diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/generators/directed.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/generators/directed.py | 501 |
1 files changed, 501 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/directed.py b/.venv/lib/python3.12/site-packages/networkx/generators/directed.py new file mode 100644 index 00000000..4548726b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/generators/directed.py @@ -0,0 +1,501 @@ +""" +Generators for some directed graphs, including growing network (GN) graphs and +scale-free graphs. + +""" + +import numbers +from collections import Counter + +import networkx as nx +from networkx.generators.classic import empty_graph +from networkx.utils import discrete_sequence, py_random_state, weighted_choice + +__all__ = [ + "gn_graph", + "gnc_graph", + "gnr_graph", + "random_k_out_graph", + "scale_free_graph", +] + + +@py_random_state(3) +@nx._dispatchable(graphs=None, returns_graph=True) +def gn_graph(n, kernel=None, create_using=None, seed=None): + """Returns the growing network (GN) digraph with `n` nodes. + + The GN graph is built by adding nodes one at a time with a link to one + previously added node. The target node for the link is chosen with + probability based on degree. The default attachment kernel is a linear + function of the degree of a node. + + The graph is always a (directed) tree. + + Parameters + ---------- + n : int + The number of nodes for the generated graph. + kernel : function + The attachment kernel. + create_using : NetworkX graph constructor, optional (default DiGraph) + Graph type to create. If graph instance, then cleared before populated. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Examples + -------- + To create the undirected GN graph, use the :meth:`~DiGraph.to_directed` + method:: + + >>> D = nx.gn_graph(10) # the GN graph + >>> G = D.to_undirected() # the undirected version + + To specify an attachment kernel, use the `kernel` keyword argument:: + + >>> D = nx.gn_graph(10, kernel=lambda x: x**1.5) # A_k = k^1.5 + + References + ---------- + .. [1] P. L. Krapivsky and S. Redner, + Organization of Growing Random Networks, + Phys. Rev. E, 63, 066123, 2001. + """ + G = empty_graph(1, create_using, default=nx.DiGraph) + if not G.is_directed(): + raise nx.NetworkXError("create_using must indicate a Directed Graph") + + if kernel is None: + + def kernel(x): + return x + + if n == 1: + return G + + G.add_edge(1, 0) # get started + ds = [1, 1] # degree sequence + + for source in range(2, n): + # compute distribution from kernel and degree + dist = [kernel(d) for d in ds] + # choose target from discrete distribution + target = discrete_sequence(1, distribution=dist, seed=seed)[0] + G.add_edge(source, target) + ds.append(1) # the source has only one link (degree one) + ds[target] += 1 # add one to the target link degree + return G + + +@py_random_state(3) +@nx._dispatchable(graphs=None, returns_graph=True) +def gnr_graph(n, p, create_using=None, seed=None): + """Returns the growing network with redirection (GNR) digraph with `n` + nodes and redirection probability `p`. + + The GNR graph is built by adding nodes one at a time with a link to one + previously added node. The previous target node is chosen uniformly at + random. With probability `p` the link is instead "redirected" to the + successor node of the target. + + The graph is always a (directed) tree. + + Parameters + ---------- + n : int + The number of nodes for the generated graph. + p : float + The redirection probability. + create_using : NetworkX graph constructor, optional (default DiGraph) + Graph type to create. If graph instance, then cleared before populated. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Examples + -------- + To create the undirected GNR graph, use the :meth:`~DiGraph.to_directed` + method:: + + >>> D = nx.gnr_graph(10, 0.5) # the GNR graph + >>> G = D.to_undirected() # the undirected version + + References + ---------- + .. [1] P. L. Krapivsky and S. Redner, + Organization of Growing Random Networks, + Phys. Rev. E, 63, 066123, 2001. + """ + G = empty_graph(1, create_using, default=nx.DiGraph) + if not G.is_directed(): + raise nx.NetworkXError("create_using must indicate a Directed Graph") + + if n == 1: + return G + + for source in range(1, n): + target = seed.randrange(0, source) + if seed.random() < p and target != 0: + target = next(G.successors(target)) + G.add_edge(source, target) + return G + + +@py_random_state(2) +@nx._dispatchable(graphs=None, returns_graph=True) +def gnc_graph(n, create_using=None, seed=None): + """Returns the growing network with copying (GNC) digraph with `n` nodes. + + The GNC graph is built by adding nodes one at a time with a link to one + previously added node (chosen uniformly at random) and to all of that + node's successors. + + Parameters + ---------- + n : int + The number of nodes for the generated graph. + create_using : NetworkX graph constructor, optional (default DiGraph) + Graph type to create. If graph instance, then cleared before populated. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + References + ---------- + .. [1] P. L. Krapivsky and S. Redner, + Network Growth by Copying, + Phys. Rev. E, 71, 036118, 2005k.}, + """ + G = empty_graph(1, create_using, default=nx.DiGraph) + if not G.is_directed(): + raise nx.NetworkXError("create_using must indicate a Directed Graph") + + if n == 1: + return G + + for source in range(1, n): + target = seed.randrange(0, source) + for succ in G.successors(target): + G.add_edge(source, succ) + G.add_edge(source, target) + return G + + +@py_random_state(6) +@nx._dispatchable(graphs=None, returns_graph=True) +def scale_free_graph( + n, + alpha=0.41, + beta=0.54, + gamma=0.05, + delta_in=0.2, + delta_out=0, + seed=None, + initial_graph=None, +): + """Returns a scale-free directed graph. + + Parameters + ---------- + n : integer + Number of nodes in graph + alpha : float + Probability for adding a new node connected to an existing node + chosen randomly according to the in-degree distribution. + beta : float + Probability for adding an edge between two existing nodes. + One existing node is chosen randomly according the in-degree + distribution and the other chosen randomly according to the out-degree + distribution. + gamma : float + Probability for adding a new node connected to an existing node + chosen randomly according to the out-degree distribution. + delta_in : float + Bias for choosing nodes from in-degree distribution. + delta_out : float + Bias for choosing nodes from out-degree distribution. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + initial_graph : MultiDiGraph instance, optional + Build the scale-free graph starting from this initial MultiDiGraph, + if provided. + + Returns + ------- + MultiDiGraph + + Examples + -------- + Create a scale-free graph on one hundred nodes:: + + >>> G = nx.scale_free_graph(100) + + Notes + ----- + The sum of `alpha`, `beta`, and `gamma` must be 1. + + References + ---------- + .. [1] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, + Directed scale-free graphs, + Proceedings of the fourteenth annual ACM-SIAM Symposium on + Discrete Algorithms, 132--139, 2003. + """ + + def _choose_node(candidates, node_list, delta): + if delta > 0: + bias_sum = len(node_list) * delta + p_delta = bias_sum / (bias_sum + len(candidates)) + if seed.random() < p_delta: + return seed.choice(node_list) + return seed.choice(candidates) + + if initial_graph is not None and hasattr(initial_graph, "_adj"): + if not isinstance(initial_graph, nx.MultiDiGraph): + raise nx.NetworkXError("initial_graph must be a MultiDiGraph.") + G = initial_graph + else: + # Start with 3-cycle + G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 0)]) + + if alpha <= 0: + raise ValueError("alpha must be > 0.") + if beta <= 0: + raise ValueError("beta must be > 0.") + if gamma <= 0: + raise ValueError("gamma must be > 0.") + + if abs(alpha + beta + gamma - 1.0) >= 1e-9: + raise ValueError("alpha+beta+gamma must equal 1.") + + if delta_in < 0: + raise ValueError("delta_in must be >= 0.") + + if delta_out < 0: + raise ValueError("delta_out must be >= 0.") + + # pre-populate degree states + vs = sum((count * [idx] for idx, count in G.out_degree()), []) + ws = sum((count * [idx] for idx, count in G.in_degree()), []) + + # pre-populate node state + node_list = list(G.nodes()) + + # see if there already are number-based nodes + numeric_nodes = [n for n in node_list if isinstance(n, numbers.Number)] + if len(numeric_nodes) > 0: + # set cursor for new nodes appropriately + cursor = max(int(n.real) for n in numeric_nodes) + 1 + else: + # or start at zero + cursor = 0 + + while len(G) < n: + r = seed.random() + + # random choice in alpha,beta,gamma ranges + if r < alpha: + # alpha + # add new node v + v = cursor + cursor += 1 + # also add to node state + node_list.append(v) + # choose w according to in-degree and delta_in + w = _choose_node(ws, node_list, delta_in) + + elif r < alpha + beta: + # beta + # choose v according to out-degree and delta_out + v = _choose_node(vs, node_list, delta_out) + # choose w according to in-degree and delta_in + w = _choose_node(ws, node_list, delta_in) + + else: + # gamma + # choose v according to out-degree and delta_out + v = _choose_node(vs, node_list, delta_out) + # add new node w + w = cursor + cursor += 1 + # also add to node state + node_list.append(w) + + # add edge to graph + G.add_edge(v, w) + + # update degree states + vs.append(v) + ws.append(w) + + return G + + +@py_random_state(4) +@nx._dispatchable(graphs=None, returns_graph=True) +def random_uniform_k_out_graph(n, k, self_loops=True, with_replacement=True, seed=None): + """Returns a random `k`-out graph with uniform attachment. + + A random `k`-out graph with uniform attachment is a multidigraph + generated by the following algorithm. For each node *u*, choose + `k` nodes *v* uniformly at random (with replacement). Add a + directed edge joining *u* to *v*. + + Parameters + ---------- + n : int + The number of nodes in the returned graph. + + k : int + The out-degree of each node in the returned graph. + + self_loops : bool + If True, self-loops are allowed when generating the graph. + + with_replacement : bool + If True, neighbors are chosen with replacement and the + returned graph will be a directed multigraph. Otherwise, + neighbors are chosen without replacement and the returned graph + will be a directed graph. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + NetworkX graph + A `k`-out-regular directed graph generated according to the + above algorithm. It will be a multigraph if and only if + `with_replacement` is True. + + Raises + ------ + ValueError + If `with_replacement` is False and `k` is greater than + `n`. + + See also + -------- + random_k_out_graph + + Notes + ----- + The return digraph or multidigraph may not be strongly connected, or + even weakly connected. + + If `with_replacement` is True, this function is similar to + :func:`random_k_out_graph`, if that function had parameter `alpha` + set to positive infinity. + + """ + if with_replacement: + create_using = nx.MultiDiGraph() + + def sample(v, nodes): + if not self_loops: + nodes = nodes - {v} + return (seed.choice(list(nodes)) for i in range(k)) + + else: + create_using = nx.DiGraph() + + def sample(v, nodes): + if not self_loops: + nodes = nodes - {v} + return seed.sample(list(nodes), k) + + G = nx.empty_graph(n, create_using) + nodes = set(G) + for u in G: + G.add_edges_from((u, v) for v in sample(u, nodes)) + return G + + +@py_random_state(4) +@nx._dispatchable(graphs=None, returns_graph=True) +def random_k_out_graph(n, k, alpha, self_loops=True, seed=None): + """Returns a random `k`-out graph with preferential attachment. + + A random `k`-out graph with preferential attachment is a + multidigraph generated by the following algorithm. + + 1. Begin with an empty digraph, and initially set each node to have + weight `alpha`. + 2. Choose a node `u` with out-degree less than `k` uniformly at + random. + 3. Choose a node `v` from with probability proportional to its + weight. + 4. Add a directed edge from `u` to `v`, and increase the weight + of `v` by one. + 5. If each node has out-degree `k`, halt, otherwise repeat from + step 2. + + For more information on this model of random graph, see [1]. + + Parameters + ---------- + n : int + The number of nodes in the returned graph. + + k : int + The out-degree of each node in the returned graph. + + alpha : float + A positive :class:`float` representing the initial weight of + each vertex. A higher number means that in step 3 above, nodes + will be chosen more like a true uniformly random sample, and a + lower number means that nodes are more likely to be chosen as + their in-degree increases. If this parameter is not positive, a + :exc:`ValueError` is raised. + + self_loops : bool + If True, self-loops are allowed when generating the graph. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + :class:`~networkx.classes.MultiDiGraph` + A `k`-out-regular multidigraph generated according to the above + algorithm. + + Raises + ------ + ValueError + If `alpha` is not positive. + + Notes + ----- + The returned multidigraph may not be strongly connected, or even + weakly connected. + + References + ---------- + [1]: Peterson, Nicholas R., and Boris Pittel. + "Distance between two random `k`-out digraphs, with and without + preferential attachment." + arXiv preprint arXiv:1311.5961 (2013). + <https://arxiv.org/abs/1311.5961> + + """ + if alpha < 0: + raise ValueError("alpha must be positive") + G = nx.empty_graph(n, create_using=nx.MultiDiGraph) + weights = Counter({v: alpha for v in G}) + for i in range(k * n): + u = seed.choice([v for v, d in G.out_degree() if d < k]) + # If self-loops are not allowed, make the source node `u` have + # weight zero. + if not self_loops: + adjustment = Counter({u: weights[u]}) + else: + adjustment = Counter() + v = weighted_choice(weights - adjustment, seed=seed) + G.add_edge(u, v) + weights[v] += 1 + return G |