aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py87
1 files changed, 87 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py
new file mode 100644
index 00000000..9f94ff4d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_modularity.py
@@ -0,0 +1,87 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+pytest.importorskip("scipy")
+
+import networkx as nx
+from networkx.generators.degree_seq import havel_hakimi_graph
+
+
+class TestModularity:
+ @classmethod
+ def setup_class(cls):
+ deg = [3, 2, 2, 1, 0]
+ cls.G = havel_hakimi_graph(deg)
+ # Graph used as an example in Sec. 4.1 of Langville and Meyer,
+ # "Google's PageRank and Beyond". (Used for test_directed_laplacian)
+ cls.DG = nx.DiGraph()
+ cls.DG.add_edges_from(
+ (
+ (1, 2),
+ (1, 3),
+ (3, 1),
+ (3, 2),
+ (3, 5),
+ (4, 5),
+ (4, 6),
+ (5, 4),
+ (5, 6),
+ (6, 4),
+ )
+ )
+
+ def test_modularity(self):
+ "Modularity matrix"
+ # fmt: off
+ B = np.array([[-1.125, 0.25, 0.25, 0.625, 0.],
+ [0.25, -0.5, 0.5, -0.25, 0.],
+ [0.25, 0.5, -0.5, -0.25, 0.],
+ [0.625, -0.25, -0.25, -0.125, 0.],
+ [0., 0., 0., 0., 0.]])
+ # fmt: on
+
+ permutation = [4, 0, 1, 2, 3]
+ np.testing.assert_equal(nx.modularity_matrix(self.G), B)
+ np.testing.assert_equal(
+ nx.modularity_matrix(self.G, nodelist=permutation),
+ B[np.ix_(permutation, permutation)],
+ )
+
+ def test_modularity_weight(self):
+ "Modularity matrix with weights"
+ # fmt: off
+ B = np.array([[-1.125, 0.25, 0.25, 0.625, 0.],
+ [0.25, -0.5, 0.5, -0.25, 0.],
+ [0.25, 0.5, -0.5, -0.25, 0.],
+ [0.625, -0.25, -0.25, -0.125, 0.],
+ [0., 0., 0., 0., 0.]])
+ # fmt: on
+
+ G_weighted = self.G.copy()
+ for n1, n2 in G_weighted.edges():
+ G_weighted.edges[n1, n2]["weight"] = 0.5
+ # The following test would fail in networkx 1.1
+ np.testing.assert_equal(nx.modularity_matrix(G_weighted), B)
+ # The following test that the modularity matrix get rescaled accordingly
+ np.testing.assert_equal(
+ nx.modularity_matrix(G_weighted, weight="weight"), 0.5 * B
+ )
+
+ def test_directed_modularity(self):
+ "Directed Modularity matrix"
+ # fmt: off
+ B = np.array([[-0.2, 0.6, 0.8, -0.4, -0.4, -0.4],
+ [0., 0., 0., 0., 0., 0.],
+ [0.7, 0.4, -0.3, -0.6, 0.4, -0.6],
+ [-0.2, -0.4, -0.2, -0.4, 0.6, 0.6],
+ [-0.2, -0.4, -0.2, 0.6, -0.4, 0.6],
+ [-0.1, -0.2, -0.1, 0.8, -0.2, -0.2]])
+ # fmt: on
+ node_permutation = [5, 1, 2, 3, 4, 6]
+ idx_permutation = [4, 0, 1, 2, 3, 5]
+ mm = nx.directed_modularity_matrix(self.DG, nodelist=sorted(self.DG))
+ np.testing.assert_equal(mm, B)
+ np.testing.assert_equal(
+ nx.directed_modularity_matrix(self.DG, nodelist=node_permutation),
+ B[np.ix_(idx_permutation, idx_permutation)],
+ )