aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/linalg/tests
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/linalg/tests')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_algebraic_connectivity.py402
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_attrmatrix.py108
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_bethehessian.py41
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py276
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_laplacian.py336
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py87
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_spectrum.py71
8 files changed, 1321 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/__init__.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_algebraic_connectivity.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_algebraic_connectivity.py
new file mode 100644
index 00000000..089d917a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_algebraic_connectivity.py
@@ -0,0 +1,402 @@
+from math import sqrt
+
+import pytest
+
+np = pytest.importorskip("numpy")
+
+
+import networkx as nx
+
+methods = ("tracemin_pcg", "tracemin_lu", "lanczos", "lobpcg")
+
+
+def test_algebraic_connectivity_tracemin_chol():
+ """Test that "tracemin_chol" raises an exception."""
+ pytest.importorskip("scipy")
+ G = nx.barbell_graph(5, 4)
+ with pytest.raises(nx.NetworkXError):
+ nx.algebraic_connectivity(G, method="tracemin_chol")
+
+
+def test_fiedler_vector_tracemin_chol():
+ """Test that "tracemin_chol" raises an exception."""
+ pytest.importorskip("scipy")
+ G = nx.barbell_graph(5, 4)
+ with pytest.raises(nx.NetworkXError):
+ nx.fiedler_vector(G, method="tracemin_chol")
+
+
+def test_spectral_ordering_tracemin_chol():
+ """Test that "tracemin_chol" raises an exception."""
+ pytest.importorskip("scipy")
+ G = nx.barbell_graph(5, 4)
+ with pytest.raises(nx.NetworkXError):
+ nx.spectral_ordering(G, method="tracemin_chol")
+
+
+def test_fiedler_vector_tracemin_unknown():
+ """Test that "tracemin_unknown" raises an exception."""
+ pytest.importorskip("scipy")
+ G = nx.barbell_graph(5, 4)
+ L = nx.laplacian_matrix(G)
+ X = np.asarray(np.random.normal(size=(1, L.shape[0]))).T
+ with pytest.raises(nx.NetworkXError, match="Unknown linear system solver"):
+ nx.linalg.algebraicconnectivity._tracemin_fiedler(
+ L, X, normalized=False, tol=1e-8, method="tracemin_unknown"
+ )
+
+
+def test_spectral_bisection():
+ pytest.importorskip("scipy")
+ G = nx.barbell_graph(3, 0)
+ C = nx.spectral_bisection(G)
+ assert C == ({0, 1, 2}, {3, 4, 5})
+
+ mapping = dict(enumerate("badfec"))
+ G = nx.relabel_nodes(G, mapping)
+ C = nx.spectral_bisection(G)
+ assert C == (
+ {mapping[0], mapping[1], mapping[2]},
+ {mapping[3], mapping[4], mapping[5]},
+ )
+
+
+def check_eigenvector(A, l, x):
+ nx = np.linalg.norm(x)
+ # Check zeroness.
+ assert nx != pytest.approx(0, abs=1e-07)
+ y = A @ x
+ ny = np.linalg.norm(y)
+ # Check collinearity.
+ assert x @ y == pytest.approx(nx * ny, abs=1e-7)
+ # Check eigenvalue.
+ assert ny == pytest.approx(l * nx, abs=1e-7)
+
+
+class TestAlgebraicConnectivity:
+ @pytest.mark.parametrize("method", methods)
+ def test_directed(self, method):
+ G = nx.DiGraph()
+ pytest.raises(
+ nx.NetworkXNotImplemented, nx.algebraic_connectivity, G, method=method
+ )
+ pytest.raises(nx.NetworkXNotImplemented, nx.fiedler_vector, G, method=method)
+
+ @pytest.mark.parametrize("method", methods)
+ def test_null_and_singleton(self, method):
+ G = nx.Graph()
+ pytest.raises(nx.NetworkXError, nx.algebraic_connectivity, G, method=method)
+ pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
+ G.add_edge(0, 0)
+ pytest.raises(nx.NetworkXError, nx.algebraic_connectivity, G, method=method)
+ pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
+
+ @pytest.mark.parametrize("method", methods)
+ def test_disconnected(self, method):
+ G = nx.Graph()
+ G.add_nodes_from(range(2))
+ assert nx.algebraic_connectivity(G) == 0
+ pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
+ G.add_edge(0, 1, weight=0)
+ assert nx.algebraic_connectivity(G) == 0
+ pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
+
+ def test_unrecognized_method(self):
+ pytest.importorskip("scipy")
+ G = nx.path_graph(4)
+ pytest.raises(nx.NetworkXError, nx.algebraic_connectivity, G, method="unknown")
+ pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method="unknown")
+
+ @pytest.mark.parametrize("method", methods)
+ def test_two_nodes(self, method):
+ pytest.importorskip("scipy")
+ G = nx.Graph()
+ G.add_edge(0, 1, weight=1)
+ A = nx.laplacian_matrix(G)
+ assert nx.algebraic_connectivity(G, tol=1e-12, method=method) == pytest.approx(
+ 2, abs=1e-7
+ )
+ x = nx.fiedler_vector(G, tol=1e-12, method=method)
+ check_eigenvector(A, 2, x)
+
+ @pytest.mark.parametrize("method", methods)
+ def test_two_nodes_multigraph(self, method):
+ pytest.importorskip("scipy")
+ G = nx.MultiGraph()
+ G.add_edge(0, 0, spam=1e8)
+ G.add_edge(0, 1, spam=1)
+ G.add_edge(0, 1, spam=-2)
+ A = -3 * nx.laplacian_matrix(G, weight="spam")
+ assert nx.algebraic_connectivity(
+ G, weight="spam", tol=1e-12, method=method
+ ) == pytest.approx(6, abs=1e-7)
+ x = nx.fiedler_vector(G, weight="spam", tol=1e-12, method=method)
+ check_eigenvector(A, 6, x)
+
+ def test_abbreviation_of_method(self):
+ pytest.importorskip("scipy")
+ G = nx.path_graph(8)
+ A = nx.laplacian_matrix(G)
+ sigma = 2 - sqrt(2 + sqrt(2))
+ ac = nx.algebraic_connectivity(G, tol=1e-12, method="tracemin")
+ assert ac == pytest.approx(sigma, abs=1e-7)
+ x = nx.fiedler_vector(G, tol=1e-12, method="tracemin")
+ check_eigenvector(A, sigma, x)
+
+ @pytest.mark.parametrize("method", methods)
+ def test_path(self, method):
+ pytest.importorskip("scipy")
+ G = nx.path_graph(8)
+ A = nx.laplacian_matrix(G)
+ sigma = 2 - sqrt(2 + sqrt(2))
+ ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
+ assert ac == pytest.approx(sigma, abs=1e-7)
+ x = nx.fiedler_vector(G, tol=1e-12, method=method)
+ check_eigenvector(A, sigma, x)
+
+ @pytest.mark.parametrize("method", methods)
+ def test_problematic_graph_issue_2381(self, method):
+ pytest.importorskip("scipy")
+ G = nx.path_graph(4)
+ G.add_edges_from([(4, 2), (5, 1)])
+ A = nx.laplacian_matrix(G)
+ sigma = 0.438447187191
+ ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
+ assert ac == pytest.approx(sigma, abs=1e-7)
+ x = nx.fiedler_vector(G, tol=1e-12, method=method)
+ check_eigenvector(A, sigma, x)
+
+ @pytest.mark.parametrize("method", methods)
+ def test_cycle(self, method):
+ pytest.importorskip("scipy")
+ G = nx.cycle_graph(8)
+ A = nx.laplacian_matrix(G)
+ sigma = 2 - sqrt(2)
+ ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
+ assert ac == pytest.approx(sigma, abs=1e-7)
+ x = nx.fiedler_vector(G, tol=1e-12, method=method)
+ check_eigenvector(A, sigma, x)
+
+ @pytest.mark.parametrize("method", methods)
+ def test_seed_argument(self, method):
+ pytest.importorskip("scipy")
+ G = nx.cycle_graph(8)
+ A = nx.laplacian_matrix(G)
+ sigma = 2 - sqrt(2)
+ ac = nx.algebraic_connectivity(G, tol=1e-12, method=method, seed=1)
+ assert ac == pytest.approx(sigma, abs=1e-7)
+ x = nx.fiedler_vector(G, tol=1e-12, method=method, seed=1)
+ check_eigenvector(A, sigma, x)
+
+ @pytest.mark.parametrize(
+ ("normalized", "sigma", "laplacian_fn"),
+ (
+ (False, 0.2434017461399311, nx.laplacian_matrix),
+ (True, 0.08113391537997749, nx.normalized_laplacian_matrix),
+ ),
+ )
+ @pytest.mark.parametrize("method", methods)
+ def test_buckminsterfullerene(self, normalized, sigma, laplacian_fn, method):
+ pytest.importorskip("scipy")
+ G = nx.Graph(
+ [
+ (1, 10),
+ (1, 41),
+ (1, 59),
+ (2, 12),
+ (2, 42),
+ (2, 60),
+ (3, 6),
+ (3, 43),
+ (3, 57),
+ (4, 8),
+ (4, 44),
+ (4, 58),
+ (5, 13),
+ (5, 56),
+ (5, 57),
+ (6, 10),
+ (6, 31),
+ (7, 14),
+ (7, 56),
+ (7, 58),
+ (8, 12),
+ (8, 32),
+ (9, 23),
+ (9, 53),
+ (9, 59),
+ (10, 15),
+ (11, 24),
+ (11, 53),
+ (11, 60),
+ (12, 16),
+ (13, 14),
+ (13, 25),
+ (14, 26),
+ (15, 27),
+ (15, 49),
+ (16, 28),
+ (16, 50),
+ (17, 18),
+ (17, 19),
+ (17, 54),
+ (18, 20),
+ (18, 55),
+ (19, 23),
+ (19, 41),
+ (20, 24),
+ (20, 42),
+ (21, 31),
+ (21, 33),
+ (21, 57),
+ (22, 32),
+ (22, 34),
+ (22, 58),
+ (23, 24),
+ (25, 35),
+ (25, 43),
+ (26, 36),
+ (26, 44),
+ (27, 51),
+ (27, 59),
+ (28, 52),
+ (28, 60),
+ (29, 33),
+ (29, 34),
+ (29, 56),
+ (30, 51),
+ (30, 52),
+ (30, 53),
+ (31, 47),
+ (32, 48),
+ (33, 45),
+ (34, 46),
+ (35, 36),
+ (35, 37),
+ (36, 38),
+ (37, 39),
+ (37, 49),
+ (38, 40),
+ (38, 50),
+ (39, 40),
+ (39, 51),
+ (40, 52),
+ (41, 47),
+ (42, 48),
+ (43, 49),
+ (44, 50),
+ (45, 46),
+ (45, 54),
+ (46, 55),
+ (47, 54),
+ (48, 55),
+ ]
+ )
+ A = laplacian_fn(G)
+ try:
+ assert nx.algebraic_connectivity(
+ G, normalized=normalized, tol=1e-12, method=method
+ ) == pytest.approx(sigma, abs=1e-7)
+ x = nx.fiedler_vector(G, normalized=normalized, tol=1e-12, method=method)
+ check_eigenvector(A, sigma, x)
+ except nx.NetworkXError as err:
+ if err.args not in (
+ ("Cholesky solver unavailable.",),
+ ("LU solver unavailable.",),
+ ):
+ raise
+
+
+class TestSpectralOrdering:
+ _graphs = (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
+
+ @pytest.mark.parametrize("graph", _graphs)
+ def test_nullgraph(self, graph):
+ G = graph()
+ pytest.raises(nx.NetworkXError, nx.spectral_ordering, G)
+
+ @pytest.mark.parametrize("graph", _graphs)
+ def test_singleton(self, graph):
+ G = graph()
+ G.add_node("x")
+ assert nx.spectral_ordering(G) == ["x"]
+ G.add_edge("x", "x", weight=33)
+ G.add_edge("x", "x", weight=33)
+ assert nx.spectral_ordering(G) == ["x"]
+
+ def test_unrecognized_method(self):
+ G = nx.path_graph(4)
+ pytest.raises(nx.NetworkXError, nx.spectral_ordering, G, method="unknown")
+
+ @pytest.mark.parametrize("method", methods)
+ def test_three_nodes(self, method):
+ pytest.importorskip("scipy")
+ G = nx.Graph()
+ G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1)], weight="spam")
+ order = nx.spectral_ordering(G, weight="spam", method=method)
+ assert set(order) == set(G)
+ assert {1, 3} in (set(order[:-1]), set(order[1:]))
+
+ @pytest.mark.parametrize("method", methods)
+ def test_three_nodes_multigraph(self, method):
+ pytest.importorskip("scipy")
+ G = nx.MultiDiGraph()
+ G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1), (2, 3, 2)])
+ order = nx.spectral_ordering(G, method=method)
+ assert set(order) == set(G)
+ assert {2, 3} in (set(order[:-1]), set(order[1:]))
+
+ @pytest.mark.parametrize("method", methods)
+ def test_path(self, method):
+ pytest.importorskip("scipy")
+ path = list(range(10))
+ np.random.shuffle(path)
+ G = nx.Graph()
+ nx.add_path(G, path)
+ order = nx.spectral_ordering(G, method=method)
+ assert order in [path, list(reversed(path))]
+
+ @pytest.mark.parametrize("method", methods)
+ def test_seed_argument(self, method):
+ pytest.importorskip("scipy")
+ path = list(range(10))
+ np.random.shuffle(path)
+ G = nx.Graph()
+ nx.add_path(G, path)
+ order = nx.spectral_ordering(G, method=method, seed=1)
+ assert order in [path, list(reversed(path))]
+
+ @pytest.mark.parametrize("method", methods)
+ def test_disconnected(self, method):
+ pytest.importorskip("scipy")
+ G = nx.Graph()
+ nx.add_path(G, range(0, 10, 2))
+ nx.add_path(G, range(1, 10, 2))
+ order = nx.spectral_ordering(G, method=method)
+ assert set(order) == set(G)
+ seqs = [
+ list(range(0, 10, 2)),
+ list(range(8, -1, -2)),
+ list(range(1, 10, 2)),
+ list(range(9, -1, -2)),
+ ]
+ assert order[:5] in seqs
+ assert order[5:] in seqs
+
+ @pytest.mark.parametrize(
+ ("normalized", "expected_order"),
+ (
+ (False, [[1, 2, 0, 3, 4, 5, 6, 9, 7, 8], [8, 7, 9, 6, 5, 4, 3, 0, 2, 1]]),
+ (True, [[1, 2, 3, 0, 4, 5, 9, 6, 7, 8], [8, 7, 6, 9, 5, 4, 0, 3, 2, 1]]),
+ ),
+ )
+ @pytest.mark.parametrize("method", methods)
+ def test_cycle(self, normalized, expected_order, method):
+ pytest.importorskip("scipy")
+ path = list(range(10))
+ G = nx.Graph()
+ nx.add_path(G, path, weight=5)
+ G.add_edge(path[-1], path[0], weight=1)
+ A = nx.laplacian_matrix(G).todense()
+ order = nx.spectral_ordering(G, normalized=normalized, method=method)
+ assert order in expected_order
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_attrmatrix.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_attrmatrix.py
new file mode 100644
index 00000000..01574bb3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_attrmatrix.py
@@ -0,0 +1,108 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+
+import networkx as nx
+
+
+def test_attr_matrix():
+ G = nx.Graph()
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 2, thickness=2)
+ G.add_edge(1, 2, thickness=3)
+
+ def node_attr(u):
+ return G.nodes[u].get("size", 0.5) * 3
+
+ def edge_attr(u, v):
+ return G[u][v].get("thickness", 0.5)
+
+ M = nx.attr_matrix(G, edge_attr=edge_attr, node_attr=node_attr)
+ np.testing.assert_equal(M[0], np.array([[6.0]]))
+ assert M[1] == [1.5]
+
+
+def test_attr_matrix_directed():
+ G = nx.DiGraph()
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 2, thickness=2)
+ G.add_edge(1, 2, thickness=3)
+ M = nx.attr_matrix(G, rc_order=[0, 1, 2])
+ # fmt: off
+ data = np.array(
+ [[0., 1., 1.],
+ [0., 0., 1.],
+ [0., 0., 0.]]
+ )
+ # fmt: on
+ np.testing.assert_equal(M, np.array(data))
+
+
+def test_attr_matrix_multigraph():
+ G = nx.MultiGraph()
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 2, thickness=2)
+ G.add_edge(1, 2, thickness=3)
+ M = nx.attr_matrix(G, rc_order=[0, 1, 2])
+ # fmt: off
+ data = np.array(
+ [[0., 3., 1.],
+ [3., 0., 1.],
+ [1., 1., 0.]]
+ )
+ # fmt: on
+ np.testing.assert_equal(M, np.array(data))
+ M = nx.attr_matrix(G, edge_attr="weight", rc_order=[0, 1, 2])
+ # fmt: off
+ data = np.array(
+ [[0., 9., 1.],
+ [9., 0., 1.],
+ [1., 1., 0.]]
+ )
+ # fmt: on
+ np.testing.assert_equal(M, np.array(data))
+ M = nx.attr_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
+ # fmt: off
+ data = np.array(
+ [[0., 3., 2.],
+ [3., 0., 3.],
+ [2., 3., 0.]]
+ )
+ # fmt: on
+ np.testing.assert_equal(M, np.array(data))
+
+
+def test_attr_sparse_matrix():
+ pytest.importorskip("scipy")
+ G = nx.Graph()
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 2, thickness=2)
+ G.add_edge(1, 2, thickness=3)
+ M = nx.attr_sparse_matrix(G)
+ mtx = M[0]
+ data = np.ones((3, 3), float)
+ np.fill_diagonal(data, 0)
+ np.testing.assert_equal(mtx.todense(), np.array(data))
+ assert M[1] == [0, 1, 2]
+
+
+def test_attr_sparse_matrix_directed():
+ pytest.importorskip("scipy")
+ G = nx.DiGraph()
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 1, thickness=1, weight=3)
+ G.add_edge(0, 2, thickness=2)
+ G.add_edge(1, 2, thickness=3)
+ M = nx.attr_sparse_matrix(G, rc_order=[0, 1, 2])
+ # fmt: off
+ data = np.array(
+ [[0., 1., 1.],
+ [0., 0., 1.],
+ [0., 0., 0.]]
+ )
+ # fmt: on
+ np.testing.assert_equal(M.todense(), np.array(data))
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_bethehessian.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_bethehessian.py
new file mode 100644
index 00000000..339fe1be
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_bethehessian.py
@@ -0,0 +1,41 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+pytest.importorskip("scipy")
+
+import networkx as nx
+from networkx.generators.degree_seq import havel_hakimi_graph
+
+
+class TestBetheHessian:
+ @classmethod
+ def setup_class(cls):
+ deg = [3, 2, 2, 1, 0]
+ cls.G = havel_hakimi_graph(deg)
+ cls.P = nx.path_graph(3)
+
+ def test_bethe_hessian(self):
+ "Bethe Hessian matrix"
+ # fmt: off
+ H = np.array([[4, -2, 0],
+ [-2, 5, -2],
+ [0, -2, 4]])
+ # fmt: on
+ permutation = [2, 0, 1]
+ # Bethe Hessian gives expected form
+ np.testing.assert_equal(nx.bethe_hessian_matrix(self.P, r=2).todense(), H)
+ # nodelist is correctly implemented
+ np.testing.assert_equal(
+ nx.bethe_hessian_matrix(self.P, r=2, nodelist=permutation).todense(),
+ H[np.ix_(permutation, permutation)],
+ )
+ # Equal to Laplacian matrix when r=1
+ np.testing.assert_equal(
+ nx.bethe_hessian_matrix(self.G, r=1).todense(),
+ nx.laplacian_matrix(self.G).todense(),
+ )
+ # Correct default for the regularizer r
+ np.testing.assert_equal(
+ nx.bethe_hessian_matrix(self.G).todense(),
+ nx.bethe_hessian_matrix(self.G, r=1.25).todense(),
+ )
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py
new file mode 100644
index 00000000..519198bc
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py
@@ -0,0 +1,276 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+pytest.importorskip("scipy")
+
+import networkx as nx
+from networkx.exception import NetworkXError
+from networkx.generators.degree_seq import havel_hakimi_graph
+
+
+def test_incidence_matrix_simple():
+ deg = [3, 2, 2, 1, 0]
+ G = havel_hakimi_graph(deg)
+ deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
+ MG = nx.random_clustered_graph(deg, seed=42)
+
+ I = nx.incidence_matrix(G, dtype=int).todense()
+ # fmt: off
+ expected = np.array(
+ [[1, 1, 1, 0],
+ [0, 1, 0, 1],
+ [1, 0, 0, 1],
+ [0, 0, 1, 0],
+ [0, 0, 0, 0]]
+ )
+ # fmt: on
+ np.testing.assert_equal(I, expected)
+
+ I = nx.incidence_matrix(MG, dtype=int).todense()
+ # fmt: off
+ expected = np.array(
+ [[1, 0, 0, 0, 0, 0, 0],
+ [1, 0, 0, 0, 0, 0, 0],
+ [0, 1, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0],
+ [0, 1, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 1, 1, 0],
+ [0, 0, 0, 0, 0, 1, 1],
+ [0, 0, 0, 0, 1, 0, 1]]
+ )
+ # fmt: on
+ np.testing.assert_equal(I, expected)
+
+ with pytest.raises(NetworkXError):
+ nx.incidence_matrix(G, nodelist=[0, 1])
+
+
+class TestGraphMatrix:
+ @classmethod
+ def setup_class(cls):
+ deg = [3, 2, 2, 1, 0]
+ cls.G = havel_hakimi_graph(deg)
+ # fmt: off
+ cls.OI = np.array(
+ [[-1, -1, -1, 0],
+ [1, 0, 0, -1],
+ [0, 1, 0, 1],
+ [0, 0, 1, 0],
+ [0, 0, 0, 0]]
+ )
+ cls.A = np.array(
+ [[0, 1, 1, 1, 0],
+ [1, 0, 1, 0, 0],
+ [1, 1, 0, 0, 0],
+ [1, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0]]
+ )
+ # fmt: on
+ cls.WG = havel_hakimi_graph(deg)
+ cls.WG.add_edges_from(
+ (u, v, {"weight": 0.5, "other": 0.3}) for (u, v) in cls.G.edges()
+ )
+ # fmt: off
+ cls.WA = np.array(
+ [[0, 0.5, 0.5, 0.5, 0],
+ [0.5, 0, 0.5, 0, 0],
+ [0.5, 0.5, 0, 0, 0],
+ [0.5, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0]]
+ )
+ # fmt: on
+ cls.MG = nx.MultiGraph(cls.G)
+ cls.MG2 = cls.MG.copy()
+ cls.MG2.add_edge(0, 1)
+ # fmt: off
+ cls.MG2A = np.array(
+ [[0, 2, 1, 1, 0],
+ [2, 0, 1, 0, 0],
+ [1, 1, 0, 0, 0],
+ [1, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0]]
+ )
+ cls.MGOI = np.array(
+ [[-1, -1, -1, -1, 0],
+ [1, 1, 0, 0, -1],
+ [0, 0, 1, 0, 1],
+ [0, 0, 0, 1, 0],
+ [0, 0, 0, 0, 0]]
+ )
+ # fmt: on
+ cls.no_edges_G = nx.Graph([(1, 2), (3, 2, {"weight": 8})])
+ cls.no_edges_A = np.array([[0, 0], [0, 0]])
+
+ def test_incidence_matrix(self):
+ "Conversion to incidence matrix"
+ I = nx.incidence_matrix(
+ self.G,
+ nodelist=sorted(self.G),
+ edgelist=sorted(self.G.edges()),
+ oriented=True,
+ dtype=int,
+ ).todense()
+ np.testing.assert_equal(I, self.OI)
+
+ I = nx.incidence_matrix(
+ self.G,
+ nodelist=sorted(self.G),
+ edgelist=sorted(self.G.edges()),
+ oriented=False,
+ dtype=int,
+ ).todense()
+ np.testing.assert_equal(I, np.abs(self.OI))
+
+ I = nx.incidence_matrix(
+ self.MG,
+ nodelist=sorted(self.MG),
+ edgelist=sorted(self.MG.edges()),
+ oriented=True,
+ dtype=int,
+ ).todense()
+ np.testing.assert_equal(I, self.OI)
+
+ I = nx.incidence_matrix(
+ self.MG,
+ nodelist=sorted(self.MG),
+ edgelist=sorted(self.MG.edges()),
+ oriented=False,
+ dtype=int,
+ ).todense()
+ np.testing.assert_equal(I, np.abs(self.OI))
+
+ I = nx.incidence_matrix(
+ self.MG2,
+ nodelist=sorted(self.MG2),
+ edgelist=sorted(self.MG2.edges()),
+ oriented=True,
+ dtype=int,
+ ).todense()
+ np.testing.assert_equal(I, self.MGOI)
+
+ I = nx.incidence_matrix(
+ self.MG2,
+ nodelist=sorted(self.MG),
+ edgelist=sorted(self.MG2.edges()),
+ oriented=False,
+ dtype=int,
+ ).todense()
+ np.testing.assert_equal(I, np.abs(self.MGOI))
+
+ I = nx.incidence_matrix(self.G, dtype=np.uint8)
+ assert I.dtype == np.uint8
+
+ def test_weighted_incidence_matrix(self):
+ I = nx.incidence_matrix(
+ self.WG,
+ nodelist=sorted(self.WG),
+ edgelist=sorted(self.WG.edges()),
+ oriented=True,
+ dtype=int,
+ ).todense()
+ np.testing.assert_equal(I, self.OI)
+
+ I = nx.incidence_matrix(
+ self.WG,
+ nodelist=sorted(self.WG),
+ edgelist=sorted(self.WG.edges()),
+ oriented=False,
+ dtype=int,
+ ).todense()
+ np.testing.assert_equal(I, np.abs(self.OI))
+
+ # np.testing.assert_equal(nx.incidence_matrix(self.WG,oriented=True,
+ # weight='weight').todense(),0.5*self.OI)
+ # np.testing.assert_equal(nx.incidence_matrix(self.WG,weight='weight').todense(),
+ # np.abs(0.5*self.OI))
+ # np.testing.assert_equal(nx.incidence_matrix(self.WG,oriented=True,weight='other').todense(),
+ # 0.3*self.OI)
+
+ I = nx.incidence_matrix(
+ self.WG,
+ nodelist=sorted(self.WG),
+ edgelist=sorted(self.WG.edges()),
+ oriented=True,
+ weight="weight",
+ ).todense()
+ np.testing.assert_equal(I, 0.5 * self.OI)
+
+ I = nx.incidence_matrix(
+ self.WG,
+ nodelist=sorted(self.WG),
+ edgelist=sorted(self.WG.edges()),
+ oriented=False,
+ weight="weight",
+ ).todense()
+ np.testing.assert_equal(I, np.abs(0.5 * self.OI))
+
+ I = nx.incidence_matrix(
+ self.WG,
+ nodelist=sorted(self.WG),
+ edgelist=sorted(self.WG.edges()),
+ oriented=True,
+ weight="other",
+ ).todense()
+ np.testing.assert_equal(I, 0.3 * self.OI)
+
+ # WMG=nx.MultiGraph(self.WG)
+ # WMG.add_edge(0,1,weight=0.5,other=0.3)
+ # np.testing.assert_equal(nx.incidence_matrix(WMG,weight='weight').todense(),
+ # np.abs(0.5*self.MGOI))
+ # np.testing.assert_equal(nx.incidence_matrix(WMG,weight='weight',oriented=True).todense(),
+ # 0.5*self.MGOI)
+ # np.testing.assert_equal(nx.incidence_matrix(WMG,weight='other',oriented=True).todense(),
+ # 0.3*self.MGOI)
+
+ WMG = nx.MultiGraph(self.WG)
+ WMG.add_edge(0, 1, weight=0.5, other=0.3)
+
+ I = nx.incidence_matrix(
+ WMG,
+ nodelist=sorted(WMG),
+ edgelist=sorted(WMG.edges(keys=True)),
+ oriented=True,
+ weight="weight",
+ ).todense()
+ np.testing.assert_equal(I, 0.5 * self.MGOI)
+
+ I = nx.incidence_matrix(
+ WMG,
+ nodelist=sorted(WMG),
+ edgelist=sorted(WMG.edges(keys=True)),
+ oriented=False,
+ weight="weight",
+ ).todense()
+ np.testing.assert_equal(I, np.abs(0.5 * self.MGOI))
+
+ I = nx.incidence_matrix(
+ WMG,
+ nodelist=sorted(WMG),
+ edgelist=sorted(WMG.edges(keys=True)),
+ oriented=True,
+ weight="other",
+ ).todense()
+ np.testing.assert_equal(I, 0.3 * self.MGOI)
+
+ def test_adjacency_matrix(self):
+ "Conversion to adjacency matrix"
+ np.testing.assert_equal(nx.adjacency_matrix(self.G).todense(), self.A)
+ np.testing.assert_equal(nx.adjacency_matrix(self.MG).todense(), self.A)
+ np.testing.assert_equal(nx.adjacency_matrix(self.MG2).todense(), self.MG2A)
+ np.testing.assert_equal(
+ nx.adjacency_matrix(self.G, nodelist=[0, 1]).todense(), self.A[:2, :2]
+ )
+ np.testing.assert_equal(nx.adjacency_matrix(self.WG).todense(), self.WA)
+ np.testing.assert_equal(
+ nx.adjacency_matrix(self.WG, weight=None).todense(), self.A
+ )
+ np.testing.assert_equal(
+ nx.adjacency_matrix(self.MG2, weight=None).todense(), self.MG2A
+ )
+ np.testing.assert_equal(
+ nx.adjacency_matrix(self.WG, weight="other").todense(), 0.6 * self.WA
+ )
+ np.testing.assert_equal(
+ nx.adjacency_matrix(self.no_edges_G, nodelist=[1, 3]).todense(),
+ self.no_edges_A,
+ )
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_laplacian.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_laplacian.py
new file mode 100644
index 00000000..23f1b28e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_laplacian.py
@@ -0,0 +1,336 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+pytest.importorskip("scipy")
+
+import networkx as nx
+from networkx.generators.degree_seq import havel_hakimi_graph
+from networkx.generators.expanders import margulis_gabber_galil_graph
+
+
+class TestLaplacian:
+ @classmethod
+ def setup_class(cls):
+ deg = [3, 2, 2, 1, 0]
+ cls.G = havel_hakimi_graph(deg)
+ cls.WG = nx.Graph(
+ (u, v, {"weight": 0.5, "other": 0.3}) for (u, v) in cls.G.edges()
+ )
+ cls.WG.add_node(4)
+ cls.MG = nx.MultiGraph(cls.G)
+
+ # Graph with clsloops
+ cls.Gsl = cls.G.copy()
+ for node in cls.Gsl.nodes():
+ cls.Gsl.add_edge(node, node)
+
+ # Graph used as an example in Sec. 4.1 of Langville and Meyer,
+ # "Google's PageRank and Beyond".
+ cls.DiG = nx.DiGraph()
+ cls.DiG.add_edges_from(
+ (
+ (1, 2),
+ (1, 3),
+ (3, 1),
+ (3, 2),
+ (3, 5),
+ (4, 5),
+ (4, 6),
+ (5, 4),
+ (5, 6),
+ (6, 4),
+ )
+ )
+ cls.DiMG = nx.MultiDiGraph(cls.DiG)
+ cls.DiWG = nx.DiGraph(
+ (u, v, {"weight": 0.5, "other": 0.3}) for (u, v) in cls.DiG.edges()
+ )
+ cls.DiGsl = cls.DiG.copy()
+ for node in cls.DiGsl.nodes():
+ cls.DiGsl.add_edge(node, node)
+
+ def test_laplacian(self):
+ "Graph Laplacian"
+ # fmt: off
+ NL = np.array([[ 3, -1, -1, -1, 0],
+ [-1, 2, -1, 0, 0],
+ [-1, -1, 2, 0, 0],
+ [-1, 0, 0, 1, 0],
+ [ 0, 0, 0, 0, 0]])
+ # fmt: on
+ WL = 0.5 * NL
+ OL = 0.3 * NL
+ # fmt: off
+ DiNL = np.array([[ 2, -1, -1, 0, 0, 0],
+ [ 0, 0, 0, 0, 0, 0],
+ [-1, -1, 3, -1, 0, 0],
+ [ 0, 0, 0, 2, -1, -1],
+ [ 0, 0, 0, -1, 2, -1],
+ [ 0, 0, 0, 0, -1, 1]])
+ # fmt: on
+ DiWL = 0.5 * DiNL
+ DiOL = 0.3 * DiNL
+ np.testing.assert_equal(nx.laplacian_matrix(self.G).todense(), NL)
+ np.testing.assert_equal(nx.laplacian_matrix(self.MG).todense(), NL)
+ np.testing.assert_equal(
+ nx.laplacian_matrix(self.G, nodelist=[0, 1]).todense(),
+ np.array([[1, -1], [-1, 1]]),
+ )
+ np.testing.assert_equal(nx.laplacian_matrix(self.WG).todense(), WL)
+ np.testing.assert_equal(nx.laplacian_matrix(self.WG, weight=None).todense(), NL)
+ np.testing.assert_equal(
+ nx.laplacian_matrix(self.WG, weight="other").todense(), OL
+ )
+
+ np.testing.assert_equal(nx.laplacian_matrix(self.DiG).todense(), DiNL)
+ np.testing.assert_equal(nx.laplacian_matrix(self.DiMG).todense(), DiNL)
+ np.testing.assert_equal(
+ nx.laplacian_matrix(self.DiG, nodelist=[1, 2]).todense(),
+ np.array([[1, -1], [0, 0]]),
+ )
+ np.testing.assert_equal(nx.laplacian_matrix(self.DiWG).todense(), DiWL)
+ np.testing.assert_equal(
+ nx.laplacian_matrix(self.DiWG, weight=None).todense(), DiNL
+ )
+ np.testing.assert_equal(
+ nx.laplacian_matrix(self.DiWG, weight="other").todense(), DiOL
+ )
+
+ def test_normalized_laplacian(self):
+ "Generalized Graph Laplacian"
+ # fmt: off
+ G = np.array([[ 1. , -0.408, -0.408, -0.577, 0.],
+ [-0.408, 1. , -0.5 , 0. , 0.],
+ [-0.408, -0.5 , 1. , 0. , 0.],
+ [-0.577, 0. , 0. , 1. , 0.],
+ [ 0. , 0. , 0. , 0. , 0.]])
+ GL = np.array([[ 1. , -0.408, -0.408, -0.577, 0. ],
+ [-0.408, 1. , -0.5 , 0. , 0. ],
+ [-0.408, -0.5 , 1. , 0. , 0. ],
+ [-0.577, 0. , 0. , 1. , 0. ],
+ [ 0. , 0. , 0. , 0. , 0. ]])
+ Lsl = np.array([[ 0.75 , -0.2887, -0.2887, -0.3536, 0. ],
+ [-0.2887, 0.6667, -0.3333, 0. , 0. ],
+ [-0.2887, -0.3333, 0.6667, 0. , 0. ],
+ [-0.3536, 0. , 0. , 0.5 , 0. ],
+ [ 0. , 0. , 0. , 0. , 0. ]])
+
+ DiG = np.array([[ 1. , 0. , -0.4082, 0. , 0. , 0. ],
+ [ 0. , 0. , 0. , 0. , 0. , 0. ],
+ [-0.4082, 0. , 1. , 0. , -0.4082, 0. ],
+ [ 0. , 0. , 0. , 1. , -0.5 , -0.7071],
+ [ 0. , 0. , 0. , -0.5 , 1. , -0.7071],
+ [ 0. , 0. , 0. , -0.7071, 0. , 1. ]])
+ DiGL = np.array([[ 1. , 0. , -0.4082, 0. , 0. , 0. ],
+ [ 0. , 0. , 0. , 0. , 0. , 0. ],
+ [-0.4082, 0. , 1. , -0.4082, 0. , 0. ],
+ [ 0. , 0. , 0. , 1. , -0.5 , -0.7071],
+ [ 0. , 0. , 0. , -0.5 , 1. , -0.7071],
+ [ 0. , 0. , 0. , 0. , -0.7071, 1. ]])
+ DiLsl = np.array([[ 0.6667, -0.5774, -0.2887, 0. , 0. , 0. ],
+ [ 0. , 0. , 0. , 0. , 0. , 0. ],
+ [-0.2887, -0.5 , 0.75 , -0.2887, 0. , 0. ],
+ [ 0. , 0. , 0. , 0.6667, -0.3333, -0.4082],
+ [ 0. , 0. , 0. , -0.3333, 0.6667, -0.4082],
+ [ 0. , 0. , 0. , 0. , -0.4082, 0.5 ]])
+ # fmt: on
+
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.G, nodelist=range(5)).todense(),
+ G,
+ decimal=3,
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.G).todense(), GL, decimal=3
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.MG).todense(), GL, decimal=3
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.WG).todense(), GL, decimal=3
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.WG, weight="other").todense(),
+ GL,
+ decimal=3,
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.Gsl).todense(), Lsl, decimal=3
+ )
+
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(
+ self.DiG,
+ nodelist=range(1, 1 + 6),
+ ).todense(),
+ DiG,
+ decimal=3,
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.DiG).todense(), DiGL, decimal=3
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.DiMG).todense(), DiGL, decimal=3
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.DiWG).todense(), DiGL, decimal=3
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.DiWG, weight="other").todense(),
+ DiGL,
+ decimal=3,
+ )
+ np.testing.assert_almost_equal(
+ nx.normalized_laplacian_matrix(self.DiGsl).todense(), DiLsl, decimal=3
+ )
+
+
+def test_directed_laplacian():
+ "Directed Laplacian"
+ # Graph used as an example in Sec. 4.1 of Langville and Meyer,
+ # "Google's PageRank and Beyond". The graph contains dangling nodes, so
+ # the pagerank random walk is selected by directed_laplacian
+ G = nx.DiGraph()
+ G.add_edges_from(
+ (
+ (1, 2),
+ (1, 3),
+ (3, 1),
+ (3, 2),
+ (3, 5),
+ (4, 5),
+ (4, 6),
+ (5, 4),
+ (5, 6),
+ (6, 4),
+ )
+ )
+ # fmt: off
+ GL = np.array([[ 0.9833, -0.2941, -0.3882, -0.0291, -0.0231, -0.0261],
+ [-0.2941, 0.8333, -0.2339, -0.0536, -0.0589, -0.0554],
+ [-0.3882, -0.2339, 0.9833, -0.0278, -0.0896, -0.0251],
+ [-0.0291, -0.0536, -0.0278, 0.9833, -0.4878, -0.6675],
+ [-0.0231, -0.0589, -0.0896, -0.4878, 0.9833, -0.2078],
+ [-0.0261, -0.0554, -0.0251, -0.6675, -0.2078, 0.9833]])
+ # fmt: on
+ L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
+ np.testing.assert_almost_equal(L, GL, decimal=3)
+
+ # Make the graph strongly connected, so we can use a random and lazy walk
+ G.add_edges_from(((2, 5), (6, 1)))
+ # fmt: off
+ GL = np.array([[ 1. , -0.3062, -0.4714, 0. , 0. , -0.3227],
+ [-0.3062, 1. , -0.1443, 0. , -0.3162, 0. ],
+ [-0.4714, -0.1443, 1. , 0. , -0.0913, 0. ],
+ [ 0. , 0. , 0. , 1. , -0.5 , -0.5 ],
+ [ 0. , -0.3162, -0.0913, -0.5 , 1. , -0.25 ],
+ [-0.3227, 0. , 0. , -0.5 , -0.25 , 1. ]])
+ # fmt: on
+ L = nx.directed_laplacian_matrix(
+ G, alpha=0.9, nodelist=sorted(G), walk_type="random"
+ )
+ np.testing.assert_almost_equal(L, GL, decimal=3)
+
+ # fmt: off
+ GL = np.array([[ 0.5 , -0.1531, -0.2357, 0. , 0. , -0.1614],
+ [-0.1531, 0.5 , -0.0722, 0. , -0.1581, 0. ],
+ [-0.2357, -0.0722, 0.5 , 0. , -0.0456, 0. ],
+ [ 0. , 0. , 0. , 0.5 , -0.25 , -0.25 ],
+ [ 0. , -0.1581, -0.0456, -0.25 , 0.5 , -0.125 ],
+ [-0.1614, 0. , 0. , -0.25 , -0.125 , 0.5 ]])
+ # fmt: on
+ L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G), walk_type="lazy")
+ np.testing.assert_almost_equal(L, GL, decimal=3)
+
+ # Make a strongly connected periodic graph
+ G = nx.DiGraph()
+ G.add_edges_from(((1, 2), (2, 4), (4, 1), (1, 3), (3, 4)))
+ # fmt: off
+ GL = np.array([[ 0.5 , -0.176, -0.176, -0.25 ],
+ [-0.176, 0.5 , 0. , -0.176],
+ [-0.176, 0. , 0.5 , -0.176],
+ [-0.25 , -0.176, -0.176, 0.5 ]])
+ # fmt: on
+ L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
+ np.testing.assert_almost_equal(L, GL, decimal=3)
+
+
+def test_directed_combinatorial_laplacian():
+ "Directed combinatorial Laplacian"
+ # Graph used as an example in Sec. 4.1 of Langville and Meyer,
+ # "Google's PageRank and Beyond". The graph contains dangling nodes, so
+ # the pagerank random walk is selected by directed_laplacian
+ G = nx.DiGraph()
+ G.add_edges_from(
+ (
+ (1, 2),
+ (1, 3),
+ (3, 1),
+ (3, 2),
+ (3, 5),
+ (4, 5),
+ (4, 6),
+ (5, 4),
+ (5, 6),
+ (6, 4),
+ )
+ )
+ # fmt: off
+ GL = np.array([[ 0.0366, -0.0132, -0.0153, -0.0034, -0.0020, -0.0027],
+ [-0.0132, 0.0450, -0.0111, -0.0076, -0.0062, -0.0069],
+ [-0.0153, -0.0111, 0.0408, -0.0035, -0.0083, -0.0027],
+ [-0.0034, -0.0076, -0.0035, 0.3688, -0.1356, -0.2187],
+ [-0.0020, -0.0062, -0.0083, -0.1356, 0.2026, -0.0505],
+ [-0.0027, -0.0069, -0.0027, -0.2187, -0.0505, 0.2815]])
+ # fmt: on
+
+ L = nx.directed_combinatorial_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
+ np.testing.assert_almost_equal(L, GL, decimal=3)
+
+ # Make the graph strongly connected, so we can use a random and lazy walk
+ G.add_edges_from(((2, 5), (6, 1)))
+
+ # fmt: off
+ GL = np.array([[ 0.1395, -0.0349, -0.0465, 0. , 0. , -0.0581],
+ [-0.0349, 0.093 , -0.0116, 0. , -0.0465, 0. ],
+ [-0.0465, -0.0116, 0.0698, 0. , -0.0116, 0. ],
+ [ 0. , 0. , 0. , 0.2326, -0.1163, -0.1163],
+ [ 0. , -0.0465, -0.0116, -0.1163, 0.2326, -0.0581],
+ [-0.0581, 0. , 0. , -0.1163, -0.0581, 0.2326]])
+ # fmt: on
+
+ L = nx.directed_combinatorial_laplacian_matrix(
+ G, alpha=0.9, nodelist=sorted(G), walk_type="random"
+ )
+ np.testing.assert_almost_equal(L, GL, decimal=3)
+
+ # fmt: off
+ GL = np.array([[ 0.0698, -0.0174, -0.0233, 0. , 0. , -0.0291],
+ [-0.0174, 0.0465, -0.0058, 0. , -0.0233, 0. ],
+ [-0.0233, -0.0058, 0.0349, 0. , -0.0058, 0. ],
+ [ 0. , 0. , 0. , 0.1163, -0.0581, -0.0581],
+ [ 0. , -0.0233, -0.0058, -0.0581, 0.1163, -0.0291],
+ [-0.0291, 0. , 0. , -0.0581, -0.0291, 0.1163]])
+ # fmt: on
+
+ L = nx.directed_combinatorial_laplacian_matrix(
+ G, alpha=0.9, nodelist=sorted(G), walk_type="lazy"
+ )
+ np.testing.assert_almost_equal(L, GL, decimal=3)
+
+ E = nx.DiGraph(margulis_gabber_galil_graph(2))
+ L = nx.directed_combinatorial_laplacian_matrix(E)
+ # fmt: off
+ expected = np.array(
+ [[ 0.16666667, -0.08333333, -0.08333333, 0. ],
+ [-0.08333333, 0.16666667, 0. , -0.08333333],
+ [-0.08333333, 0. , 0.16666667, -0.08333333],
+ [ 0. , -0.08333333, -0.08333333, 0.16666667]]
+ )
+ # fmt: on
+ np.testing.assert_almost_equal(L, expected, decimal=6)
+
+ with pytest.raises(nx.NetworkXError):
+ nx.directed_combinatorial_laplacian_matrix(G, walk_type="pagerank", alpha=100)
+ with pytest.raises(nx.NetworkXError):
+ nx.directed_combinatorial_laplacian_matrix(G, walk_type="silly")
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py
new file mode 100644
index 00000000..9f94ff4d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py
@@ -0,0 +1,87 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+pytest.importorskip("scipy")
+
+import networkx as nx
+from networkx.generators.degree_seq import havel_hakimi_graph
+
+
+class TestModularity:
+ @classmethod
+ def setup_class(cls):
+ deg = [3, 2, 2, 1, 0]
+ cls.G = havel_hakimi_graph(deg)
+ # Graph used as an example in Sec. 4.1 of Langville and Meyer,
+ # "Google's PageRank and Beyond". (Used for test_directed_laplacian)
+ cls.DG = nx.DiGraph()
+ cls.DG.add_edges_from(
+ (
+ (1, 2),
+ (1, 3),
+ (3, 1),
+ (3, 2),
+ (3, 5),
+ (4, 5),
+ (4, 6),
+ (5, 4),
+ (5, 6),
+ (6, 4),
+ )
+ )
+
+ def test_modularity(self):
+ "Modularity matrix"
+ # fmt: off
+ B = np.array([[-1.125, 0.25, 0.25, 0.625, 0.],
+ [0.25, -0.5, 0.5, -0.25, 0.],
+ [0.25, 0.5, -0.5, -0.25, 0.],
+ [0.625, -0.25, -0.25, -0.125, 0.],
+ [0., 0., 0., 0., 0.]])
+ # fmt: on
+
+ permutation = [4, 0, 1, 2, 3]
+ np.testing.assert_equal(nx.modularity_matrix(self.G), B)
+ np.testing.assert_equal(
+ nx.modularity_matrix(self.G, nodelist=permutation),
+ B[np.ix_(permutation, permutation)],
+ )
+
+ def test_modularity_weight(self):
+ "Modularity matrix with weights"
+ # fmt: off
+ B = np.array([[-1.125, 0.25, 0.25, 0.625, 0.],
+ [0.25, -0.5, 0.5, -0.25, 0.],
+ [0.25, 0.5, -0.5, -0.25, 0.],
+ [0.625, -0.25, -0.25, -0.125, 0.],
+ [0., 0., 0., 0., 0.]])
+ # fmt: on
+
+ G_weighted = self.G.copy()
+ for n1, n2 in G_weighted.edges():
+ G_weighted.edges[n1, n2]["weight"] = 0.5
+ # The following test would fail in networkx 1.1
+ np.testing.assert_equal(nx.modularity_matrix(G_weighted), B)
+ # The following test that the modularity matrix get rescaled accordingly
+ np.testing.assert_equal(
+ nx.modularity_matrix(G_weighted, weight="weight"), 0.5 * B
+ )
+
+ def test_directed_modularity(self):
+ "Directed Modularity matrix"
+ # fmt: off
+ B = np.array([[-0.2, 0.6, 0.8, -0.4, -0.4, -0.4],
+ [0., 0., 0., 0., 0., 0.],
+ [0.7, 0.4, -0.3, -0.6, 0.4, -0.6],
+ [-0.2, -0.4, -0.2, -0.4, 0.6, 0.6],
+ [-0.2, -0.4, -0.2, 0.6, -0.4, 0.6],
+ [-0.1, -0.2, -0.1, 0.8, -0.2, -0.2]])
+ # fmt: on
+ node_permutation = [5, 1, 2, 3, 4, 6]
+ idx_permutation = [4, 0, 1, 2, 3, 5]
+ mm = nx.directed_modularity_matrix(self.DG, nodelist=sorted(self.DG))
+ np.testing.assert_equal(mm, B)
+ np.testing.assert_equal(
+ nx.directed_modularity_matrix(self.DG, nodelist=node_permutation),
+ B[np.ix_(idx_permutation, idx_permutation)],
+ )
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_spectrum.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_spectrum.py
new file mode 100644
index 00000000..e9101303
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_spectrum.py
@@ -0,0 +1,71 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+pytest.importorskip("scipy")
+
+import networkx as nx
+from networkx.generators.degree_seq import havel_hakimi_graph
+
+
+class TestSpectrum:
+ @classmethod
+ def setup_class(cls):
+ deg = [3, 2, 2, 1, 0]
+ cls.G = havel_hakimi_graph(deg)
+ cls.P = nx.path_graph(3)
+ cls.WG = nx.Graph(
+ (u, v, {"weight": 0.5, "other": 0.3}) for (u, v) in cls.G.edges()
+ )
+ cls.WG.add_node(4)
+ cls.DG = nx.DiGraph()
+ nx.add_path(cls.DG, [0, 1, 2])
+
+ def test_laplacian_spectrum(self):
+ "Laplacian eigenvalues"
+ evals = np.array([0, 0, 1, 3, 4])
+ e = sorted(nx.laplacian_spectrum(self.G))
+ np.testing.assert_almost_equal(e, evals)
+ e = sorted(nx.laplacian_spectrum(self.WG, weight=None))
+ np.testing.assert_almost_equal(e, evals)
+ e = sorted(nx.laplacian_spectrum(self.WG))
+ np.testing.assert_almost_equal(e, 0.5 * evals)
+ e = sorted(nx.laplacian_spectrum(self.WG, weight="other"))
+ np.testing.assert_almost_equal(e, 0.3 * evals)
+
+ def test_normalized_laplacian_spectrum(self):
+ "Normalized Laplacian eigenvalues"
+ evals = np.array([0, 0, 0.7712864461218, 1.5, 1.7287135538781])
+ e = sorted(nx.normalized_laplacian_spectrum(self.G))
+ np.testing.assert_almost_equal(e, evals)
+ e = sorted(nx.normalized_laplacian_spectrum(self.WG, weight=None))
+ np.testing.assert_almost_equal(e, evals)
+ e = sorted(nx.normalized_laplacian_spectrum(self.WG))
+ np.testing.assert_almost_equal(e, evals)
+ e = sorted(nx.normalized_laplacian_spectrum(self.WG, weight="other"))
+ np.testing.assert_almost_equal(e, evals)
+
+ def test_adjacency_spectrum(self):
+ "Adjacency eigenvalues"
+ evals = np.array([-np.sqrt(2), 0, np.sqrt(2)])
+ e = sorted(nx.adjacency_spectrum(self.P))
+ np.testing.assert_almost_equal(e, evals)
+
+ def test_modularity_spectrum(self):
+ "Modularity eigenvalues"
+ evals = np.array([-1.5, 0.0, 0.0])
+ e = sorted(nx.modularity_spectrum(self.P))
+ np.testing.assert_almost_equal(e, evals)
+ # Directed modularity eigenvalues
+ evals = np.array([-0.5, 0.0, 0.0])
+ e = sorted(nx.modularity_spectrum(self.DG))
+ np.testing.assert_almost_equal(e, evals)
+
+ def test_bethe_hessian_spectrum(self):
+ "Bethe Hessian eigenvalues"
+ evals = np.array([0.5 * (9 - np.sqrt(33)), 4, 0.5 * (9 + np.sqrt(33))])
+ e = sorted(nx.bethe_hessian_spectrum(self.P, r=2))
+ np.testing.assert_almost_equal(e, evals)
+ # Collapses back to Laplacian:
+ e1 = sorted(nx.bethe_hessian_spectrum(self.P, r=1))
+ e2 = sorted(nx.laplacian_spectrum(self.P))
+ np.testing.assert_almost_equal(e1, e2)