aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_expanders.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/generators/tests/test_expanders.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/generators/tests/test_expanders.py162
1 files changed, 162 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_expanders.py b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_expanders.py
new file mode 100644
index 00000000..7cebc588
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_expanders.py
@@ -0,0 +1,162 @@
+"""Unit tests for the :mod:`networkx.generators.expanders` module."""
+
+import pytest
+
+import networkx as nx
+
+
+@pytest.mark.parametrize("n", (2, 3, 5, 6, 10))
+def test_margulis_gabber_galil_graph_properties(n):
+ g = nx.margulis_gabber_galil_graph(n)
+ assert g.number_of_nodes() == n * n
+ for node in g:
+ assert g.degree(node) == 8
+ assert len(node) == 2
+ for i in node:
+ assert int(i) == i
+ assert 0 <= i < n
+
+
+@pytest.mark.parametrize("n", (2, 3, 5, 6, 10))
+def test_margulis_gabber_galil_graph_eigvals(n):
+ np = pytest.importorskip("numpy")
+ sp = pytest.importorskip("scipy")
+
+ g = nx.margulis_gabber_galil_graph(n)
+ # Eigenvalues are already sorted using the scipy eigvalsh,
+ # but the implementation in numpy does not guarantee order.
+ w = sorted(sp.linalg.eigvalsh(nx.adjacency_matrix(g).toarray()))
+ assert w[-2] < 5 * np.sqrt(2)
+
+
+@pytest.mark.parametrize("p", (3, 5, 7, 11)) # Primes
+def test_chordal_cycle_graph(p):
+ """Test for the :func:`networkx.chordal_cycle_graph` function."""
+ G = nx.chordal_cycle_graph(p)
+ assert len(G) == p
+ # TODO The second largest eigenvalue should be smaller than a constant,
+ # independent of the number of nodes in the graph:
+ #
+ # eigs = sorted(sp.linalg.eigvalsh(nx.adjacency_matrix(G).toarray()))
+ # assert_less(eigs[-2], ...)
+ #
+
+
+@pytest.mark.parametrize("p", (3, 5, 7, 11, 13)) # Primes
+def test_paley_graph(p):
+ """Test for the :func:`networkx.paley_graph` function."""
+ G = nx.paley_graph(p)
+ # G has p nodes
+ assert len(G) == p
+ # G is (p-1)/2-regular
+ in_degrees = {G.in_degree(node) for node in G.nodes}
+ out_degrees = {G.out_degree(node) for node in G.nodes}
+ assert len(in_degrees) == 1 and in_degrees.pop() == (p - 1) // 2
+ assert len(out_degrees) == 1 and out_degrees.pop() == (p - 1) // 2
+
+ # If p = 1 mod 4, -1 is a square mod 4 and therefore the
+ # edge in the Paley graph are symmetric.
+ if p % 4 == 1:
+ for u, v in G.edges:
+ assert (v, u) in G.edges
+
+
+@pytest.mark.parametrize("d, n", [(2, 7), (4, 10), (4, 16)])
+def test_maybe_regular_expander(d, n):
+ pytest.importorskip("numpy")
+ G = nx.maybe_regular_expander(n, d)
+
+ assert len(G) == n, "Should have n nodes"
+ assert len(G.edges) == n * d / 2, "Should have n*d/2 edges"
+ assert nx.is_k_regular(G, d), "Should be d-regular"
+
+
+@pytest.mark.parametrize("n", (3, 5, 6, 10))
+def test_is_regular_expander(n):
+ pytest.importorskip("numpy")
+ pytest.importorskip("scipy")
+ G = nx.complete_graph(n)
+
+ assert nx.is_regular_expander(G) == True, "Should be a regular expander"
+
+
+@pytest.mark.parametrize("d, n", [(2, 7), (4, 10), (4, 16)])
+def test_random_regular_expander(d, n):
+ pytest.importorskip("numpy")
+ pytest.importorskip("scipy")
+ G = nx.random_regular_expander_graph(n, d)
+
+ assert len(G) == n, "Should have n nodes"
+ assert len(G.edges) == n * d / 2, "Should have n*d/2 edges"
+ assert nx.is_k_regular(G, d), "Should be d-regular"
+ assert nx.is_regular_expander(G) == True, "Should be a regular expander"
+
+
+def test_random_regular_expander_explicit_construction():
+ pytest.importorskip("numpy")
+ pytest.importorskip("scipy")
+ G = nx.random_regular_expander_graph(d=4, n=5)
+
+ assert len(G) == 5 and len(G.edges) == 10, "Should be a complete graph"
+
+
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph, nx.MultiDiGraph))
+def test_margulis_gabber_galil_graph_badinput(graph_type):
+ with pytest.raises(
+ nx.NetworkXError, match="`create_using` must be an undirected multigraph"
+ ):
+ nx.margulis_gabber_galil_graph(3, create_using=graph_type)
+
+
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph, nx.MultiDiGraph))
+def test_chordal_cycle_graph_badinput(graph_type):
+ with pytest.raises(
+ nx.NetworkXError, match="`create_using` must be an undirected multigraph"
+ ):
+ nx.chordal_cycle_graph(3, create_using=graph_type)
+
+
+def test_paley_graph_badinput():
+ with pytest.raises(
+ nx.NetworkXError, match="`create_using` cannot be a multigraph."
+ ):
+ nx.paley_graph(3, create_using=nx.MultiGraph)
+
+
+def test_maybe_regular_expander_badinput():
+ pytest.importorskip("numpy")
+ pytest.importorskip("scipy")
+
+ with pytest.raises(nx.NetworkXError, match="n must be a positive integer"):
+ nx.maybe_regular_expander(n=-1, d=2)
+
+ with pytest.raises(nx.NetworkXError, match="d must be greater than or equal to 2"):
+ nx.maybe_regular_expander(n=10, d=0)
+
+ with pytest.raises(nx.NetworkXError, match="Need n-1>= d to have room"):
+ nx.maybe_regular_expander(n=5, d=6)
+
+
+def test_is_regular_expander_badinput():
+ pytest.importorskip("numpy")
+ pytest.importorskip("scipy")
+
+ with pytest.raises(nx.NetworkXError, match="epsilon must be non negative"):
+ nx.is_regular_expander(nx.Graph(), epsilon=-1)
+
+
+def test_random_regular_expander_badinput():
+ pytest.importorskip("numpy")
+ pytest.importorskip("scipy")
+
+ with pytest.raises(nx.NetworkXError, match="n must be a positive integer"):
+ nx.random_regular_expander_graph(n=-1, d=2)
+
+ with pytest.raises(nx.NetworkXError, match="d must be greater than or equal to 2"):
+ nx.random_regular_expander_graph(n=10, d=0)
+
+ with pytest.raises(nx.NetworkXError, match="Need n-1>= d to have room"):
+ nx.random_regular_expander_graph(n=5, d=6)
+
+ with pytest.raises(nx.NetworkXError, match="epsilon must be non negative"):
+ nx.random_regular_expander_graph(n=4, d=2, epsilon=-1)