diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/relabel.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/relabel.py | 285 |
1 files changed, 285 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/relabel.py b/.venv/lib/python3.12/site-packages/networkx/relabel.py new file mode 100644 index 00000000..4b870f72 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/relabel.py @@ -0,0 +1,285 @@ +import networkx as nx + +__all__ = ["convert_node_labels_to_integers", "relabel_nodes"] + + +@nx._dispatchable( + preserve_all_attrs=True, mutates_input={"not copy": 2}, returns_graph=True +) +def relabel_nodes(G, mapping, copy=True): + """Relabel the nodes of the graph G according to a given mapping. + + The original node ordering may not be preserved if `copy` is `False` and the + mapping includes overlap between old and new labels. + + Parameters + ---------- + G : graph + A NetworkX graph + + mapping : dictionary + A dictionary with the old labels as keys and new labels as values. + A partial mapping is allowed. Mapping 2 nodes to a single node is allowed. + Any non-node keys in the mapping are ignored. + + copy : bool (optional, default=True) + If True return a copy, or if False relabel the nodes in place. + + Examples + -------- + To create a new graph with nodes relabeled according to a given + dictionary: + + >>> G = nx.path_graph(3) + >>> sorted(G) + [0, 1, 2] + >>> mapping = {0: "a", 1: "b", 2: "c"} + >>> H = nx.relabel_nodes(G, mapping) + >>> sorted(H) + ['a', 'b', 'c'] + + Nodes can be relabeled with any hashable object, including numbers + and strings: + + >>> import string + >>> G = nx.path_graph(26) # nodes are integers 0 through 25 + >>> sorted(G)[:3] + [0, 1, 2] + >>> mapping = dict(zip(G, string.ascii_lowercase)) + >>> G = nx.relabel_nodes(G, mapping) # nodes are characters a through z + >>> sorted(G)[:3] + ['a', 'b', 'c'] + >>> mapping = dict(zip(G, range(1, 27))) + >>> G = nx.relabel_nodes(G, mapping) # nodes are integers 1 through 26 + >>> sorted(G)[:3] + [1, 2, 3] + + To perform a partial in-place relabeling, provide a dictionary + mapping only a subset of the nodes, and set the `copy` keyword + argument to False: + + >>> G = nx.path_graph(3) # nodes 0-1-2 + >>> mapping = {0: "a", 1: "b"} # 0->'a' and 1->'b' + >>> G = nx.relabel_nodes(G, mapping, copy=False) + >>> sorted(G, key=str) + [2, 'a', 'b'] + + A mapping can also be given as a function: + + >>> G = nx.path_graph(3) + >>> H = nx.relabel_nodes(G, lambda x: x**2) + >>> list(H) + [0, 1, 4] + + In a multigraph, relabeling two or more nodes to the same new node + will retain all edges, but may change the edge keys in the process: + + >>> G = nx.MultiGraph() + >>> G.add_edge(0, 1, value="a") # returns the key for this edge + 0 + >>> G.add_edge(0, 2, value="b") + 0 + >>> G.add_edge(0, 3, value="c") + 0 + >>> mapping = {1: 4, 2: 4, 3: 4} + >>> H = nx.relabel_nodes(G, mapping, copy=True) + >>> print(H[0]) + {4: {0: {'value': 'a'}, 1: {'value': 'b'}, 2: {'value': 'c'}}} + + This works for in-place relabeling too: + + >>> G = nx.relabel_nodes(G, mapping, copy=False) + >>> print(G[0]) + {4: {0: {'value': 'a'}, 1: {'value': 'b'}, 2: {'value': 'c'}}} + + Notes + ----- + Only the nodes specified in the mapping will be relabeled. + Any non-node keys in the mapping are ignored. + + The keyword setting copy=False modifies the graph in place. + Relabel_nodes avoids naming collisions by building a + directed graph from ``mapping`` which specifies the order of + relabelings. Naming collisions, such as a->b, b->c, are ordered + such that "b" gets renamed to "c" before "a" gets renamed "b". + In cases of circular mappings (e.g. a->b, b->a), modifying the + graph is not possible in-place and an exception is raised. + In that case, use copy=True. + + If a relabel operation on a multigraph would cause two or more + edges to have the same source, target and key, the second edge must + be assigned a new key to retain all edges. The new key is set + to the lowest non-negative integer not already used as a key + for edges between these two nodes. Note that this means non-numeric + keys may be replaced by numeric keys. + + See Also + -------- + convert_node_labels_to_integers + """ + # you can pass any callable e.g. f(old_label) -> new_label or + # e.g. str(old_label) -> new_label, but we'll just make a dictionary here regardless + m = {n: mapping(n) for n in G} if callable(mapping) else mapping + + if copy: + return _relabel_copy(G, m) + else: + return _relabel_inplace(G, m) + + +def _relabel_inplace(G, mapping): + if len(mapping.keys() & mapping.values()) > 0: + # labels sets overlap + # can we topological sort and still do the relabeling? + D = nx.DiGraph(list(mapping.items())) + D.remove_edges_from(nx.selfloop_edges(D)) + try: + nodes = reversed(list(nx.topological_sort(D))) + except nx.NetworkXUnfeasible as err: + raise nx.NetworkXUnfeasible( + "The node label sets are overlapping and no ordering can " + "resolve the mapping. Use copy=True." + ) from err + else: + # non-overlapping label sets, sort them in the order of G nodes + nodes = [n for n in G if n in mapping] + + multigraph = G.is_multigraph() + directed = G.is_directed() + + for old in nodes: + # Test that old is in both mapping and G, otherwise ignore. + try: + new = mapping[old] + G.add_node(new, **G.nodes[old]) + except KeyError: + continue + if new == old: + continue + if multigraph: + new_edges = [ + (new, new if old == target else target, key, data) + for (_, target, key, data) in G.edges(old, data=True, keys=True) + ] + if directed: + new_edges += [ + (new if old == source else source, new, key, data) + for (source, _, key, data) in G.in_edges(old, data=True, keys=True) + ] + # Ensure new edges won't overwrite existing ones + seen = set() + for i, (source, target, key, data) in enumerate(new_edges): + if target in G[source] and key in G[source][target]: + new_key = 0 if not isinstance(key, int | float) else key + while new_key in G[source][target] or (target, new_key) in seen: + new_key += 1 + new_edges[i] = (source, target, new_key, data) + seen.add((target, new_key)) + else: + new_edges = [ + (new, new if old == target else target, data) + for (_, target, data) in G.edges(old, data=True) + ] + if directed: + new_edges += [ + (new if old == source else source, new, data) + for (source, _, data) in G.in_edges(old, data=True) + ] + G.remove_node(old) + G.add_edges_from(new_edges) + return G + + +def _relabel_copy(G, mapping): + H = G.__class__() + H.add_nodes_from(mapping.get(n, n) for n in G) + H._node.update((mapping.get(n, n), d.copy()) for n, d in G.nodes.items()) + if G.is_multigraph(): + new_edges = [ + (mapping.get(n1, n1), mapping.get(n2, n2), k, d.copy()) + for (n1, n2, k, d) in G.edges(keys=True, data=True) + ] + + # check for conflicting edge-keys + undirected = not G.is_directed() + seen_edges = set() + for i, (source, target, key, data) in enumerate(new_edges): + while (source, target, key) in seen_edges: + if not isinstance(key, int | float): + key = 0 + key += 1 + seen_edges.add((source, target, key)) + if undirected: + seen_edges.add((target, source, key)) + new_edges[i] = (source, target, key, data) + + H.add_edges_from(new_edges) + else: + H.add_edges_from( + (mapping.get(n1, n1), mapping.get(n2, n2), d.copy()) + for (n1, n2, d) in G.edges(data=True) + ) + H.graph.update(G.graph) + return H + + +@nx._dispatchable(preserve_all_attrs=True, returns_graph=True) +def convert_node_labels_to_integers( + G, first_label=0, ordering="default", label_attribute=None +): + """Returns a copy of the graph G with the nodes relabeled using + consecutive integers. + + Parameters + ---------- + G : graph + A NetworkX graph + + first_label : int, optional (default=0) + An integer specifying the starting offset in numbering nodes. + The new integer labels are numbered first_label, ..., n-1+first_label. + + ordering : string + "default" : inherit node ordering from G.nodes() + "sorted" : inherit node ordering from sorted(G.nodes()) + "increasing degree" : nodes are sorted by increasing degree + "decreasing degree" : nodes are sorted by decreasing degree + + label_attribute : string, optional (default=None) + Name of node attribute to store old label. If None no attribute + is created. + + Notes + ----- + Node and edge attribute data are copied to the new (relabeled) graph. + + There is no guarantee that the relabeling of nodes to integers will + give the same two integers for two (even identical graphs). + Use the `ordering` argument to try to preserve the order. + + See Also + -------- + relabel_nodes + """ + N = G.number_of_nodes() + first_label + if ordering == "default": + mapping = dict(zip(G.nodes(), range(first_label, N))) + elif ordering == "sorted": + nlist = sorted(G.nodes()) + mapping = dict(zip(nlist, range(first_label, N))) + elif ordering == "increasing degree": + dv_pairs = [(d, n) for (n, d) in G.degree()] + dv_pairs.sort() # in-place sort from lowest to highest degree + mapping = dict(zip([n for d, n in dv_pairs], range(first_label, N))) + elif ordering == "decreasing degree": + dv_pairs = [(d, n) for (n, d) in G.degree()] + dv_pairs.sort() # in-place sort from lowest to highest degree + dv_pairs.reverse() + mapping = dict(zip([n for d, n in dv_pairs], range(first_label, N))) + else: + raise nx.NetworkXError(f"Unknown node ordering: {ordering}") + H = relabel_nodes(G, mapping) + # create node attribute with the old label + if label_attribute is not None: + nx.set_node_attributes(H, {v: k for k, v in mapping.items()}, label_attribute) + return H |