diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/generators/intersection.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/generators/intersection.py | 125 |
1 files changed, 125 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/intersection.py b/.venv/lib/python3.12/site-packages/networkx/generators/intersection.py new file mode 100644 index 00000000..e63af5be --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/generators/intersection.py @@ -0,0 +1,125 @@ +""" +Generators for random intersection graphs. +""" + +import networkx as nx +from networkx.utils import py_random_state + +__all__ = [ + "uniform_random_intersection_graph", + "k_random_intersection_graph", + "general_random_intersection_graph", +] + + +@py_random_state(3) +@nx._dispatchable(graphs=None, returns_graph=True) +def uniform_random_intersection_graph(n, m, p, seed=None): + """Returns a uniform random intersection graph. + + Parameters + ---------- + n : int + The number of nodes in the first bipartite set (nodes) + m : int + The number of nodes in the second bipartite set (attributes) + p : float + Probability of connecting nodes between bipartite sets + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + See Also + -------- + gnp_random_graph + + References + ---------- + .. [1] K.B. Singer-Cohen, Random Intersection Graphs, 1995, + PhD thesis, Johns Hopkins University + .. [2] Fill, J. A., Scheinerman, E. R., and Singer-Cohen, K. B., + Random intersection graphs when m = !(n): + An equivalence theorem relating the evolution of the g(n, m, p) + and g(n, p) models. Random Struct. Algorithms 16, 2 (2000), 156–176. + """ + from networkx.algorithms import bipartite + + G = bipartite.random_graph(n, m, p, seed) + return nx.projected_graph(G, range(n)) + + +@py_random_state(3) +@nx._dispatchable(graphs=None, returns_graph=True) +def k_random_intersection_graph(n, m, k, seed=None): + """Returns a intersection graph with randomly chosen attribute sets for + each node that are of equal size (k). + + Parameters + ---------- + n : int + The number of nodes in the first bipartite set (nodes) + m : int + The number of nodes in the second bipartite set (attributes) + k : float + Size of attribute set to assign to each node. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + See Also + -------- + gnp_random_graph, uniform_random_intersection_graph + + References + ---------- + .. [1] Godehardt, E., and Jaworski, J. + Two models of random intersection graphs and their applications. + Electronic Notes in Discrete Mathematics 10 (2001), 129--132. + """ + G = nx.empty_graph(n + m) + mset = range(n, n + m) + for v in range(n): + targets = seed.sample(mset, k) + G.add_edges_from(zip([v] * len(targets), targets)) + return nx.projected_graph(G, range(n)) + + +@py_random_state(3) +@nx._dispatchable(graphs=None, returns_graph=True) +def general_random_intersection_graph(n, m, p, seed=None): + """Returns a random intersection graph with independent probabilities + for connections between node and attribute sets. + + Parameters + ---------- + n : int + The number of nodes in the first bipartite set (nodes) + m : int + The number of nodes in the second bipartite set (attributes) + p : list of floats of length m + Probabilities for connecting nodes to each attribute + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + See Also + -------- + gnp_random_graph, uniform_random_intersection_graph + + References + ---------- + .. [1] Nikoletseas, S. E., Raptopoulos, C., and Spirakis, P. G. + The existence and efficient construction of large independent sets + in general random intersection graphs. In ICALP (2004), J. D´ıaz, + J. Karhum¨aki, A. Lepist¨o, and D. Sannella, Eds., vol. 3142 + of Lecture Notes in Computer Science, Springer, pp. 1029–1040. + """ + if len(p) != m: + raise ValueError("Probability list p must have m elements.") + G = nx.empty_graph(n + m) + mset = range(n, n + m) + for u in range(n): + for v, q in zip(mset, p): + if seed.random() < q: + G.add_edge(u, v) + return nx.projected_graph(G, range(n)) |