]
+ ex = zip(source, dest, weight)
+ G.add_weighted_edges_from(ex)
+ return G
+
+ def identity_conversion(self, G, A, create_using):
+ GG = nx.from_scipy_sparse_array(A, create_using=create_using)
+ assert nx.is_isomorphic(G, GG)
+
+ GW = nx.to_networkx_graph(A, create_using=create_using)
+ assert nx.is_isomorphic(G, GW)
+
+ GI = nx.empty_graph(0, create_using).__class__(A)
+ assert nx.is_isomorphic(G, GI)
+
+ ACSR = A.tocsr()
+ GI = nx.empty_graph(0, create_using).__class__(ACSR)
+ assert nx.is_isomorphic(G, GI)
+
+ ACOO = A.tocoo()
+ GI = nx.empty_graph(0, create_using).__class__(ACOO)
+ assert nx.is_isomorphic(G, GI)
+
+ ACSC = A.tocsc()
+ GI = nx.empty_graph(0, create_using).__class__(ACSC)
+ assert nx.is_isomorphic(G, GI)
+
+ AD = A.todense()
+ GI = nx.empty_graph(0, create_using).__class__(AD)
+ assert nx.is_isomorphic(G, GI)
+
+ AA = A.toarray()
+ GI = nx.empty_graph(0, create_using).__class__(AA)
+ assert nx.is_isomorphic(G, GI)
+
+ def test_shape(self):
+ "Conversion from non-square sparse array."
+ A = sp.sparse.lil_array([[1, 2, 3], [4, 5, 6]])
+ pytest.raises(nx.NetworkXError, nx.from_scipy_sparse_array, A)
+
+ def test_identity_graph_matrix(self):
+ "Conversion from graph to sparse matrix to graph."
+ A = nx.to_scipy_sparse_array(self.G1)
+ self.identity_conversion(self.G1, A, nx.Graph())
+
+ def test_identity_digraph_matrix(self):
+ "Conversion from digraph to sparse matrix to digraph."
+ A = nx.to_scipy_sparse_array(self.G2)
+ self.identity_conversion(self.G2, A, nx.DiGraph())
+
+ def test_identity_weighted_graph_matrix(self):
+ """Conversion from weighted graph to sparse matrix to weighted graph."""
+ A = nx.to_scipy_sparse_array(self.G3)
+ self.identity_conversion(self.G3, A, nx.Graph())
+
+ def test_identity_weighted_digraph_matrix(self):
+ """Conversion from weighted digraph to sparse matrix to weighted digraph."""
+ A = nx.to_scipy_sparse_array(self.G4)
+ self.identity_conversion(self.G4, A, nx.DiGraph())
+
+ def test_nodelist(self):
+ """Conversion from graph to sparse matrix to graph with nodelist."""
+ P4 = path_graph(4)
+ P3 = path_graph(3)
+ nodelist = list(P3.nodes())
+ A = nx.to_scipy_sparse_array(P4, nodelist=nodelist)
+ GA = nx.Graph(A)
+ assert nx.is_isomorphic(GA, P3)
+
+ pytest.raises(nx.NetworkXError, nx.to_scipy_sparse_array, P3, nodelist=[])
+ # Test nodelist duplicates.
+ long_nl = nodelist + [0]
+ pytest.raises(nx.NetworkXError, nx.to_scipy_sparse_array, P3, nodelist=long_nl)
+
+ # Test nodelist contains non-nodes
+ non_nl = [-1, 0, 1, 2]
+ pytest.raises(nx.NetworkXError, nx.to_scipy_sparse_array, P3, nodelist=non_nl)
+
+ def test_weight_keyword(self):
+ WP4 = nx.Graph()
+ WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3))
+ P4 = path_graph(4)
+ A = nx.to_scipy_sparse_array(P4)
+ np.testing.assert_equal(
+ A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense()
+ )
+ np.testing.assert_equal(
+ 0.5 * A.todense(), nx.to_scipy_sparse_array(WP4).todense()
+ )
+ np.testing.assert_equal(
+ 0.3 * A.todense(), nx.to_scipy_sparse_array(WP4, weight="other").todense()
+ )
+
+ def test_format_keyword(self):
+ WP4 = nx.Graph()
+ WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3))
+ P4 = path_graph(4)
+ A = nx.to_scipy_sparse_array(P4, format="csr")
+ np.testing.assert_equal(
+ A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense()
+ )
+
+ A = nx.to_scipy_sparse_array(P4, format="csc")
+ np.testing.assert_equal(
+ A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense()
+ )
+
+ A = nx.to_scipy_sparse_array(P4, format="coo")
+ np.testing.assert_equal(
+ A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense()
+ )
+
+ A = nx.to_scipy_sparse_array(P4, format="bsr")
+ np.testing.assert_equal(
+ A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense()
+ )
+
+ A = nx.to_scipy_sparse_array(P4, format="lil")
+ np.testing.assert_equal(
+ A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense()
+ )
+
+ A = nx.to_scipy_sparse_array(P4, format="dia")
+ np.testing.assert_equal(
+ A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense()
+ )
+
+ A = nx.to_scipy_sparse_array(P4, format="dok")
+ np.testing.assert_equal(
+ A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense()
+ )
+
+ def test_format_keyword_raise(self):
+ with pytest.raises(nx.NetworkXError):
+ WP4 = nx.Graph()
+ WP4.add_edges_from(
+ (n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3)
+ )
+ P4 = path_graph(4)
+ nx.to_scipy_sparse_array(P4, format="any_other")
+
+ def test_null_raise(self):
+ with pytest.raises(nx.NetworkXError):
+ nx.to_scipy_sparse_array(nx.Graph())
+
+ def test_empty(self):
+ G = nx.Graph()
+ G.add_node(1)
+ M = nx.to_scipy_sparse_array(G)
+ np.testing.assert_equal(M.toarray(), np.array([[0]]))
+
+ def test_ordering(self):
+ G = nx.DiGraph()
+ G.add_edge(1, 2)
+ G.add_edge(2, 3)
+ G.add_edge(3, 1)
+ M = nx.to_scipy_sparse_array(G, nodelist=[3, 2, 1])
+ np.testing.assert_equal(
+ M.toarray(), np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]])
+ )
+
+ def test_selfloop_graph(self):
+ G = nx.Graph([(1, 1)])
+ M = nx.to_scipy_sparse_array(G)
+ np.testing.assert_equal(M.toarray(), np.array([[1]]))
+
+ G.add_edges_from([(2, 3), (3, 4)])
+ M = nx.to_scipy_sparse_array(G, nodelist=[2, 3, 4])
+ np.testing.assert_equal(
+ M.toarray(), np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]])
+ )
+
+ def test_selfloop_digraph(self):
+ G = nx.DiGraph([(1, 1)])
+ M = nx.to_scipy_sparse_array(G)
+ np.testing.assert_equal(M.toarray(), np.array([[1]]))
+
+ G.add_edges_from([(2, 3), (3, 4)])
+ M = nx.to_scipy_sparse_array(G, nodelist=[2, 3, 4])
+ np.testing.assert_equal(
+ M.toarray(), np.array([[0, 1, 0], [0, 0, 1], [0, 0, 0]])
+ )
+
+ def test_from_scipy_sparse_array_parallel_edges(self):
+ """Tests that the :func:`networkx.from_scipy_sparse_array` function
+ interprets integer weights as the number of parallel edges when
+ creating a multigraph.
+
+ """
+ A = sp.sparse.csr_array([[1, 1], [1, 2]])
+ # First, with a simple graph, each integer entry in the adjacency
+ # matrix is interpreted as the weight of a single edge in the graph.
+ expected = nx.DiGraph()
+ edges = [(0, 0), (0, 1), (1, 0)]
+ expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
+ expected.add_edge(1, 1, weight=2)
+ actual = nx.from_scipy_sparse_array(
+ A, parallel_edges=True, create_using=nx.DiGraph
+ )
+ assert graphs_equal(actual, expected)
+ actual = nx.from_scipy_sparse_array(
+ A, parallel_edges=False, create_using=nx.DiGraph
+ )
+ assert graphs_equal(actual, expected)
+ # Now each integer entry in the adjacency matrix is interpreted as the
+ # number of parallel edges in the graph if the appropriate keyword
+ # argument is specified.
+ edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
+ expected = nx.MultiDiGraph()
+ expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
+ actual = nx.from_scipy_sparse_array(
+ A, parallel_edges=True, create_using=nx.MultiDiGraph
+ )
+ assert graphs_equal(actual, expected)
+ expected = nx.MultiDiGraph()
+ expected.add_edges_from(set(edges), weight=1)
+ # The sole self-loop (edge 0) on vertex 1 should have weight 2.
+ expected[1][1][0]["weight"] = 2
+ actual = nx.from_scipy_sparse_array(
+ A, parallel_edges=False, create_using=nx.MultiDiGraph
+ )
+ assert graphs_equal(actual, expected)
+
+ def test_symmetric(self):
+ """Tests that a symmetric matrix has edges added only once to an
+ undirected multigraph when using
+ :func:`networkx.from_scipy_sparse_array`.
+
+ """
+ A = sp.sparse.csr_array([[0, 1], [1, 0]])
+ G = nx.from_scipy_sparse_array(A, create_using=nx.MultiGraph)
+ expected = nx.MultiGraph()
+ expected.add_edge(0, 1, weight=1)
+ assert graphs_equal(G, expected)
+
+
+@pytest.mark.parametrize("sparse_format", ("csr", "csc", "dok"))
+def test_from_scipy_sparse_array_formats(sparse_format):
+ """Test all formats supported by _generate_weighted_edges."""
+ # trinode complete graph with non-uniform edge weights
+ expected = nx.Graph()
+ expected.add_edges_from(
+ [
+ (0, 1, {"weight": 3}),
+ (0, 2, {"weight": 2}),
+ (1, 0, {"weight": 3}),
+ (1, 2, {"weight": 1}),
+ (2, 0, {"weight": 2}),
+ (2, 1, {"weight": 1}),
+ ]
+ )
+ A = sp.sparse.coo_array([[0, 3, 2], [3, 0, 1], [2, 1, 0]]).asformat(sparse_format)
+ assert graphs_equal(expected, nx.from_scipy_sparse_array(A))