about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/convert_matrix.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/convert_matrix.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/convert_matrix.py1317
1 files changed, 1317 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/convert_matrix.py b/.venv/lib/python3.12/site-packages/networkx/convert_matrix.py
new file mode 100644
index 00000000..8992627c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/convert_matrix.py
@@ -0,0 +1,1317 @@
+"""Functions to convert NetworkX graphs to and from common data containers
+like numpy arrays, scipy sparse arrays, and pandas DataFrames.
+
+The preferred way of converting data to a NetworkX graph is through the
+graph constructor.  The constructor calls the `~networkx.convert.to_networkx_graph`
+function which attempts to guess the input type and convert it automatically.
+
+Examples
+--------
+Create a 10 node random graph from a numpy array
+
+>>> import numpy as np
+>>> rng = np.random.default_rng()
+>>> a = rng.integers(low=0, high=2, size=(10, 10))
+>>> DG = nx.from_numpy_array(a, create_using=nx.DiGraph)
+
+or equivalently:
+
+>>> DG = nx.DiGraph(a)
+
+which calls `from_numpy_array` internally based on the type of ``a``.
+
+See Also
+--------
+nx_agraph, nx_pydot
+"""
+
+import itertools
+from collections import defaultdict
+
+import networkx as nx
+from networkx.utils import not_implemented_for
+
+__all__ = [
+    "from_pandas_adjacency",
+    "to_pandas_adjacency",
+    "from_pandas_edgelist",
+    "to_pandas_edgelist",
+    "from_scipy_sparse_array",
+    "to_scipy_sparse_array",
+    "from_numpy_array",
+    "to_numpy_array",
+]
+
+
+@nx._dispatchable(edge_attrs="weight")
+def to_pandas_adjacency(
+    G,
+    nodelist=None,
+    dtype=None,
+    order=None,
+    multigraph_weight=sum,
+    weight="weight",
+    nonedge=0.0,
+):
+    """Returns the graph adjacency matrix as a Pandas DataFrame.
+
+    Parameters
+    ----------
+    G : graph
+        The NetworkX graph used to construct the Pandas DataFrame.
+
+    nodelist : list, optional
+       The rows and columns are ordered according to the nodes in `nodelist`.
+       If `nodelist` is None, then the ordering is produced by G.nodes().
+
+    multigraph_weight : {sum, min, max}, optional
+        An operator that determines how weights in multigraphs are handled.
+        The default is to sum the weights of the multiple edges.
+
+    weight : string or None, optional
+        The edge attribute that holds the numerical value used for
+        the edge weight.  If an edge does not have that attribute, then the
+        value 1 is used instead.
+
+    nonedge : float, optional
+        The matrix values corresponding to nonedges are typically set to zero.
+        However, this could be undesirable if there are matrix values
+        corresponding to actual edges that also have the value zero. If so,
+        one might prefer nonedges to have some other value, such as nan.
+
+    Returns
+    -------
+    df : Pandas DataFrame
+       Graph adjacency matrix
+
+    Notes
+    -----
+    For directed graphs, entry i,j corresponds to an edge from i to j.
+
+    The DataFrame entries are assigned to the weight edge attribute. When
+    an edge does not have a weight attribute, the value of the entry is set to
+    the number 1.  For multiple (parallel) edges, the values of the entries
+    are determined by the 'multigraph_weight' parameter.  The default is to
+    sum the weight attributes for each of the parallel edges.
+
+    When `nodelist` does not contain every node in `G`, the matrix is built
+    from the subgraph of `G` that is induced by the nodes in `nodelist`.
+
+    The convention used for self-loop edges in graphs is to assign the
+    diagonal matrix entry value to the weight attribute of the edge
+    (or the number 1 if the edge has no weight attribute).  If the
+    alternate convention of doubling the edge weight is desired the
+    resulting Pandas DataFrame can be modified as follows::
+
+        >>> import pandas as pd
+        >>> G = nx.Graph([(1, 1), (2, 2)])
+        >>> df = nx.to_pandas_adjacency(G)
+        >>> df
+             1    2
+        1  1.0  0.0
+        2  0.0  1.0
+        >>> diag_idx = list(range(len(df)))
+        >>> df.iloc[diag_idx, diag_idx] *= 2
+        >>> df
+             1    2
+        1  2.0  0.0
+        2  0.0  2.0
+
+    Examples
+    --------
+    >>> G = nx.MultiDiGraph()
+    >>> G.add_edge(0, 1, weight=2)
+    0
+    >>> G.add_edge(1, 0)
+    0
+    >>> G.add_edge(2, 2, weight=3)
+    0
+    >>> G.add_edge(2, 2)
+    1
+    >>> nx.to_pandas_adjacency(G, nodelist=[0, 1, 2], dtype=int)
+       0  1  2
+    0  0  2  0
+    1  1  0  0
+    2  0  0  4
+
+    """
+    import pandas as pd
+
+    M = to_numpy_array(
+        G,
+        nodelist=nodelist,
+        dtype=dtype,
+        order=order,
+        multigraph_weight=multigraph_weight,
+        weight=weight,
+        nonedge=nonedge,
+    )
+    if nodelist is None:
+        nodelist = list(G)
+    return pd.DataFrame(data=M, index=nodelist, columns=nodelist)
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def from_pandas_adjacency(df, create_using=None):
+    r"""Returns a graph from Pandas DataFrame.
+
+    The Pandas DataFrame is interpreted as an adjacency matrix for the graph.
+
+    Parameters
+    ----------
+    df : Pandas DataFrame
+      An adjacency matrix representation of a graph
+
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+
+    Notes
+    -----
+    For directed graphs, explicitly mention create_using=nx.DiGraph,
+    and entry i,j of df corresponds to an edge from i to j.
+
+    If `df` has a single data type for each entry it will be converted to an
+    appropriate Python data type.
+
+    If you have node attributes stored in a separate dataframe `df_nodes`,
+    you can load those attributes to the graph `G` using the following code:
+
+    ```
+    df_nodes = pd.DataFrame({"node_id": [1, 2, 3], "attribute1": ["A", "B", "C"]})
+    G.add_nodes_from((n, dict(d)) for n, d in df_nodes.iterrows())
+    ```
+
+    If `df` has a user-specified compound data type the names
+    of the data fields will be used as attribute keys in the resulting
+    NetworkX graph.
+
+    See Also
+    --------
+    to_pandas_adjacency
+
+    Examples
+    --------
+    Simple integer weights on edges:
+
+    >>> import pandas as pd
+    >>> pd.options.display.max_columns = 20
+    >>> df = pd.DataFrame([[1, 1], [2, 1]])
+    >>> df
+       0  1
+    0  1  1
+    1  2  1
+    >>> G = nx.from_pandas_adjacency(df)
+    >>> G.name = "Graph from pandas adjacency matrix"
+    >>> print(G)
+    Graph named 'Graph from pandas adjacency matrix' with 2 nodes and 3 edges
+    """
+
+    try:
+        df = df[df.index]
+    except Exception as err:
+        missing = list(set(df.index).difference(set(df.columns)))
+        msg = f"{missing} not in columns"
+        raise nx.NetworkXError("Columns must match Indices.", msg) from err
+
+    A = df.values
+    G = from_numpy_array(A, create_using=create_using, nodelist=df.columns)
+
+    return G
+
+
+@nx._dispatchable(preserve_edge_attrs=True)
+def to_pandas_edgelist(
+    G,
+    source="source",
+    target="target",
+    nodelist=None,
+    dtype=None,
+    edge_key=None,
+):
+    """Returns the graph edge list as a Pandas DataFrame.
+
+    Parameters
+    ----------
+    G : graph
+        The NetworkX graph used to construct the Pandas DataFrame.
+
+    source : str or int, optional
+        A valid column name (string or integer) for the source nodes (for the
+        directed case).
+
+    target : str or int, optional
+        A valid column name (string or integer) for the target nodes (for the
+        directed case).
+
+    nodelist : list, optional
+       Use only nodes specified in nodelist
+
+    dtype : dtype, default None
+        Use to create the DataFrame. Data type to force.
+        Only a single dtype is allowed. If None, infer.
+
+    edge_key : str or int or None, optional (default=None)
+        A valid column name (string or integer) for the edge keys (for the
+        multigraph case). If None, edge keys are not stored in the DataFrame.
+
+    Returns
+    -------
+    df : Pandas DataFrame
+       Graph edge list
+
+    Examples
+    --------
+    >>> G = nx.Graph(
+    ...     [
+    ...         ("A", "B", {"cost": 1, "weight": 7}),
+    ...         ("C", "E", {"cost": 9, "weight": 10}),
+    ...     ]
+    ... )
+    >>> df = nx.to_pandas_edgelist(G, nodelist=["A", "C"])
+    >>> df[["source", "target", "cost", "weight"]]
+      source target  cost  weight
+    0      A      B     1       7
+    1      C      E     9      10
+
+    >>> G = nx.MultiGraph([("A", "B", {"cost": 1}), ("A", "B", {"cost": 9})])
+    >>> df = nx.to_pandas_edgelist(G, nodelist=["A", "C"], edge_key="ekey")
+    >>> df[["source", "target", "cost", "ekey"]]
+      source target  cost  ekey
+    0      A      B     1     0
+    1      A      B     9     1
+
+    """
+    import pandas as pd
+
+    if nodelist is None:
+        edgelist = G.edges(data=True)
+    else:
+        edgelist = G.edges(nodelist, data=True)
+    source_nodes = [s for s, _, _ in edgelist]
+    target_nodes = [t for _, t, _ in edgelist]
+
+    all_attrs = set().union(*(d.keys() for _, _, d in edgelist))
+    if source in all_attrs:
+        raise nx.NetworkXError(f"Source name {source!r} is an edge attr name")
+    if target in all_attrs:
+        raise nx.NetworkXError(f"Target name {target!r} is an edge attr name")
+
+    nan = float("nan")
+    edge_attr = {k: [d.get(k, nan) for _, _, d in edgelist] for k in all_attrs}
+
+    if G.is_multigraph() and edge_key is not None:
+        if edge_key in all_attrs:
+            raise nx.NetworkXError(f"Edge key name {edge_key!r} is an edge attr name")
+        edge_keys = [k for _, _, k in G.edges(keys=True)]
+        edgelistdict = {source: source_nodes, target: target_nodes, edge_key: edge_keys}
+    else:
+        edgelistdict = {source: source_nodes, target: target_nodes}
+
+    edgelistdict.update(edge_attr)
+    return pd.DataFrame(edgelistdict, dtype=dtype)
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def from_pandas_edgelist(
+    df,
+    source="source",
+    target="target",
+    edge_attr=None,
+    create_using=None,
+    edge_key=None,
+):
+    """Returns a graph from Pandas DataFrame containing an edge list.
+
+    The Pandas DataFrame should contain at least two columns of node names and
+    zero or more columns of edge attributes. Each row will be processed as one
+    edge instance.
+
+    Note: This function iterates over DataFrame.values, which is not
+    guaranteed to retain the data type across columns in the row. This is only
+    a problem if your row is entirely numeric and a mix of ints and floats. In
+    that case, all values will be returned as floats. See the
+    DataFrame.iterrows documentation for an example.
+
+    Parameters
+    ----------
+    df : Pandas DataFrame
+        An edge list representation of a graph
+
+    source : str or int
+        A valid column name (string or integer) for the source nodes (for the
+        directed case).
+
+    target : str or int
+        A valid column name (string or integer) for the target nodes (for the
+        directed case).
+
+    edge_attr : str or int, iterable, True, or None
+        A valid column name (str or int) or iterable of column names that are
+        used to retrieve items and add them to the graph as edge attributes.
+        If `True`, all columns will be added except `source`, `target` and `edge_key`.
+        If `None`, no edge attributes are added to the graph.
+
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+        Graph type to create. If graph instance, then cleared before populated.
+
+    edge_key : str or None, optional (default=None)
+        A valid column name for the edge keys (for a MultiGraph). The values in
+        this column are used for the edge keys when adding edges if create_using
+        is a multigraph.
+
+    If you have node attributes stored in a separate dataframe `df_nodes`,
+    you can load those attributes to the graph `G` using the following code:
+
+    ```
+    df_nodes = pd.DataFrame({"node_id": [1, 2, 3], "attribute1": ["A", "B", "C"]})
+    G.add_nodes_from((n, dict(d)) for n, d in df_nodes.iterrows())
+    ```
+
+    See Also
+    --------
+    to_pandas_edgelist
+
+    Examples
+    --------
+    Simple integer weights on edges:
+
+    >>> import pandas as pd
+    >>> pd.options.display.max_columns = 20
+    >>> import numpy as np
+    >>> rng = np.random.RandomState(seed=5)
+    >>> ints = rng.randint(1, 11, size=(3, 2))
+    >>> a = ["A", "B", "C"]
+    >>> b = ["D", "A", "E"]
+    >>> df = pd.DataFrame(ints, columns=["weight", "cost"])
+    >>> df[0] = a
+    >>> df["b"] = b
+    >>> df[["weight", "cost", 0, "b"]]
+       weight  cost  0  b
+    0       4     7  A  D
+    1       7     1  B  A
+    2      10     9  C  E
+    >>> G = nx.from_pandas_edgelist(df, 0, "b", ["weight", "cost"])
+    >>> G["E"]["C"]["weight"]
+    10
+    >>> G["E"]["C"]["cost"]
+    9
+    >>> edges = pd.DataFrame(
+    ...     {
+    ...         "source": [0, 1, 2],
+    ...         "target": [2, 2, 3],
+    ...         "weight": [3, 4, 5],
+    ...         "color": ["red", "blue", "blue"],
+    ...     }
+    ... )
+    >>> G = nx.from_pandas_edgelist(edges, edge_attr=True)
+    >>> G[0][2]["color"]
+    'red'
+
+    Build multigraph with custom keys:
+
+    >>> edges = pd.DataFrame(
+    ...     {
+    ...         "source": [0, 1, 2, 0],
+    ...         "target": [2, 2, 3, 2],
+    ...         "my_edge_key": ["A", "B", "C", "D"],
+    ...         "weight": [3, 4, 5, 6],
+    ...         "color": ["red", "blue", "blue", "blue"],
+    ...     }
+    ... )
+    >>> G = nx.from_pandas_edgelist(
+    ...     edges,
+    ...     edge_key="my_edge_key",
+    ...     edge_attr=["weight", "color"],
+    ...     create_using=nx.MultiGraph(),
+    ... )
+    >>> G[0][2]
+    AtlasView({'A': {'weight': 3, 'color': 'red'}, 'D': {'weight': 6, 'color': 'blue'}})
+
+
+    """
+    g = nx.empty_graph(0, create_using)
+
+    if edge_attr is None:
+        if g.is_multigraph() and edge_key is not None:
+            for u, v, k in zip(df[source], df[target], df[edge_key]):
+                g.add_edge(u, v, k)
+        else:
+            g.add_edges_from(zip(df[source], df[target]))
+        return g
+
+    reserved_columns = [source, target]
+    if g.is_multigraph() and edge_key is not None:
+        reserved_columns.append(edge_key)
+
+    # Additional columns requested
+    attr_col_headings = []
+    attribute_data = []
+    if edge_attr is True:
+        attr_col_headings = [c for c in df.columns if c not in reserved_columns]
+    elif isinstance(edge_attr, list | tuple):
+        attr_col_headings = edge_attr
+    else:
+        attr_col_headings = [edge_attr]
+    if len(attr_col_headings) == 0:
+        raise nx.NetworkXError(
+            f"Invalid edge_attr argument: No columns found with name: {attr_col_headings}"
+        )
+
+    try:
+        attribute_data = zip(*[df[col] for col in attr_col_headings])
+    except (KeyError, TypeError) as err:
+        msg = f"Invalid edge_attr argument: {edge_attr}"
+        raise nx.NetworkXError(msg) from err
+
+    if g.is_multigraph():
+        # => append the edge keys from the df to the bundled data
+        if edge_key is not None:
+            try:
+                multigraph_edge_keys = df[edge_key]
+                attribute_data = zip(attribute_data, multigraph_edge_keys)
+            except (KeyError, TypeError) as err:
+                msg = f"Invalid edge_key argument: {edge_key}"
+                raise nx.NetworkXError(msg) from err
+
+        for s, t, attrs in zip(df[source], df[target], attribute_data):
+            if edge_key is not None:
+                attrs, multigraph_edge_key = attrs
+                key = g.add_edge(s, t, key=multigraph_edge_key)
+            else:
+                key = g.add_edge(s, t)
+
+            g[s][t][key].update(zip(attr_col_headings, attrs))
+    else:
+        for s, t, attrs in zip(df[source], df[target], attribute_data):
+            g.add_edge(s, t)
+            g[s][t].update(zip(attr_col_headings, attrs))
+
+    return g
+
+
+@nx._dispatchable(edge_attrs="weight")
+def to_scipy_sparse_array(G, nodelist=None, dtype=None, weight="weight", format="csr"):
+    """Returns the graph adjacency matrix as a SciPy sparse array.
+
+    Parameters
+    ----------
+    G : graph
+        The NetworkX graph used to construct the sparse array.
+
+    nodelist : list, optional
+       The rows and columns are ordered according to the nodes in `nodelist`.
+       If `nodelist` is None, then the ordering is produced by ``G.nodes()``.
+
+    dtype : NumPy data-type, optional
+        A valid NumPy dtype used to initialize the array. If None, then the
+        NumPy default is used.
+
+    weight : string or None, optional (default='weight')
+        The edge attribute that holds the numerical value used for
+        the edge weight.  If None then all edge weights are 1.
+
+    format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}
+        The format of the sparse array to be returned (default 'csr').  For
+        some algorithms different implementations of sparse arrays
+        can perform better.  See [1]_ for details.
+
+    Returns
+    -------
+    A : SciPy sparse array
+       Graph adjacency matrix.
+
+    Notes
+    -----
+    For directed graphs, matrix entry ``i, j`` corresponds to an edge from
+    ``i`` to ``j``.
+
+    The values of the adjacency matrix are populated using the edge attribute held in
+    parameter `weight`. When an edge does not have that attribute, the
+    value of the entry is 1.
+
+    For multiple edges the matrix values are the sums of the edge weights.
+
+    When `nodelist` does not contain every node in `G`, the adjacency matrix
+    is built from the subgraph of `G` that is induced by the nodes in
+    `nodelist`.
+
+    The convention used for self-loop edges in graphs is to assign the
+    diagonal matrix entry value to the weight attribute of the edge
+    (or the number 1 if the edge has no weight attribute).  If the
+    alternate convention of doubling the edge weight is desired the
+    resulting array can be modified as follows::
+
+        >>> G = nx.Graph([(1, 1)])
+        >>> A = nx.to_scipy_sparse_array(G)
+        >>> A.toarray()
+        array([[1]])
+        >>> A.setdiag(A.diagonal() * 2)
+        >>> A.toarray()
+        array([[2]])
+
+    Examples
+    --------
+
+    Basic usage:
+
+    >>> G = nx.path_graph(4)
+    >>> A = nx.to_scipy_sparse_array(G)
+    >>> A  # doctest: +SKIP
+    <Compressed Sparse Row sparse array of dtype 'int64'
+        with 6 stored elements and shape (4, 4)>
+
+    >>> A.toarray()
+    array([[0, 1, 0, 0],
+           [1, 0, 1, 0],
+           [0, 1, 0, 1],
+           [0, 0, 1, 0]])
+
+    .. note:: The `toarray` method is used in these examples to better visualize
+       the adjacancy matrix. For a dense representation of the adjaceny matrix,
+       use `to_numpy_array` instead.
+
+    Directed graphs:
+
+    >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 3)])
+    >>> nx.to_scipy_sparse_array(G).toarray()
+    array([[0, 1, 0, 0],
+           [0, 0, 1, 0],
+           [0, 0, 0, 1],
+           [0, 0, 0, 0]])
+
+    >>> H = G.reverse()
+    >>> H.edges
+    OutEdgeView([(1, 0), (2, 1), (3, 2)])
+    >>> nx.to_scipy_sparse_array(H).toarray()
+    array([[0, 0, 0, 0],
+           [1, 0, 0, 0],
+           [0, 1, 0, 0],
+           [0, 0, 1, 0]])
+
+    By default, the order of the rows/columns of the adjacency matrix is determined
+    by the ordering of the nodes in `G`:
+
+    >>> G = nx.Graph()
+    >>> G.add_nodes_from([3, 5, 0, 1])
+    >>> G.add_edges_from([(1, 3), (1, 5)])
+    >>> nx.to_scipy_sparse_array(G).toarray()
+    array([[0, 0, 0, 1],
+           [0, 0, 0, 1],
+           [0, 0, 0, 0],
+           [1, 1, 0, 0]])
+
+    The ordering of the rows can be changed with `nodelist`:
+
+    >>> ordered = [0, 1, 3, 5]
+    >>> nx.to_scipy_sparse_array(G, nodelist=ordered).toarray()
+    array([[0, 0, 0, 0],
+           [0, 0, 1, 1],
+           [0, 1, 0, 0],
+           [0, 1, 0, 0]])
+
+    If `nodelist` contains a subset of the nodes in `G`, the adjacency matrix
+    for the node-induced subgraph is produced:
+
+    >>> nx.to_scipy_sparse_array(G, nodelist=[1, 3, 5]).toarray()
+    array([[0, 1, 1],
+           [1, 0, 0],
+           [1, 0, 0]])
+
+    The values of the adjacency matrix are drawn from the edge attribute
+    specified by the `weight` parameter:
+
+    >>> G = nx.path_graph(4)
+    >>> nx.set_edge_attributes(
+    ...     G, values={(0, 1): 1, (1, 2): 10, (2, 3): 2}, name="weight"
+    ... )
+    >>> nx.set_edge_attributes(
+    ...     G, values={(0, 1): 50, (1, 2): 35, (2, 3): 10}, name="capacity"
+    ... )
+    >>> nx.to_scipy_sparse_array(G).toarray()  # Default weight="weight"
+    array([[ 0,  1,  0,  0],
+           [ 1,  0, 10,  0],
+           [ 0, 10,  0,  2],
+           [ 0,  0,  2,  0]])
+    >>> nx.to_scipy_sparse_array(G, weight="capacity").toarray()
+    array([[ 0, 50,  0,  0],
+           [50,  0, 35,  0],
+           [ 0, 35,  0, 10],
+           [ 0,  0, 10,  0]])
+
+    Any edges that don't have a `weight` attribute default to 1:
+
+    >>> G[1][2].pop("capacity")
+    35
+    >>> nx.to_scipy_sparse_array(G, weight="capacity").toarray()
+    array([[ 0, 50,  0,  0],
+           [50,  0,  1,  0],
+           [ 0,  1,  0, 10],
+           [ 0,  0, 10,  0]])
+
+    When `G` is a multigraph, the values in the adjacency matrix are given by
+    the sum of the `weight` edge attribute over each edge key:
+
+    >>> G = nx.MultiDiGraph([(0, 1), (0, 1), (0, 1), (2, 0)])
+    >>> nx.to_scipy_sparse_array(G).toarray()
+    array([[0, 3, 0],
+           [0, 0, 0],
+           [1, 0, 0]])
+
+    References
+    ----------
+    .. [1] Scipy Dev. References, "Sparse Arrays",
+       https://docs.scipy.org/doc/scipy/reference/sparse.html
+    """
+    import scipy as sp
+
+    if len(G) == 0:
+        raise nx.NetworkXError("Graph has no nodes or edges")
+
+    if nodelist is None:
+        nodelist = list(G)
+        nlen = len(G)
+    else:
+        nlen = len(nodelist)
+        if nlen == 0:
+            raise nx.NetworkXError("nodelist has no nodes")
+        nodeset = set(G.nbunch_iter(nodelist))
+        if nlen != len(nodeset):
+            for n in nodelist:
+                if n not in G:
+                    raise nx.NetworkXError(f"Node {n} in nodelist is not in G")
+            raise nx.NetworkXError("nodelist contains duplicates.")
+        if nlen < len(G):
+            G = G.subgraph(nodelist)
+
+    index = dict(zip(nodelist, range(nlen)))
+    coefficients = zip(
+        *((index[u], index[v], wt) for u, v, wt in G.edges(data=weight, default=1))
+    )
+    try:
+        row, col, data = coefficients
+    except ValueError:
+        # there is no edge in the subgraph
+        row, col, data = [], [], []
+
+    if G.is_directed():
+        A = sp.sparse.coo_array((data, (row, col)), shape=(nlen, nlen), dtype=dtype)
+    else:
+        # symmetrize matrix
+        d = data + data
+        r = row + col
+        c = col + row
+        # selfloop entries get double counted when symmetrizing
+        # so we subtract the data on the diagonal
+        selfloops = list(nx.selfloop_edges(G, data=weight, default=1))
+        if selfloops:
+            diag_index, diag_data = zip(*((index[u], -wt) for u, v, wt in selfloops))
+            d += diag_data
+            r += diag_index
+            c += diag_index
+        A = sp.sparse.coo_array((d, (r, c)), shape=(nlen, nlen), dtype=dtype)
+    try:
+        return A.asformat(format)
+    except ValueError as err:
+        raise nx.NetworkXError(f"Unknown sparse matrix format: {format}") from err
+
+
+def _csr_gen_triples(A):
+    """Converts a SciPy sparse array in **Compressed Sparse Row** format to
+    an iterable of weighted edge triples.
+
+    """
+    nrows = A.shape[0]
+    indptr, dst_indices, data = A.indptr, A.indices, A.data
+    import numpy as np
+
+    src_indices = np.repeat(np.arange(nrows), np.diff(indptr))
+    return zip(src_indices.tolist(), dst_indices.tolist(), A.data.tolist())
+
+
+def _csc_gen_triples(A):
+    """Converts a SciPy sparse array in **Compressed Sparse Column** format to
+    an iterable of weighted edge triples.
+
+    """
+    ncols = A.shape[1]
+    indptr, src_indices, data = A.indptr, A.indices, A.data
+    import numpy as np
+
+    dst_indices = np.repeat(np.arange(ncols), np.diff(indptr))
+    return zip(src_indices.tolist(), dst_indices.tolist(), A.data.tolist())
+
+
+def _coo_gen_triples(A):
+    """Converts a SciPy sparse array in **Coordinate** format to an iterable
+    of weighted edge triples.
+
+    """
+    return zip(A.row.tolist(), A.col.tolist(), A.data.tolist())
+
+
+def _dok_gen_triples(A):
+    """Converts a SciPy sparse array in **Dictionary of Keys** format to an
+    iterable of weighted edge triples.
+
+    """
+    for (r, c), v in A.items():
+        # Use `v.item()` to convert a NumPy scalar to the appropriate Python scalar
+        yield int(r), int(c), v.item()
+
+
+def _generate_weighted_edges(A):
+    """Returns an iterable over (u, v, w) triples, where u and v are adjacent
+    vertices and w is the weight of the edge joining u and v.
+
+    `A` is a SciPy sparse array (in any format).
+
+    """
+    if A.format == "csr":
+        return _csr_gen_triples(A)
+    if A.format == "csc":
+        return _csc_gen_triples(A)
+    if A.format == "dok":
+        return _dok_gen_triples(A)
+    # If A is in any other format (including COO), convert it to COO format.
+    return _coo_gen_triples(A.tocoo())
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def from_scipy_sparse_array(
+    A, parallel_edges=False, create_using=None, edge_attribute="weight"
+):
+    """Creates a new graph from an adjacency matrix given as a SciPy sparse
+    array.
+
+    Parameters
+    ----------
+    A: scipy.sparse array
+      An adjacency matrix representation of a graph
+
+    parallel_edges : Boolean
+      If this is True, `create_using` is a multigraph, and `A` is an
+      integer matrix, then entry *(i, j)* in the matrix is interpreted as the
+      number of parallel edges joining vertices *i* and *j* in the graph.
+      If it is False, then the entries in the matrix are interpreted as
+      the weight of a single edge joining the vertices.
+
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+
+    edge_attribute: string
+       Name of edge attribute to store matrix numeric value. The data will
+       have the same type as the matrix entry (int, float, (real,imag)).
+
+    Notes
+    -----
+    For directed graphs, explicitly mention create_using=nx.DiGraph,
+    and entry i,j of A corresponds to an edge from i to j.
+
+    If `create_using` is :class:`networkx.MultiGraph` or
+    :class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the
+    entries of `A` are of type :class:`int`, then this function returns a
+    multigraph (constructed from `create_using`) with parallel edges.
+    In this case, `edge_attribute` will be ignored.
+
+    If `create_using` indicates an undirected multigraph, then only the edges
+    indicated by the upper triangle of the matrix `A` will be added to the
+    graph.
+
+    Examples
+    --------
+    >>> import scipy as sp
+    >>> A = sp.sparse.eye(2, 2, 1)
+    >>> G = nx.from_scipy_sparse_array(A)
+
+    If `create_using` indicates a multigraph and the matrix has only integer
+    entries and `parallel_edges` is False, then the entries will be treated
+    as weights for edges joining the nodes (without creating parallel edges):
+
+    >>> A = sp.sparse.csr_array([[1, 1], [1, 2]])
+    >>> G = nx.from_scipy_sparse_array(A, create_using=nx.MultiGraph)
+    >>> G[1][1]
+    AtlasView({0: {'weight': 2}})
+
+    If `create_using` indicates a multigraph and the matrix has only integer
+    entries and `parallel_edges` is True, then the entries will be treated
+    as the number of parallel edges joining those two vertices:
+
+    >>> A = sp.sparse.csr_array([[1, 1], [1, 2]])
+    >>> G = nx.from_scipy_sparse_array(
+    ...     A, parallel_edges=True, create_using=nx.MultiGraph
+    ... )
+    >>> G[1][1]
+    AtlasView({0: {'weight': 1}, 1: {'weight': 1}})
+
+    """
+    G = nx.empty_graph(0, create_using)
+    n, m = A.shape
+    if n != m:
+        raise nx.NetworkXError(f"Adjacency matrix not square: nx,ny={A.shape}")
+    # Make sure we get even the isolated nodes of the graph.
+    G.add_nodes_from(range(n))
+    # Create an iterable over (u, v, w) triples and for each triple, add an
+    # edge from u to v with weight w.
+    triples = _generate_weighted_edges(A)
+    # If the entries in the adjacency matrix are integers, the graph is a
+    # multigraph, and parallel_edges is True, then create parallel edges, each
+    # with weight 1, for each entry in the adjacency matrix. Otherwise, create
+    # one edge for each positive entry in the adjacency matrix and set the
+    # weight of that edge to be the entry in the matrix.
+    if A.dtype.kind in ("i", "u") and G.is_multigraph() and parallel_edges:
+        chain = itertools.chain.from_iterable
+        # The following line is equivalent to:
+        #
+        #     for (u, v) in edges:
+        #         for d in range(A[u, v]):
+        #             G.add_edge(u, v, weight=1)
+        #
+        triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples)
+    # If we are creating an undirected multigraph, only add the edges from the
+    # upper triangle of the matrix. Otherwise, add all the edges. This relies
+    # on the fact that the vertices created in the
+    # `_generated_weighted_edges()` function are actually the row/column
+    # indices for the matrix `A`.
+    #
+    # Without this check, we run into a problem where each edge is added twice
+    # when `G.add_weighted_edges_from()` is invoked below.
+    if G.is_multigraph() and not G.is_directed():
+        triples = ((u, v, d) for u, v, d in triples if u <= v)
+    G.add_weighted_edges_from(triples, weight=edge_attribute)
+    return G
+
+
+@nx._dispatchable(edge_attrs="weight")  # edge attrs may also be obtained from `dtype`
+def to_numpy_array(
+    G,
+    nodelist=None,
+    dtype=None,
+    order=None,
+    multigraph_weight=sum,
+    weight="weight",
+    nonedge=0.0,
+):
+    """Returns the graph adjacency matrix as a NumPy array.
+
+    Parameters
+    ----------
+    G : graph
+        The NetworkX graph used to construct the NumPy array.
+
+    nodelist : list, optional
+        The rows and columns are ordered according to the nodes in `nodelist`.
+        If `nodelist` is ``None``, then the ordering is produced by ``G.nodes()``.
+
+    dtype : NumPy data type, optional
+        A NumPy data type used to initialize the array. If None, then the NumPy
+        default is used. The dtype can be structured if `weight=None`, in which
+        case the dtype field names are used to look up edge attributes. The
+        result is a structured array where each named field in the dtype
+        corresponds to the adjacency for that edge attribute. See examples for
+        details.
+
+    order : {'C', 'F'}, optional
+        Whether to store multidimensional data in C- or Fortran-contiguous
+        (row- or column-wise) order in memory. If None, then the NumPy default
+        is used.
+
+    multigraph_weight : callable, optional
+        An function that determines how weights in multigraphs are handled.
+        The function should accept a sequence of weights and return a single
+        value. The default is to sum the weights of the multiple edges.
+
+    weight : string or None optional (default = 'weight')
+        The edge attribute that holds the numerical value used for
+        the edge weight. If an edge does not have that attribute, then the
+        value 1 is used instead. `weight` must be ``None`` if a structured
+        dtype is used.
+
+    nonedge : array_like (default = 0.0)
+        The value used to represent non-edges in the adjacency matrix.
+        The array values corresponding to nonedges are typically set to zero.
+        However, this could be undesirable if there are array values
+        corresponding to actual edges that also have the value zero. If so,
+        one might prefer nonedges to have some other value, such as ``nan``.
+
+    Returns
+    -------
+    A : NumPy ndarray
+        Graph adjacency matrix
+
+    Raises
+    ------
+    NetworkXError
+        If `dtype` is a structured dtype and `G` is a multigraph
+    ValueError
+        If `dtype` is a structured dtype and `weight` is not `None`
+
+    See Also
+    --------
+    from_numpy_array
+
+    Notes
+    -----
+    For directed graphs, entry ``i, j`` corresponds to an edge from ``i`` to ``j``.
+
+    Entries in the adjacency matrix are given by the `weight` edge attribute.
+    When an edge does not have a weight attribute, the value of the entry is
+    set to the number 1.  For multiple (parallel) edges, the values of the
+    entries are determined by the `multigraph_weight` parameter. The default is
+    to sum the weight attributes for each of the parallel edges.
+
+    When `nodelist` does not contain every node in `G`, the adjacency matrix is
+    built from the subgraph of `G` that is induced by the nodes in `nodelist`.
+
+    The convention used for self-loop edges in graphs is to assign the
+    diagonal array entry value to the weight attribute of the edge
+    (or the number 1 if the edge has no weight attribute). If the
+    alternate convention of doubling the edge weight is desired the
+    resulting NumPy array can be modified as follows:
+
+    >>> import numpy as np
+    >>> G = nx.Graph([(1, 1)])
+    >>> A = nx.to_numpy_array(G)
+    >>> A
+    array([[1.]])
+    >>> A[np.diag_indices_from(A)] *= 2
+    >>> A
+    array([[2.]])
+
+    Examples
+    --------
+    >>> G = nx.MultiDiGraph()
+    >>> G.add_edge(0, 1, weight=2)
+    0
+    >>> G.add_edge(1, 0)
+    0
+    >>> G.add_edge(2, 2, weight=3)
+    0
+    >>> G.add_edge(2, 2)
+    1
+    >>> nx.to_numpy_array(G, nodelist=[0, 1, 2])
+    array([[0., 2., 0.],
+           [1., 0., 0.],
+           [0., 0., 4.]])
+
+    When `nodelist` argument is used, nodes of `G` which do not appear in the `nodelist`
+    and their edges are not included in the adjacency matrix. Here is an example:
+
+    >>> G = nx.Graph()
+    >>> G.add_edge(3, 1)
+    >>> G.add_edge(2, 0)
+    >>> G.add_edge(2, 1)
+    >>> G.add_edge(3, 0)
+    >>> nx.to_numpy_array(G, nodelist=[1, 2, 3])
+    array([[0., 1., 1.],
+           [1., 0., 0.],
+           [1., 0., 0.]])
+
+    This function can also be used to create adjacency matrices for multiple
+    edge attributes with structured dtypes:
+
+    >>> G = nx.Graph()
+    >>> G.add_edge(0, 1, weight=10)
+    >>> G.add_edge(1, 2, cost=5)
+    >>> G.add_edge(2, 3, weight=3, cost=-4.0)
+    >>> dtype = np.dtype([("weight", int), ("cost", float)])
+    >>> A = nx.to_numpy_array(G, dtype=dtype, weight=None)
+    >>> A["weight"]
+    array([[ 0, 10,  0,  0],
+           [10,  0,  1,  0],
+           [ 0,  1,  0,  3],
+           [ 0,  0,  3,  0]])
+    >>> A["cost"]
+    array([[ 0.,  1.,  0.,  0.],
+           [ 1.,  0.,  5.,  0.],
+           [ 0.,  5.,  0., -4.],
+           [ 0.,  0., -4.,  0.]])
+
+    As stated above, the argument "nonedge" is useful especially when there are
+    actually edges with weight 0 in the graph. Setting a nonedge value different than 0,
+    makes it much clearer to differentiate such 0-weighted edges and actual nonedge values.
+
+    >>> G = nx.Graph()
+    >>> G.add_edge(3, 1, weight=2)
+    >>> G.add_edge(2, 0, weight=0)
+    >>> G.add_edge(2, 1, weight=0)
+    >>> G.add_edge(3, 0, weight=1)
+    >>> nx.to_numpy_array(G, nonedge=-1.0)
+    array([[-1.,  2., -1.,  1.],
+           [ 2., -1.,  0., -1.],
+           [-1.,  0., -1.,  0.],
+           [ 1., -1.,  0., -1.]])
+    """
+    import numpy as np
+
+    if nodelist is None:
+        nodelist = list(G)
+    nlen = len(nodelist)
+
+    # Input validation
+    nodeset = set(nodelist)
+    if nodeset - set(G):
+        raise nx.NetworkXError(f"Nodes {nodeset - set(G)} in nodelist is not in G")
+    if len(nodeset) < nlen:
+        raise nx.NetworkXError("nodelist contains duplicates.")
+
+    A = np.full((nlen, nlen), fill_value=nonedge, dtype=dtype, order=order)
+
+    # Corner cases: empty nodelist or graph without any edges
+    if nlen == 0 or G.number_of_edges() == 0:
+        return A
+
+    # If dtype is structured and weight is None, use dtype field names as
+    # edge attributes
+    edge_attrs = None  # Only single edge attribute by default
+    if A.dtype.names:
+        if weight is None:
+            edge_attrs = dtype.names
+        else:
+            raise ValueError(
+                "Specifying `weight` not supported for structured dtypes\n."
+                "To create adjacency matrices from structured dtypes, use `weight=None`."
+            )
+
+    # Map nodes to row/col in matrix
+    idx = dict(zip(nodelist, range(nlen)))
+    if len(nodelist) < len(G):
+        G = G.subgraph(nodelist).copy()
+
+    # Collect all edge weights and reduce with `multigraph_weights`
+    if G.is_multigraph():
+        if edge_attrs:
+            raise nx.NetworkXError(
+                "Structured arrays are not supported for MultiGraphs"
+            )
+        d = defaultdict(list)
+        for u, v, wt in G.edges(data=weight, default=1.0):
+            d[(idx[u], idx[v])].append(wt)
+        i, j = np.array(list(d.keys())).T  # indices
+        wts = [multigraph_weight(ws) for ws in d.values()]  # reduced weights
+    else:
+        i, j, wts = [], [], []
+
+        # Special branch: multi-attr adjacency from structured dtypes
+        if edge_attrs:
+            # Extract edges with all data
+            for u, v, data in G.edges(data=True):
+                i.append(idx[u])
+                j.append(idx[v])
+                wts.append(data)
+            # Map each attribute to the appropriate named field in the
+            # structured dtype
+            for attr in edge_attrs:
+                attr_data = [wt.get(attr, 1.0) for wt in wts]
+                A[attr][i, j] = attr_data
+                if not G.is_directed():
+                    A[attr][j, i] = attr_data
+            return A
+
+        for u, v, wt in G.edges(data=weight, default=1.0):
+            i.append(idx[u])
+            j.append(idx[v])
+            wts.append(wt)
+
+    # Set array values with advanced indexing
+    A[i, j] = wts
+    if not G.is_directed():
+        A[j, i] = wts
+
+    return A
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def from_numpy_array(
+    A, parallel_edges=False, create_using=None, edge_attr="weight", *, nodelist=None
+):
+    """Returns a graph from a 2D NumPy array.
+
+    The 2D NumPy array is interpreted as an adjacency matrix for the graph.
+
+    Parameters
+    ----------
+    A : a 2D numpy.ndarray
+        An adjacency matrix representation of a graph
+
+    parallel_edges : Boolean
+        If this is True, `create_using` is a multigraph, and `A` is an
+        integer array, then entry *(i, j)* in the array is interpreted as the
+        number of parallel edges joining vertices *i* and *j* in the graph.
+        If it is False, then the entries in the array are interpreted as
+        the weight of a single edge joining the vertices.
+
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+
+    edge_attr : String, optional (default="weight")
+        The attribute to which the array values are assigned on each edge. If
+        it is None, edge attributes will not be assigned.
+
+    nodelist : sequence of nodes, optional
+        A sequence of objects to use as the nodes in the graph. If provided, the
+        list of nodes must be the same length as the dimensions of `A`. The
+        default is `None`, in which case the nodes are drawn from ``range(n)``.
+
+    Notes
+    -----
+    For directed graphs, explicitly mention create_using=nx.DiGraph,
+    and entry i,j of A corresponds to an edge from i to j.
+
+    If `create_using` is :class:`networkx.MultiGraph` or
+    :class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the
+    entries of `A` are of type :class:`int`, then this function returns a
+    multigraph (of the same type as `create_using`) with parallel edges.
+
+    If `create_using` indicates an undirected multigraph, then only the edges
+    indicated by the upper triangle of the array `A` will be added to the
+    graph.
+
+    If `edge_attr` is Falsy (False or None), edge attributes will not be
+    assigned, and the array data will be treated like a binary mask of
+    edge presence or absence. Otherwise, the attributes will be assigned
+    as follows:
+
+    If the NumPy array has a single data type for each array entry it
+    will be converted to an appropriate Python data type.
+
+    If the NumPy array has a user-specified compound data type the names
+    of the data fields will be used as attribute keys in the resulting
+    NetworkX graph.
+
+    See Also
+    --------
+    to_numpy_array
+
+    Examples
+    --------
+    Simple integer weights on edges:
+
+    >>> import numpy as np
+    >>> A = np.array([[1, 1], [2, 1]])
+    >>> G = nx.from_numpy_array(A)
+    >>> G.edges(data=True)
+    EdgeDataView([(0, 0, {'weight': 1}), (0, 1, {'weight': 2}), (1, 1, {'weight': 1})])
+
+    If `create_using` indicates a multigraph and the array has only integer
+    entries and `parallel_edges` is False, then the entries will be treated
+    as weights for edges joining the nodes (without creating parallel edges):
+
+    >>> A = np.array([[1, 1], [1, 2]])
+    >>> G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
+    >>> G[1][1]
+    AtlasView({0: {'weight': 2}})
+
+    If `create_using` indicates a multigraph and the array has only integer
+    entries and `parallel_edges` is True, then the entries will be treated
+    as the number of parallel edges joining those two vertices:
+
+    >>> A = np.array([[1, 1], [1, 2]])
+    >>> temp = nx.MultiGraph()
+    >>> G = nx.from_numpy_array(A, parallel_edges=True, create_using=temp)
+    >>> G[1][1]
+    AtlasView({0: {'weight': 1}, 1: {'weight': 1}})
+
+    User defined compound data type on edges:
+
+    >>> dt = [("weight", float), ("cost", int)]
+    >>> A = np.array([[(1.0, 2)]], dtype=dt)
+    >>> G = nx.from_numpy_array(A)
+    >>> G.edges()
+    EdgeView([(0, 0)])
+    >>> G[0][0]["cost"]
+    2
+    >>> G[0][0]["weight"]
+    1.0
+
+    """
+    kind_to_python_type = {
+        "f": float,
+        "i": int,
+        "u": int,
+        "b": bool,
+        "c": complex,
+        "S": str,
+        "U": str,
+        "V": "void",
+    }
+    G = nx.empty_graph(0, create_using)
+    if A.ndim != 2:
+        raise nx.NetworkXError(f"Input array must be 2D, not {A.ndim}")
+    n, m = A.shape
+    if n != m:
+        raise nx.NetworkXError(f"Adjacency matrix not square: nx,ny={A.shape}")
+    dt = A.dtype
+    try:
+        python_type = kind_to_python_type[dt.kind]
+    except Exception as err:
+        raise TypeError(f"Unknown numpy data type: {dt}") from err
+    if _default_nodes := (nodelist is None):
+        nodelist = range(n)
+    else:
+        if len(nodelist) != n:
+            raise ValueError("nodelist must have the same length as A.shape[0]")
+
+    # Make sure we get even the isolated nodes of the graph.
+    G.add_nodes_from(nodelist)
+    # Get a list of all the entries in the array with nonzero entries. These
+    # coordinates become edges in the graph. (convert to int from np.int64)
+    edges = ((int(e[0]), int(e[1])) for e in zip(*A.nonzero()))
+    # handle numpy constructed data type
+    if python_type == "void":
+        # Sort the fields by their offset, then by dtype, then by name.
+        fields = sorted(
+            (offset, dtype, name) for name, (dtype, offset) in A.dtype.fields.items()
+        )
+        triples = (
+            (
+                u,
+                v,
+                {}
+                if edge_attr in [False, None]
+                else {
+                    name: kind_to_python_type[dtype.kind](val)
+                    for (_, dtype, name), val in zip(fields, A[u, v])
+                },
+            )
+            for u, v in edges
+        )
+    # If the entries in the adjacency matrix are integers, the graph is a
+    # multigraph, and parallel_edges is True, then create parallel edges, each
+    # with weight 1, for each entry in the adjacency matrix. Otherwise, create
+    # one edge for each positive entry in the adjacency matrix and set the
+    # weight of that edge to be the entry in the matrix.
+    elif python_type is int and G.is_multigraph() and parallel_edges:
+        chain = itertools.chain.from_iterable
+        # The following line is equivalent to:
+        #
+        #     for (u, v) in edges:
+        #         for d in range(A[u, v]):
+        #             G.add_edge(u, v, weight=1)
+        #
+        if edge_attr in [False, None]:
+            triples = chain(((u, v, {}) for d in range(A[u, v])) for (u, v) in edges)
+        else:
+            triples = chain(
+                ((u, v, {edge_attr: 1}) for d in range(A[u, v])) for (u, v) in edges
+            )
+    else:  # basic data type
+        if edge_attr in [False, None]:
+            triples = ((u, v, {}) for u, v in edges)
+        else:
+            triples = ((u, v, {edge_attr: python_type(A[u, v])}) for u, v in edges)
+    # If we are creating an undirected multigraph, only add the edges from the
+    # upper triangle of the matrix. Otherwise, add all the edges. This relies
+    # on the fact that the vertices created in the
+    # `_generated_weighted_edges()` function are actually the row/column
+    # indices for the matrix `A`.
+    #
+    # Without this check, we run into a problem where each edge is added twice
+    # when `G.add_edges_from()` is invoked below.
+    if G.is_multigraph() and not G.is_directed():
+        triples = ((u, v, d) for u, v, d in triples if u <= v)
+    # Remap nodes if user provided custom `nodelist`
+    if not _default_nodes:
+        idx_to_node = dict(enumerate(nodelist))
+        triples = ((idx_to_node[u], idx_to_node[v], d) for u, v, d in triples)
+    G.add_edges_from(triples)
+    return G