aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/classes/tests/historical_tests.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/classes/tests/historical_tests.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/classes/tests/historical_tests.py475
1 files changed, 475 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/classes/tests/historical_tests.py b/.venv/lib/python3.12/site-packages/networkx/classes/tests/historical_tests.py
new file mode 100644
index 00000000..9dad24e2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/classes/tests/historical_tests.py
@@ -0,0 +1,475 @@
+"""Original NetworkX graph tests"""
+
+import pytest
+
+import networkx as nx
+from networkx import convert_node_labels_to_integers as cnlti
+from networkx.utils import edges_equal, nodes_equal
+
+
+class HistoricalTests:
+ @classmethod
+ def setup_class(cls):
+ cls.null = nx.null_graph()
+ cls.P1 = cnlti(nx.path_graph(1), first_label=1)
+ cls.P3 = cnlti(nx.path_graph(3), first_label=1)
+ cls.P10 = cnlti(nx.path_graph(10), first_label=1)
+ cls.K1 = cnlti(nx.complete_graph(1), first_label=1)
+ cls.K3 = cnlti(nx.complete_graph(3), first_label=1)
+ cls.K4 = cnlti(nx.complete_graph(4), first_label=1)
+ cls.K5 = cnlti(nx.complete_graph(5), first_label=1)
+ cls.K10 = cnlti(nx.complete_graph(10), first_label=1)
+ cls.G = nx.Graph
+
+ def test_name(self):
+ G = self.G(name="test")
+ assert G.name == "test"
+ H = self.G()
+ assert H.name == ""
+
+ # Nodes
+
+ def test_add_remove_node(self):
+ G = self.G()
+ G.add_node("A")
+ assert G.has_node("A")
+ G.remove_node("A")
+ assert not G.has_node("A")
+
+ def test_nonhashable_node(self):
+ # Test if a non-hashable object is in the Graph. A python dict will
+ # raise a TypeError, but for a Graph class a simple False should be
+ # returned (see Graph __contains__). If it cannot be a node then it is
+ # not a node.
+ G = self.G()
+ assert not G.has_node(["A"])
+ assert not G.has_node({"A": 1})
+
+ def test_add_nodes_from(self):
+ G = self.G()
+ G.add_nodes_from(list("ABCDEFGHIJKL"))
+ assert G.has_node("L")
+ G.remove_nodes_from(["H", "I", "J", "K", "L"])
+ G.add_nodes_from([1, 2, 3, 4])
+ assert sorted(G.nodes(), key=str) == [
+ 1,
+ 2,
+ 3,
+ 4,
+ "A",
+ "B",
+ "C",
+ "D",
+ "E",
+ "F",
+ "G",
+ ]
+ # test __iter__
+ assert sorted(G, key=str) == [1, 2, 3, 4, "A", "B", "C", "D", "E", "F", "G"]
+
+ def test_contains(self):
+ G = self.G()
+ G.add_node("A")
+ assert "A" in G
+ assert [] not in G # never raise a Key or TypeError in this test
+ assert {1: 1} not in G
+
+ def test_add_remove(self):
+ # Test add_node and remove_node acting for various nbunch
+ G = self.G()
+ G.add_node("m")
+ assert G.has_node("m")
+ G.add_node("m") # no complaints
+ pytest.raises(nx.NetworkXError, G.remove_node, "j")
+ G.remove_node("m")
+ assert list(G) == []
+
+ def test_nbunch_is_list(self):
+ G = self.G()
+ G.add_nodes_from(list("ABCD"))
+ G.add_nodes_from(self.P3) # add nbunch of nodes (nbunch=Graph)
+ assert sorted(G.nodes(), key=str) == [1, 2, 3, "A", "B", "C", "D"]
+ G.remove_nodes_from(self.P3) # remove nbunch of nodes (nbunch=Graph)
+ assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D"]
+
+ def test_nbunch_is_set(self):
+ G = self.G()
+ nbunch = set("ABCDEFGHIJKL")
+ G.add_nodes_from(nbunch)
+ assert G.has_node("L")
+
+ def test_nbunch_dict(self):
+ # nbunch is a dict with nodes as keys
+ G = self.G()
+ nbunch = set("ABCDEFGHIJKL")
+ G.add_nodes_from(nbunch)
+ nbunch = {"I": "foo", "J": 2, "K": True, "L": "spam"}
+ G.remove_nodes_from(nbunch)
+ assert sorted(G.nodes(), key=str), ["A", "B", "C", "D", "E", "F", "G", "H"]
+
+ def test_nbunch_iterator(self):
+ G = self.G()
+ G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
+ n_iter = self.P3.nodes()
+ G.add_nodes_from(n_iter)
+ assert sorted(G.nodes(), key=str) == [
+ 1,
+ 2,
+ 3,
+ "A",
+ "B",
+ "C",
+ "D",
+ "E",
+ "F",
+ "G",
+ "H",
+ ]
+ n_iter = self.P3.nodes() # rebuild same iterator
+ G.remove_nodes_from(n_iter) # remove nbunch of nodes (nbunch=iterator)
+ assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D", "E", "F", "G", "H"]
+
+ def test_nbunch_graph(self):
+ G = self.G()
+ G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
+ nbunch = self.K3
+ G.add_nodes_from(nbunch)
+ assert sorted(G.nodes(), key=str), [
+ 1,
+ 2,
+ 3,
+ "A",
+ "B",
+ "C",
+ "D",
+ "E",
+ "F",
+ "G",
+ "H",
+ ]
+
+ # Edges
+
+ def test_add_edge(self):
+ G = self.G()
+ pytest.raises(TypeError, G.add_edge, "A")
+
+ G.add_edge("A", "B") # testing add_edge()
+ G.add_edge("A", "B") # should fail silently
+ assert G.has_edge("A", "B")
+ assert not G.has_edge("A", "C")
+ assert G.has_edge(*("A", "B"))
+ if G.is_directed():
+ assert not G.has_edge("B", "A")
+ else:
+ # G is undirected, so B->A is an edge
+ assert G.has_edge("B", "A")
+
+ G.add_edge("A", "C") # test directedness
+ G.add_edge("C", "A")
+ G.remove_edge("C", "A")
+ if G.is_directed():
+ assert G.has_edge("A", "C")
+ else:
+ assert not G.has_edge("A", "C")
+ assert not G.has_edge("C", "A")
+
+ def test_self_loop(self):
+ G = self.G()
+ G.add_edge("A", "A") # test self loops
+ assert G.has_edge("A", "A")
+ G.remove_edge("A", "A")
+ G.add_edge("X", "X")
+ assert G.has_node("X")
+ G.remove_node("X")
+ G.add_edge("A", "Z") # should add the node silently
+ assert G.has_node("Z")
+
+ def test_add_edges_from(self):
+ G = self.G()
+ G.add_edges_from([("B", "C")]) # test add_edges_from()
+ assert G.has_edge("B", "C")
+ if G.is_directed():
+ assert not G.has_edge("C", "B")
+ else:
+ assert G.has_edge("C", "B") # undirected
+
+ G.add_edges_from([("D", "F"), ("B", "D")])
+ assert G.has_edge("D", "F")
+ assert G.has_edge("B", "D")
+
+ if G.is_directed():
+ assert not G.has_edge("D", "B")
+ else:
+ assert G.has_edge("D", "B") # undirected
+
+ def test_add_edges_from2(self):
+ G = self.G()
+ # after failing silently, should add 2nd edge
+ G.add_edges_from([tuple("IJ"), list("KK"), tuple("JK")])
+ assert G.has_edge(*("I", "J"))
+ assert G.has_edge(*("K", "K"))
+ assert G.has_edge(*("J", "K"))
+ if G.is_directed():
+ assert not G.has_edge(*("K", "J"))
+ else:
+ assert G.has_edge(*("K", "J"))
+
+ def test_add_edges_from3(self):
+ G = self.G()
+ G.add_edges_from(zip(list("ACD"), list("CDE")))
+ assert G.has_edge("D", "E")
+ assert not G.has_edge("E", "C")
+
+ def test_remove_edge(self):
+ G = self.G()
+ G.add_nodes_from([1, 2, 3, "A", "B", "C", "D", "E", "F", "G", "H"])
+
+ G.add_edges_from(zip(list("MNOP"), list("NOPM")))
+ assert G.has_edge("O", "P")
+ assert G.has_edge("P", "M")
+ G.remove_node("P") # tests remove_node()'s handling of edges.
+ assert not G.has_edge("P", "M")
+ pytest.raises(TypeError, G.remove_edge, "M")
+
+ G.add_edge("N", "M")
+ assert G.has_edge("M", "N")
+ G.remove_edge("M", "N")
+ assert not G.has_edge("M", "N")
+
+ # self loop fails silently
+ G.remove_edges_from([list("HI"), list("DF"), tuple("KK"), tuple("JK")])
+ assert not G.has_edge("H", "I")
+ assert not G.has_edge("J", "K")
+ G.remove_edges_from([list("IJ"), list("KK"), list("JK")])
+ assert not G.has_edge("I", "J")
+ G.remove_nodes_from(set("ZEFHIMNO"))
+ G.add_edge("J", "K")
+
+ def test_edges_nbunch(self):
+ # Test G.edges(nbunch) with various forms of nbunch
+ G = self.G()
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
+ # node not in nbunch should be quietly ignored
+ pytest.raises(nx.NetworkXError, G.edges, 6)
+ assert list(G.edges("Z")) == [] # iterable non-node
+ # nbunch can be an empty list
+ assert list(G.edges([])) == []
+ if G.is_directed():
+ elist = [("A", "B"), ("A", "C"), ("B", "D")]
+ else:
+ elist = [("A", "B"), ("A", "C"), ("B", "C"), ("B", "D")]
+ # nbunch can be a list
+ assert edges_equal(list(G.edges(["A", "B"])), elist)
+ # nbunch can be a set
+ assert edges_equal(G.edges({"A", "B"}), elist)
+ # nbunch can be a graph
+ G1 = self.G()
+ G1.add_nodes_from("AB")
+ assert edges_equal(G.edges(G1), elist)
+ # nbunch can be a dict with nodes as keys
+ ndict = {"A": "thing1", "B": "thing2"}
+ assert edges_equal(G.edges(ndict), elist)
+ # nbunch can be a single node
+ assert edges_equal(list(G.edges("A")), [("A", "B"), ("A", "C")])
+ assert nodes_equal(sorted(G), ["A", "B", "C", "D"])
+
+ # nbunch can be nothing (whole graph)
+ assert edges_equal(
+ list(G.edges()),
+ [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")],
+ )
+
+ def test_degree(self):
+ G = self.G()
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
+ assert G.degree("A") == 2
+
+ # degree of single node in iterable container must return dict
+ assert list(G.degree(["A"])) == [("A", 2)]
+ assert sorted(d for n, d in G.degree(["A", "B"])) == [2, 3]
+ assert sorted(d for n, d in G.degree()) == [2, 2, 3, 3]
+
+ def test_degree2(self):
+ H = self.G()
+ H.add_edges_from([(1, 24), (1, 2)])
+ assert sorted(d for n, d in H.degree([1, 24])) == [1, 2]
+
+ def test_degree_graph(self):
+ P3 = nx.path_graph(3)
+ P5 = nx.path_graph(5)
+ # silently ignore nodes not in P3
+ assert dict(d for n, d in P3.degree(["A", "B"])) == {}
+ # nbunch can be a graph
+ assert sorted(d for n, d in P5.degree(P3)) == [1, 2, 2]
+ # nbunch can be a graph that's way too big
+ assert sorted(d for n, d in P3.degree(P5)) == [1, 1, 2]
+ assert list(P5.degree([])) == []
+ assert dict(P5.degree([])) == {}
+
+ def test_null(self):
+ null = nx.null_graph()
+ assert list(null.degree()) == []
+ assert dict(null.degree()) == {}
+
+ def test_order_size(self):
+ G = self.G()
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
+ assert G.order() == 4
+ assert G.size() == 5
+ assert G.number_of_edges() == 5
+ assert G.number_of_edges("A", "B") == 1
+ assert G.number_of_edges("A", "D") == 0
+
+ def test_copy(self):
+ G = self.G()
+ H = G.copy() # copy
+ assert H.adj == G.adj
+ assert H.name == G.name
+ assert H is not G
+
+ def test_subgraph(self):
+ G = self.G()
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
+ SG = G.subgraph(["A", "B", "D"])
+ assert nodes_equal(list(SG), ["A", "B", "D"])
+ assert edges_equal(list(SG.edges()), [("A", "B"), ("B", "D")])
+
+ def test_to_directed(self):
+ G = self.G()
+ if not G.is_directed():
+ G.add_edges_from(
+ [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
+ )
+
+ DG = G.to_directed()
+ assert DG is not G # directed copy or copy
+
+ assert DG.is_directed()
+ assert DG.name == G.name
+ assert DG.adj == G.adj
+ assert sorted(DG.out_edges(list("AB"))) == [
+ ("A", "B"),
+ ("A", "C"),
+ ("B", "A"),
+ ("B", "C"),
+ ("B", "D"),
+ ]
+ DG.remove_edge("A", "B")
+ assert DG.has_edge("B", "A") # this removes B-A but not A-B
+ assert not DG.has_edge("A", "B")
+
+ def test_to_undirected(self):
+ G = self.G()
+ if G.is_directed():
+ G.add_edges_from(
+ [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
+ )
+ UG = G.to_undirected() # to_undirected
+ assert UG is not G
+ assert not UG.is_directed()
+ assert G.is_directed()
+ assert UG.name == G.name
+ assert UG.adj != G.adj
+ assert sorted(UG.edges(list("AB"))) == [
+ ("A", "B"),
+ ("A", "C"),
+ ("B", "C"),
+ ("B", "D"),
+ ]
+ assert sorted(UG.edges(["A", "B"])) == [
+ ("A", "B"),
+ ("A", "C"),
+ ("B", "C"),
+ ("B", "D"),
+ ]
+ UG.remove_edge("A", "B")
+ assert not UG.has_edge("B", "A")
+ assert not UG.has_edge("A", "B")
+
+ def test_neighbors(self):
+ G = self.G()
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
+ G.add_nodes_from("GJK")
+ assert sorted(G["A"]) == ["B", "C"]
+ assert sorted(G.neighbors("A")) == ["B", "C"]
+ assert sorted(G.neighbors("A")) == ["B", "C"]
+ assert sorted(G.neighbors("G")) == []
+ pytest.raises(nx.NetworkXError, G.neighbors, "j")
+
+ def test_iterators(self):
+ G = self.G()
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
+ G.add_nodes_from("GJK")
+ assert sorted(G.nodes()) == ["A", "B", "C", "D", "G", "J", "K"]
+ assert edges_equal(
+ G.edges(), [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
+ )
+
+ assert sorted(v for k, v in G.degree()) == [0, 0, 0, 2, 2, 3, 3]
+ assert sorted(G.degree(), key=str) == [
+ ("A", 2),
+ ("B", 3),
+ ("C", 3),
+ ("D", 2),
+ ("G", 0),
+ ("J", 0),
+ ("K", 0),
+ ]
+ assert sorted(G.neighbors("A")) == ["B", "C"]
+ pytest.raises(nx.NetworkXError, G.neighbors, "X")
+ G.clear()
+ assert nx.number_of_nodes(G) == 0
+ assert nx.number_of_edges(G) == 0
+
+ def test_null_subgraph(self):
+ # Subgraph of a null graph is a null graph
+ nullgraph = nx.null_graph()
+ G = nx.null_graph()
+ H = G.subgraph([])
+ assert nx.is_isomorphic(H, nullgraph)
+
+ def test_empty_subgraph(self):
+ # Subgraph of an empty graph is an empty graph. test 1
+ nullgraph = nx.null_graph()
+ E5 = nx.empty_graph(5)
+ E10 = nx.empty_graph(10)
+ H = E10.subgraph([])
+ assert nx.is_isomorphic(H, nullgraph)
+ H = E10.subgraph([1, 2, 3, 4, 5])
+ assert nx.is_isomorphic(H, E5)
+
+ def test_complete_subgraph(self):
+ # Subgraph of a complete graph is a complete graph
+ K1 = nx.complete_graph(1)
+ K3 = nx.complete_graph(3)
+ K5 = nx.complete_graph(5)
+ H = K5.subgraph([1, 2, 3])
+ assert nx.is_isomorphic(H, K3)
+
+ def test_subgraph_nbunch(self):
+ nullgraph = nx.null_graph()
+ K1 = nx.complete_graph(1)
+ K3 = nx.complete_graph(3)
+ K5 = nx.complete_graph(5)
+ # Test G.subgraph(nbunch), where nbunch is a single node
+ H = K5.subgraph(1)
+ assert nx.is_isomorphic(H, K1)
+ # Test G.subgraph(nbunch), where nbunch is a set
+ H = K5.subgraph({1})
+ assert nx.is_isomorphic(H, K1)
+ # Test G.subgraph(nbunch), where nbunch is an iterator
+ H = K5.subgraph(iter(K3))
+ assert nx.is_isomorphic(H, K3)
+ # Test G.subgraph(nbunch), where nbunch is another graph
+ H = K5.subgraph(K3)
+ assert nx.is_isomorphic(H, K3)
+ H = K5.subgraph([9])
+ assert nx.is_isomorphic(H, nullgraph)
+
+ def test_node_tuple_issue(self):
+ H = self.G()
+ # Test error handling of tuple as a node
+ pytest.raises(nx.NetworkXError, H.remove_node, (1, 2))
+ H.remove_nodes_from([(1, 2)]) # no error
+ pytest.raises(nx.NetworkXError, H.neighbors, (1, 2))