aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/classes/tests/test_multigraph.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/classes/tests/test_multigraph.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/classes/tests/test_multigraph.py528
1 files changed, 528 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/classes/tests/test_multigraph.py b/.venv/lib/python3.12/site-packages/networkx/classes/tests/test_multigraph.py
new file mode 100644
index 00000000..cd912d1d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/classes/tests/test_multigraph.py
@@ -0,0 +1,528 @@
+from collections import UserDict
+
+import pytest
+
+import networkx as nx
+from networkx.utils import edges_equal
+
+from .test_graph import BaseAttrGraphTester
+from .test_graph import TestGraph as _TestGraph
+
+
+class BaseMultiGraphTester(BaseAttrGraphTester):
+ def test_has_edge(self):
+ G = self.K3
+ assert G.has_edge(0, 1)
+ assert not G.has_edge(0, -1)
+ assert G.has_edge(0, 1, 0)
+ assert not G.has_edge(0, 1, 1)
+
+ def test_get_edge_data(self):
+ G = self.K3
+ assert G.get_edge_data(0, 1) == {0: {}}
+ assert G[0][1] == {0: {}}
+ assert G[0][1][0] == {}
+ assert G.get_edge_data(10, 20) is None
+ assert G.get_edge_data(0, 1, 0) == {}
+
+ def test_adjacency(self):
+ G = self.K3
+ assert dict(G.adjacency()) == {
+ 0: {1: {0: {}}, 2: {0: {}}},
+ 1: {0: {0: {}}, 2: {0: {}}},
+ 2: {0: {0: {}}, 1: {0: {}}},
+ }
+
+ def deepcopy_edge_attr(self, H, G):
+ assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
+ G[1][2][0]["foo"].append(1)
+ assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
+
+ def shallow_copy_edge_attr(self, H, G):
+ assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
+ G[1][2][0]["foo"].append(1)
+ assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
+
+ def graphs_equal(self, H, G):
+ assert G._adj == H._adj
+ assert G._node == H._node
+ assert G.graph == H.graph
+ assert G.name == H.name
+ if not G.is_directed() and not H.is_directed():
+ assert H._adj[1][2][0] is H._adj[2][1][0]
+ assert G._adj[1][2][0] is G._adj[2][1][0]
+ else: # at least one is directed
+ if not G.is_directed():
+ G._pred = G._adj
+ G._succ = G._adj
+ if not H.is_directed():
+ H._pred = H._adj
+ H._succ = H._adj
+ assert G._pred == H._pred
+ assert G._succ == H._succ
+ assert H._succ[1][2][0] is H._pred[2][1][0]
+ assert G._succ[1][2][0] is G._pred[2][1][0]
+
+ def same_attrdict(self, H, G):
+ # same attrdict in the edgedata
+ old_foo = H[1][2][0]["foo"]
+ H.adj[1][2][0]["foo"] = "baz"
+ assert G._adj == H._adj
+ H.adj[1][2][0]["foo"] = old_foo
+ assert G._adj == H._adj
+
+ old_foo = H.nodes[0]["foo"]
+ H.nodes[0]["foo"] = "baz"
+ assert G._node == H._node
+ H.nodes[0]["foo"] = old_foo
+ assert G._node == H._node
+
+ def different_attrdict(self, H, G):
+ # used by graph_equal_but_different
+ old_foo = H[1][2][0]["foo"]
+ H.adj[1][2][0]["foo"] = "baz"
+ assert G._adj != H._adj
+ H.adj[1][2][0]["foo"] = old_foo
+ assert G._adj == H._adj
+
+ old_foo = H.nodes[0]["foo"]
+ H.nodes[0]["foo"] = "baz"
+ assert G._node != H._node
+ H.nodes[0]["foo"] = old_foo
+ assert G._node == H._node
+
+ def test_to_undirected(self):
+ G = self.K3
+ self.add_attributes(G)
+ H = nx.MultiGraph(G)
+ self.is_shallow_copy(H, G)
+ H = G.to_undirected()
+ self.is_deepcopy(H, G)
+
+ def test_to_directed(self):
+ G = self.K3
+ self.add_attributes(G)
+ H = nx.MultiDiGraph(G)
+ self.is_shallow_copy(H, G)
+ H = G.to_directed()
+ self.is_deepcopy(H, G)
+
+ def test_number_of_edges_selfloops(self):
+ G = self.K3
+ G.add_edge(0, 0)
+ G.add_edge(0, 0)
+ G.add_edge(0, 0, key="parallel edge")
+ G.remove_edge(0, 0, key="parallel edge")
+ assert G.number_of_edges(0, 0) == 2
+ G.remove_edge(0, 0)
+ assert G.number_of_edges(0, 0) == 1
+
+ def test_edge_lookup(self):
+ G = self.Graph()
+ G.add_edge(1, 2, foo="bar")
+ G.add_edge(1, 2, "key", foo="biz")
+ assert edges_equal(G.edges[1, 2, 0], {"foo": "bar"})
+ assert edges_equal(G.edges[1, 2, "key"], {"foo": "biz"})
+
+ def test_edge_attr(self):
+ G = self.Graph()
+ G.add_edge(1, 2, key="k1", foo="bar")
+ G.add_edge(1, 2, key="k2", foo="baz")
+ assert isinstance(G.get_edge_data(1, 2), G.edge_key_dict_factory)
+ assert all(
+ isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True)
+ )
+ assert edges_equal(
+ G.edges(keys=True, data=True),
+ [(1, 2, "k1", {"foo": "bar"}), (1, 2, "k2", {"foo": "baz"})],
+ )
+ assert edges_equal(
+ G.edges(keys=True, data="foo"), [(1, 2, "k1", "bar"), (1, 2, "k2", "baz")]
+ )
+
+ def test_edge_attr4(self):
+ G = self.Graph()
+ G.add_edge(1, 2, key=0, data=7, spam="bar", bar="foo")
+ assert edges_equal(
+ G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
+ )
+ G[1][2][0]["data"] = 10 # OK to set data like this
+ assert edges_equal(
+ G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})]
+ )
+
+ G.adj[1][2][0]["data"] = 20
+ assert edges_equal(
+ G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})]
+ )
+ G.edges[1, 2, 0]["data"] = 21 # another spelling, "edge"
+ assert edges_equal(
+ G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})]
+ )
+ G.adj[1][2][0]["listdata"] = [20, 200]
+ G.adj[1][2][0]["weight"] = 20
+ assert edges_equal(
+ G.edges(data=True),
+ [
+ (
+ 1,
+ 2,
+ {
+ "data": 21,
+ "spam": "bar",
+ "bar": "foo",
+ "listdata": [20, 200],
+ "weight": 20,
+ },
+ )
+ ],
+ )
+
+
+class TestMultiGraph(BaseMultiGraphTester, _TestGraph):
+ def setup_method(self):
+ self.Graph = nx.MultiGraph
+ # build K3
+ ed1, ed2, ed3 = ({0: {}}, {0: {}}, {0: {}})
+ self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
+ self.k3edges = [(0, 1), (0, 2), (1, 2)]
+ self.k3nodes = [0, 1, 2]
+ self.K3 = self.Graph()
+ self.K3._adj = self.k3adj
+ self.K3._node = {}
+ self.K3._node[0] = {}
+ self.K3._node[1] = {}
+ self.K3._node[2] = {}
+
+ def test_data_input(self):
+ G = self.Graph({1: [2], 2: [1]}, name="test")
+ assert G.name == "test"
+ expected = [(1, {2: {0: {}}}), (2, {1: {0: {}}})]
+ assert sorted(G.adj.items()) == expected
+
+ def test_data_multigraph_input(self):
+ # standard case with edge keys and edge data
+ edata0 = {"w": 200, "s": "foo"}
+ edata1 = {"w": 201, "s": "bar"}
+ keydict = {0: edata0, 1: edata1}
+ dododod = {"a": {"b": keydict}}
+
+ multiple_edge = [("a", "b", 0, edata0), ("a", "b", 1, edata1)]
+ single_edge = [("a", "b", 0, keydict)]
+
+ G = self.Graph(dododod, multigraph_input=True)
+ assert list(G.edges(keys=True, data=True)) == multiple_edge
+ G = self.Graph(dododod, multigraph_input=None)
+ assert list(G.edges(keys=True, data=True)) == multiple_edge
+ G = self.Graph(dododod, multigraph_input=False)
+ assert list(G.edges(keys=True, data=True)) == single_edge
+
+ # test round-trip to_dict_of_dict and MultiGraph constructor
+ G = self.Graph(dododod, multigraph_input=True)
+ H = self.Graph(nx.to_dict_of_dicts(G))
+ assert nx.is_isomorphic(G, H) is True # test that default is True
+ for mgi in [True, False]:
+ H = self.Graph(nx.to_dict_of_dicts(G), multigraph_input=mgi)
+ assert nx.is_isomorphic(G, H) == mgi
+
+ # Set up cases for when incoming_graph_data is not multigraph_input
+ etraits = {"w": 200, "s": "foo"}
+ egraphics = {"color": "blue", "shape": "box"}
+ edata = {"traits": etraits, "graphics": egraphics}
+ dodod1 = {"a": {"b": edata}}
+ dodod2 = {"a": {"b": etraits}}
+ dodod3 = {"a": {"b": {"traits": etraits, "s": "foo"}}}
+ dol = {"a": ["b"]}
+
+ multiple_edge = [("a", "b", "traits", etraits), ("a", "b", "graphics", egraphics)]
+ single_edge = [("a", "b", 0, {})] # type: ignore[var-annotated]
+ single_edge1 = [("a", "b", 0, edata)]
+ single_edge2 = [("a", "b", 0, etraits)]
+ single_edge3 = [("a", "b", 0, {"traits": etraits, "s": "foo"})]
+
+ cases = [ # (dod, mgi, edges)
+ (dodod1, True, multiple_edge),
+ (dodod1, False, single_edge1),
+ (dodod2, False, single_edge2),
+ (dodod3, False, single_edge3),
+ (dol, False, single_edge),
+ ]
+
+ @pytest.mark.parametrize("dod, mgi, edges", cases)
+ def test_non_multigraph_input(self, dod, mgi, edges):
+ G = self.Graph(dod, multigraph_input=mgi)
+ assert list(G.edges(keys=True, data=True)) == edges
+ G = nx.to_networkx_graph(dod, create_using=self.Graph, multigraph_input=mgi)
+ assert list(G.edges(keys=True, data=True)) == edges
+
+ mgi_none_cases = [
+ (dodod1, multiple_edge),
+ (dodod2, single_edge2),
+ (dodod3, single_edge3),
+ ]
+
+ @pytest.mark.parametrize("dod, edges", mgi_none_cases)
+ def test_non_multigraph_input_mgi_none(self, dod, edges):
+ # test constructor without to_networkx_graph for mgi=None
+ G = self.Graph(dod)
+ assert list(G.edges(keys=True, data=True)) == edges
+
+ raise_cases = [dodod2, dodod3, dol]
+
+ @pytest.mark.parametrize("dod", raise_cases)
+ def test_non_multigraph_input_raise(self, dod):
+ # cases where NetworkXError is raised
+ pytest.raises(nx.NetworkXError, self.Graph, dod, multigraph_input=True)
+ pytest.raises(
+ nx.NetworkXError,
+ nx.to_networkx_graph,
+ dod,
+ create_using=self.Graph,
+ multigraph_input=True,
+ )
+
+ def test_getitem(self):
+ G = self.K3
+ assert G[0] == {1: {0: {}}, 2: {0: {}}}
+ with pytest.raises(KeyError):
+ G.__getitem__("j")
+ with pytest.raises(TypeError):
+ G.__getitem__(["A"])
+
+ def test_remove_node(self):
+ G = self.K3
+ G.remove_node(0)
+ assert G.adj == {1: {2: {0: {}}}, 2: {1: {0: {}}}}
+ with pytest.raises(nx.NetworkXError):
+ G.remove_node(-1)
+
+ def test_add_edge(self):
+ G = self.Graph()
+ G.add_edge(0, 1)
+ assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
+ G = self.Graph()
+ G.add_edge(*(0, 1))
+ assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
+ G = self.Graph()
+ with pytest.raises(ValueError):
+ G.add_edge(None, "anything")
+
+ def test_add_edge_conflicting_key(self):
+ G = self.Graph()
+ G.add_edge(0, 1, key=1)
+ G.add_edge(0, 1)
+ assert G.number_of_edges() == 2
+ G = self.Graph()
+ G.add_edges_from([(0, 1, 1, {})])
+ G.add_edges_from([(0, 1)])
+ assert G.number_of_edges() == 2
+
+ def test_add_edges_from(self):
+ G = self.Graph()
+ G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
+ assert G.adj == {
+ 0: {1: {0: {}, 1: {"weight": 3}}},
+ 1: {0: {0: {}, 1: {"weight": 3}}},
+ }
+ G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
+ assert G.adj == {
+ 0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
+ 1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
+ }
+ G = self.Graph()
+ edges = [
+ (0, 1, {"weight": 3}),
+ (0, 1, (("weight", 2),)),
+ (0, 1, 5),
+ (0, 1, "s"),
+ ]
+ G.add_edges_from(edges)
+ keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
+ assert G._adj == {0: {1: keydict}, 1: {0: keydict}}
+
+ # too few in tuple
+ with pytest.raises(nx.NetworkXError):
+ G.add_edges_from([(0,)])
+ # too many in tuple
+ with pytest.raises(nx.NetworkXError):
+ G.add_edges_from([(0, 1, 2, 3, 4)])
+ # not a tuple
+ with pytest.raises(TypeError):
+ G.add_edges_from([0])
+
+ def test_multigraph_add_edges_from_four_tuple_misordered(self):
+ """add_edges_from expects 4-tuples of the format (u, v, key, data_dict).
+
+ Ensure 4-tuples of form (u, v, data_dict, key) raise exception.
+ """
+ G = nx.MultiGraph()
+ with pytest.raises(TypeError):
+ # key/data values flipped in 4-tuple
+ G.add_edges_from([(0, 1, {"color": "red"}, 0)])
+
+ def test_remove_edge(self):
+ G = self.K3
+ G.remove_edge(0, 1)
+ assert G.adj == {0: {2: {0: {}}}, 1: {2: {0: {}}}, 2: {0: {0: {}}, 1: {0: {}}}}
+
+ with pytest.raises(nx.NetworkXError):
+ G.remove_edge(-1, 0)
+ with pytest.raises(nx.NetworkXError):
+ G.remove_edge(0, 2, key=1)
+
+ def test_remove_edges_from(self):
+ G = self.K3.copy()
+ G.remove_edges_from([(0, 1)])
+ kd = {0: {}}
+ assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
+ G.remove_edges_from([(0, 0)]) # silent fail
+ self.K3.add_edge(0, 1)
+ G = self.K3.copy()
+ G.remove_edges_from(list(G.edges(data=True, keys=True)))
+ assert G.adj == {0: {}, 1: {}, 2: {}}
+ G = self.K3.copy()
+ G.remove_edges_from(list(G.edges(data=False, keys=True)))
+ assert G.adj == {0: {}, 1: {}, 2: {}}
+ G = self.K3.copy()
+ G.remove_edges_from(list(G.edges(data=False, keys=False)))
+ assert G.adj == {0: {}, 1: {}, 2: {}}
+ G = self.K3.copy()
+ G.remove_edges_from([(0, 1, 0), (0, 2, 0, {}), (1, 2)])
+ assert G.adj == {0: {1: {1: {}}}, 1: {0: {1: {}}}, 2: {}}
+
+ def test_remove_multiedge(self):
+ G = self.K3
+ G.add_edge(0, 1, key="parallel edge")
+ G.remove_edge(0, 1, key="parallel edge")
+ assert G.adj == {
+ 0: {1: {0: {}}, 2: {0: {}}},
+ 1: {0: {0: {}}, 2: {0: {}}},
+ 2: {0: {0: {}}, 1: {0: {}}},
+ }
+ G.remove_edge(0, 1)
+ kd = {0: {}}
+ assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
+ with pytest.raises(nx.NetworkXError):
+ G.remove_edge(-1, 0)
+
+
+class TestEdgeSubgraph:
+ """Unit tests for the :meth:`MultiGraph.edge_subgraph` method."""
+
+ def setup_method(self):
+ # Create a doubly-linked path graph on five nodes.
+ G = nx.MultiGraph()
+ nx.add_path(G, range(5))
+ nx.add_path(G, range(5))
+ # Add some node, edge, and graph attributes.
+ for i in range(5):
+ G.nodes[i]["name"] = f"node{i}"
+ G.adj[0][1][0]["name"] = "edge010"
+ G.adj[0][1][1]["name"] = "edge011"
+ G.adj[3][4][0]["name"] = "edge340"
+ G.adj[3][4][1]["name"] = "edge341"
+ G.graph["name"] = "graph"
+ # Get the subgraph induced by one of the first edges and one of
+ # the last edges.
+ self.G = G
+ self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
+
+ def test_correct_nodes(self):
+ """Tests that the subgraph has the correct nodes."""
+ assert [0, 1, 3, 4] == sorted(self.H.nodes())
+
+ def test_correct_edges(self):
+ """Tests that the subgraph has the correct edges."""
+ assert [(0, 1, 0, "edge010"), (3, 4, 1, "edge341")] == sorted(
+ self.H.edges(keys=True, data="name")
+ )
+
+ def test_add_node(self):
+ """Tests that adding a node to the original graph does not
+ affect the nodes of the subgraph.
+
+ """
+ self.G.add_node(5)
+ assert [0, 1, 3, 4] == sorted(self.H.nodes())
+
+ def test_remove_node(self):
+ """Tests that removing a node in the original graph does
+ affect the nodes of the subgraph.
+
+ """
+ self.G.remove_node(0)
+ assert [1, 3, 4] == sorted(self.H.nodes())
+
+ def test_node_attr_dict(self):
+ """Tests that the node attribute dictionary of the two graphs is
+ the same object.
+
+ """
+ for v in self.H:
+ assert self.G.nodes[v] == self.H.nodes[v]
+ # Making a change to G should make a change in H and vice versa.
+ self.G.nodes[0]["name"] = "foo"
+ assert self.G.nodes[0] == self.H.nodes[0]
+ self.H.nodes[1]["name"] = "bar"
+ assert self.G.nodes[1] == self.H.nodes[1]
+
+ def test_edge_attr_dict(self):
+ """Tests that the edge attribute dictionary of the two graphs is
+ the same object.
+
+ """
+ for u, v, k in self.H.edges(keys=True):
+ assert self.G._adj[u][v][k] == self.H._adj[u][v][k]
+ # Making a change to G should make a change in H and vice versa.
+ self.G._adj[0][1][0]["name"] = "foo"
+ assert self.G._adj[0][1][0]["name"] == self.H._adj[0][1][0]["name"]
+ self.H._adj[3][4][1]["name"] = "bar"
+ assert self.G._adj[3][4][1]["name"] == self.H._adj[3][4][1]["name"]
+
+ def test_graph_attr_dict(self):
+ """Tests that the graph attribute dictionary of the two graphs
+ is the same object.
+
+ """
+ assert self.G.graph is self.H.graph
+
+
+class CustomDictClass(UserDict):
+ pass
+
+
+class MultiGraphSubClass(nx.MultiGraph):
+ node_dict_factory = CustomDictClass # type: ignore[assignment]
+ node_attr_dict_factory = CustomDictClass # type: ignore[assignment]
+ adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment]
+ adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment]
+ edge_key_dict_factory = CustomDictClass # type: ignore[assignment]
+ edge_attr_dict_factory = CustomDictClass # type: ignore[assignment]
+ graph_attr_dict_factory = CustomDictClass # type: ignore[assignment]
+
+
+class TestMultiGraphSubclass(TestMultiGraph):
+ def setup_method(self):
+ self.Graph = MultiGraphSubClass
+ # build K3
+ self.k3edges = [(0, 1), (0, 2), (1, 2)]
+ self.k3nodes = [0, 1, 2]
+ self.K3 = self.Graph()
+ self.K3._adj = self.K3.adjlist_outer_dict_factory(
+ {
+ 0: self.K3.adjlist_inner_dict_factory(),
+ 1: self.K3.adjlist_inner_dict_factory(),
+ 2: self.K3.adjlist_inner_dict_factory(),
+ }
+ )
+ self.K3._pred = {0: {}, 1: {}, 2: {}}
+ for u in self.k3nodes:
+ for v in self.k3nodes:
+ if u != v:
+ d = {0: {}}
+ self.K3._adj[u][v] = d
+ self.K3._adj[v][u] = d
+ self.K3._node = self.K3.node_dict_factory()
+ self.K3._node[0] = self.K3.node_attr_dict_factory()
+ self.K3._node[1] = self.K3.node_attr_dict_factory()
+ self.K3._node[2] = self.K3.node_attr_dict_factory()