aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py966
1 files changed, 966 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py b/.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py
new file mode 100644
index 00000000..597af796
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/classes/multidigraph.py
@@ -0,0 +1,966 @@
+"""Base class for MultiDiGraph."""
+
+from copy import deepcopy
+from functools import cached_property
+
+import networkx as nx
+from networkx import convert
+from networkx.classes.coreviews import MultiAdjacencyView
+from networkx.classes.digraph import DiGraph
+from networkx.classes.multigraph import MultiGraph
+from networkx.classes.reportviews import (
+ DiMultiDegreeView,
+ InMultiDegreeView,
+ InMultiEdgeView,
+ OutMultiDegreeView,
+ OutMultiEdgeView,
+)
+from networkx.exception import NetworkXError
+
+__all__ = ["MultiDiGraph"]
+
+
+class MultiDiGraph(MultiGraph, DiGraph):
+ """A directed graph class that can store multiedges.
+
+ Multiedges are multiple edges between two nodes. Each edge
+ can hold optional data or attributes.
+
+ A MultiDiGraph holds directed edges. Self loops are allowed.
+
+ Nodes can be arbitrary (hashable) Python objects with optional
+ key/value attributes. By convention `None` is not used as a node.
+
+ Edges are represented as links between nodes with optional
+ key/value attributes.
+
+ Parameters
+ ----------
+ incoming_graph_data : input graph (optional, default: None)
+ Data to initialize graph. If None (default) an empty
+ graph is created. The data can be any format that is supported
+ by the to_networkx_graph() function, currently including edge list,
+ dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
+ sparse matrix, or PyGraphviz graph.
+
+ multigraph_input : bool or None (default None)
+ Note: Only used when `incoming_graph_data` is a dict.
+ If True, `incoming_graph_data` is assumed to be a
+ dict-of-dict-of-dict-of-dict structure keyed by
+ node to neighbor to edge keys to edge data for multi-edges.
+ A NetworkXError is raised if this is not the case.
+ If False, :func:`to_networkx_graph` is used to try to determine
+ the dict's graph data structure as either a dict-of-dict-of-dict
+ keyed by node to neighbor to edge data, or a dict-of-iterable
+ keyed by node to neighbors.
+ If None, the treatment for True is tried, but if it fails,
+ the treatment for False is tried.
+
+ attr : keyword arguments, optional (default= no attributes)
+ Attributes to add to graph as key=value pairs.
+
+ See Also
+ --------
+ Graph
+ DiGraph
+ MultiGraph
+
+ Examples
+ --------
+ Create an empty graph structure (a "null graph") with no nodes and
+ no edges.
+
+ >>> G = nx.MultiDiGraph()
+
+ G can be grown in several ways.
+
+ **Nodes:**
+
+ Add one node at a time:
+
+ >>> G.add_node(1)
+
+ Add the nodes from any container (a list, dict, set or
+ even the lines from a file or the nodes from another graph).
+
+ >>> G.add_nodes_from([2, 3])
+ >>> G.add_nodes_from(range(100, 110))
+ >>> H = nx.path_graph(10)
+ >>> G.add_nodes_from(H)
+
+ In addition to strings and integers any hashable Python object
+ (except None) can represent a node, e.g. a customized node object,
+ or even another Graph.
+
+ >>> G.add_node(H)
+
+ **Edges:**
+
+ G can also be grown by adding edges.
+
+ Add one edge,
+
+ >>> key = G.add_edge(1, 2)
+
+ a list of edges,
+
+ >>> keys = G.add_edges_from([(1, 2), (1, 3)])
+
+ or a collection of edges,
+
+ >>> keys = G.add_edges_from(H.edges)
+
+ If some edges connect nodes not yet in the graph, the nodes
+ are added automatically. If an edge already exists, an additional
+ edge is created and stored using a key to identify the edge.
+ By default the key is the lowest unused integer.
+
+ >>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))])
+ >>> G[4]
+ AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}})
+
+ **Attributes:**
+
+ Each graph, node, and edge can hold key/value attribute pairs
+ in an associated attribute dictionary (the keys must be hashable).
+ By default these are empty, but can be added or changed using
+ add_edge, add_node or direct manipulation of the attribute
+ dictionaries named graph, node and edge respectively.
+
+ >>> G = nx.MultiDiGraph(day="Friday")
+ >>> G.graph
+ {'day': 'Friday'}
+
+ Add node attributes using add_node(), add_nodes_from() or G.nodes
+
+ >>> G.add_node(1, time="5pm")
+ >>> G.add_nodes_from([3], time="2pm")
+ >>> G.nodes[1]
+ {'time': '5pm'}
+ >>> G.nodes[1]["room"] = 714
+ >>> del G.nodes[1]["room"] # remove attribute
+ >>> list(G.nodes(data=True))
+ [(1, {'time': '5pm'}), (3, {'time': '2pm'})]
+
+ Add edge attributes using add_edge(), add_edges_from(), subscript
+ notation, or G.edges.
+
+ >>> key = G.add_edge(1, 2, weight=4.7)
+ >>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
+ >>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
+ >>> G[1][2][0]["weight"] = 4.7
+ >>> G.edges[1, 2, 0]["weight"] = 4
+
+ Warning: we protect the graph data structure by making `G.edges[1,
+ 2, 0]` a read-only dict-like structure. However, you can assign to
+ attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets
+ to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`
+ (for multigraphs the edge key is required: `MG.edges[u, v,
+ key][name] = value`).
+
+ **Shortcuts:**
+
+ Many common graph features allow python syntax to speed reporting.
+
+ >>> 1 in G # check if node in graph
+ True
+ >>> [n for n in G if n < 3] # iterate through nodes
+ [1, 2]
+ >>> len(G) # number of nodes in graph
+ 5
+ >>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
+ AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})
+
+ Often the best way to traverse all edges of a graph is via the neighbors.
+ The neighbors are available as an adjacency-view `G.adj` object or via
+ the method `G.adjacency()`.
+
+ >>> for n, nbrsdict in G.adjacency():
+ ... for nbr, keydict in nbrsdict.items():
+ ... for key, eattr in keydict.items():
+ ... if "weight" in eattr:
+ ... # Do something useful with the edges
+ ... pass
+
+ But the edges() method is often more convenient:
+
+ >>> for u, v, keys, weight in G.edges(data="weight", keys=True):
+ ... if weight is not None:
+ ... # Do something useful with the edges
+ ... pass
+
+ **Reporting:**
+
+ Simple graph information is obtained using methods and object-attributes.
+ Reporting usually provides views instead of containers to reduce memory
+ usage. The views update as the graph is updated similarly to dict-views.
+ The objects `nodes`, `edges` and `adj` provide access to data attributes
+ via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration
+ (e.g. `nodes.items()`, `nodes.data('color')`,
+ `nodes.data('color', default='blue')` and similarly for `edges`)
+ Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
+
+ For details on these and other miscellaneous methods, see below.
+
+ **Subclasses (Advanced):**
+
+ The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
+ The outer dict (node_dict) holds adjacency information keyed by node.
+ The next dict (adjlist_dict) represents the adjacency information
+ and holds edge_key dicts keyed by neighbor. The edge_key dict holds
+ each edge_attr dict keyed by edge key. The inner dict
+ (edge_attr_dict) represents the edge data and holds edge attribute
+ values keyed by attribute names.
+
+ Each of these four dicts in the dict-of-dict-of-dict-of-dict
+ structure can be replaced by a user defined dict-like object.
+ In general, the dict-like features should be maintained but
+ extra features can be added. To replace one of the dicts create
+ a new graph class by changing the class(!) variable holding the
+ factory for that dict-like structure. The variable names are
+ node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
+ adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
+ and graph_attr_dict_factory.
+
+ node_dict_factory : function, (default: dict)
+ Factory function to be used to create the dict containing node
+ attributes, keyed by node id.
+ It should require no arguments and return a dict-like object
+
+ node_attr_dict_factory: function, (default: dict)
+ Factory function to be used to create the node attribute
+ dict which holds attribute values keyed by attribute name.
+ It should require no arguments and return a dict-like object
+
+ adjlist_outer_dict_factory : function, (default: dict)
+ Factory function to be used to create the outer-most dict
+ in the data structure that holds adjacency info keyed by node.
+ It should require no arguments and return a dict-like object.
+
+ adjlist_inner_dict_factory : function, (default: dict)
+ Factory function to be used to create the adjacency list
+ dict which holds multiedge key dicts keyed by neighbor.
+ It should require no arguments and return a dict-like object.
+
+ edge_key_dict_factory : function, (default: dict)
+ Factory function to be used to create the edge key dict
+ which holds edge data keyed by edge key.
+ It should require no arguments and return a dict-like object.
+
+ edge_attr_dict_factory : function, (default: dict)
+ Factory function to be used to create the edge attribute
+ dict which holds attribute values keyed by attribute name.
+ It should require no arguments and return a dict-like object.
+
+ graph_attr_dict_factory : function, (default: dict)
+ Factory function to be used to create the graph attribute
+ dict which holds attribute values keyed by attribute name.
+ It should require no arguments and return a dict-like object.
+
+ Typically, if your extension doesn't impact the data structure all
+ methods will inherited without issue except: `to_directed/to_undirected`.
+ By default these methods create a DiGraph/Graph class and you probably
+ want them to create your extension of a DiGraph/Graph. To facilitate
+ this we define two class variables that you can set in your subclass.
+
+ to_directed_class : callable, (default: DiGraph or MultiDiGraph)
+ Class to create a new graph structure in the `to_directed` method.
+ If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
+
+ to_undirected_class : callable, (default: Graph or MultiGraph)
+ Class to create a new graph structure in the `to_undirected` method.
+ If `None`, a NetworkX class (Graph or MultiGraph) is used.
+
+ **Subclassing Example**
+
+ Create a low memory graph class that effectively disallows edge
+ attributes by using a single attribute dict for all edges.
+ This reduces the memory used, but you lose edge attributes.
+
+ >>> class ThinGraph(nx.Graph):
+ ... all_edge_dict = {"weight": 1}
+ ...
+ ... def single_edge_dict(self):
+ ... return self.all_edge_dict
+ ...
+ ... edge_attr_dict_factory = single_edge_dict
+ >>> G = ThinGraph()
+ >>> G.add_edge(2, 1)
+ >>> G[2][1]
+ {'weight': 1}
+ >>> G.add_edge(2, 2)
+ >>> G[2][1] is G[2][2]
+ True
+ """
+
+ # node_dict_factory = dict # already assigned in Graph
+ # adjlist_outer_dict_factory = dict
+ # adjlist_inner_dict_factory = dict
+ edge_key_dict_factory = dict
+ # edge_attr_dict_factory = dict
+
+ def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr):
+ """Initialize a graph with edges, name, or graph attributes.
+
+ Parameters
+ ----------
+ incoming_graph_data : input graph
+ Data to initialize graph. If incoming_graph_data=None (default)
+ an empty graph is created. The data can be an edge list, or any
+ NetworkX graph object. If the corresponding optional Python
+ packages are installed the data can also be a 2D NumPy array, a
+ SciPy sparse array, or a PyGraphviz graph.
+
+ multigraph_input : bool or None (default None)
+ Note: Only used when `incoming_graph_data` is a dict.
+ If True, `incoming_graph_data` is assumed to be a
+ dict-of-dict-of-dict-of-dict structure keyed by
+ node to neighbor to edge keys to edge data for multi-edges.
+ A NetworkXError is raised if this is not the case.
+ If False, :func:`to_networkx_graph` is used to try to determine
+ the dict's graph data structure as either a dict-of-dict-of-dict
+ keyed by node to neighbor to edge data, or a dict-of-iterable
+ keyed by node to neighbors.
+ If None, the treatment for True is tried, but if it fails,
+ the treatment for False is tried.
+
+ attr : keyword arguments, optional (default= no attributes)
+ Attributes to add to graph as key=value pairs.
+
+ See Also
+ --------
+ convert
+
+ Examples
+ --------
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G = nx.Graph(name="my graph")
+ >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
+ >>> G = nx.Graph(e)
+
+ Arbitrary graph attribute pairs (key=value) may be assigned
+
+ >>> G = nx.Graph(e, day="Friday")
+ >>> G.graph
+ {'day': 'Friday'}
+
+ """
+ # multigraph_input can be None/True/False. So check "is not False"
+ if isinstance(incoming_graph_data, dict) and multigraph_input is not False:
+ DiGraph.__init__(self)
+ try:
+ convert.from_dict_of_dicts(
+ incoming_graph_data, create_using=self, multigraph_input=True
+ )
+ self.graph.update(attr)
+ except Exception as err:
+ if multigraph_input is True:
+ raise nx.NetworkXError(
+ f"converting multigraph_input raised:\n{type(err)}: {err}"
+ )
+ DiGraph.__init__(self, incoming_graph_data, **attr)
+ else:
+ DiGraph.__init__(self, incoming_graph_data, **attr)
+
+ @cached_property
+ def adj(self):
+ """Graph adjacency object holding the neighbors of each node.
+
+ This object is a read-only dict-like structure with node keys
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
+ to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
+ the color of the edge `(3, 2, 0)` to `"blue"`.
+
+ Iterating over G.adj behaves like a dict. Useful idioms include
+ `for nbr, datadict in G.adj[n].items():`.
+
+ The neighbor information is also provided by subscripting the graph.
+ So `for nbr, foovalue in G[node].data('foo', default=1):` works.
+
+ For directed graphs, `G.adj` holds outgoing (successor) info.
+ """
+ return MultiAdjacencyView(self._succ)
+
+ @cached_property
+ def succ(self):
+ """Graph adjacency object holding the successors of each node.
+
+ This object is a read-only dict-like structure with node keys
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
+ to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
+ the color of the edge `(3, 2, 0)` to `"blue"`.
+
+ Iterating over G.adj behaves like a dict. Useful idioms include
+ `for nbr, datadict in G.adj[n].items():`.
+
+ The neighbor information is also provided by subscripting the graph.
+ So `for nbr, foovalue in G[node].data('foo', default=1):` works.
+
+ For directed graphs, `G.succ` is identical to `G.adj`.
+ """
+ return MultiAdjacencyView(self._succ)
+
+ @cached_property
+ def pred(self):
+ """Graph adjacency object holding the predecessors of each node.
+
+ This object is a read-only dict-like structure with node keys
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
+ to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
+ the color of the edge `(3, 2, 0)` to `"blue"`.
+
+ Iterating over G.adj behaves like a dict. Useful idioms include
+ `for nbr, datadict in G.adj[n].items():`.
+ """
+ return MultiAdjacencyView(self._pred)
+
+ def add_edge(self, u_for_edge, v_for_edge, key=None, **attr):
+ """Add an edge between u and v.
+
+ The nodes u and v will be automatically added if they are
+ not already in the graph.
+
+ Edge attributes can be specified with keywords or by directly
+ accessing the edge's attribute dictionary. See examples below.
+
+ Parameters
+ ----------
+ u_for_edge, v_for_edge : nodes
+ Nodes can be, for example, strings or numbers.
+ Nodes must be hashable (and not None) Python objects.
+ key : hashable identifier, optional (default=lowest unused integer)
+ Used to distinguish multiedges between a pair of nodes.
+ attr : keyword arguments, optional
+ Edge data (or labels or objects) can be assigned using
+ keyword arguments.
+
+ Returns
+ -------
+ The edge key assigned to the edge.
+
+ See Also
+ --------
+ add_edges_from : add a collection of edges
+
+ Notes
+ -----
+ To replace/update edge data, use the optional key argument
+ to identify a unique edge. Otherwise a new edge will be created.
+
+ NetworkX algorithms designed for weighted graphs cannot use
+ multigraphs directly because it is not clear how to handle
+ multiedge weights. Convert to Graph using edge attribute
+ 'weight' to enable weighted graph algorithms.
+
+ Default keys are generated using the method `new_edge_key()`.
+ This method can be overridden by subclassing the base class and
+ providing a custom `new_edge_key()` method.
+
+ Examples
+ --------
+ The following all add the edge e=(1, 2) to graph G:
+
+ >>> G = nx.MultiDiGraph()
+ >>> e = (1, 2)
+ >>> key = G.add_edge(1, 2) # explicit two-node form
+ >>> G.add_edge(*e) # single edge as tuple of two nodes
+ 1
+ >>> G.add_edges_from([(1, 2)]) # add edges from iterable container
+ [2]
+
+ Associate data to edges using keywords:
+
+ >>> key = G.add_edge(1, 2, weight=3)
+ >>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0
+ >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
+
+ For non-string attribute keys, use subscript notation.
+
+ >>> ekey = G.add_edge(1, 2)
+ >>> G[1][2][0].update({0: 5})
+ >>> G.edges[1, 2, 0].update({0: 5})
+ """
+ u, v = u_for_edge, v_for_edge
+ # add nodes
+ if u not in self._succ:
+ if u is None:
+ raise ValueError("None cannot be a node")
+ self._succ[u] = self.adjlist_inner_dict_factory()
+ self._pred[u] = self.adjlist_inner_dict_factory()
+ self._node[u] = self.node_attr_dict_factory()
+ if v not in self._succ:
+ if v is None:
+ raise ValueError("None cannot be a node")
+ self._succ[v] = self.adjlist_inner_dict_factory()
+ self._pred[v] = self.adjlist_inner_dict_factory()
+ self._node[v] = self.node_attr_dict_factory()
+ if key is None:
+ key = self.new_edge_key(u, v)
+ if v in self._succ[u]:
+ keydict = self._adj[u][v]
+ datadict = keydict.get(key, self.edge_attr_dict_factory())
+ datadict.update(attr)
+ keydict[key] = datadict
+ else:
+ # selfloops work this way without special treatment
+ datadict = self.edge_attr_dict_factory()
+ datadict.update(attr)
+ keydict = self.edge_key_dict_factory()
+ keydict[key] = datadict
+ self._succ[u][v] = keydict
+ self._pred[v][u] = keydict
+ nx._clear_cache(self)
+ return key
+
+ def remove_edge(self, u, v, key=None):
+ """Remove an edge between u and v.
+
+ Parameters
+ ----------
+ u, v : nodes
+ Remove an edge between nodes u and v.
+ key : hashable identifier, optional (default=None)
+ Used to distinguish multiple edges between a pair of nodes.
+ If None, remove a single edge between u and v. If there are
+ multiple edges, removes the last edge added in terms of
+ insertion order.
+
+ Raises
+ ------
+ NetworkXError
+ If there is not an edge between u and v, or
+ if there is no edge with the specified key.
+
+ See Also
+ --------
+ remove_edges_from : remove a collection of edges
+
+ Examples
+ --------
+ >>> G = nx.MultiDiGraph()
+ >>> nx.add_path(G, [0, 1, 2, 3])
+ >>> G.remove_edge(0, 1)
+ >>> e = (1, 2)
+ >>> G.remove_edge(*e) # unpacks e from an edge tuple
+
+ For multiple edges
+
+ >>> G = nx.MultiDiGraph()
+ >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned
+ [0, 1, 2]
+
+ When ``key=None`` (the default), edges are removed in the opposite
+ order that they were added:
+
+ >>> G.remove_edge(1, 2)
+ >>> G.edges(keys=True)
+ OutMultiEdgeView([(1, 2, 0), (1, 2, 1)])
+
+ For edges with keys
+
+ >>> G = nx.MultiDiGraph()
+ >>> G.add_edge(1, 2, key="first")
+ 'first'
+ >>> G.add_edge(1, 2, key="second")
+ 'second'
+ >>> G.remove_edge(1, 2, key="first")
+ >>> G.edges(keys=True)
+ OutMultiEdgeView([(1, 2, 'second')])
+
+ """
+ try:
+ d = self._adj[u][v]
+ except KeyError as err:
+ raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err
+ # remove the edge with specified data
+ if key is None:
+ d.popitem()
+ else:
+ try:
+ del d[key]
+ except KeyError as err:
+ msg = f"The edge {u}-{v} with key {key} is not in the graph."
+ raise NetworkXError(msg) from err
+ if len(d) == 0:
+ # remove the key entries if last edge
+ del self._succ[u][v]
+ del self._pred[v][u]
+ nx._clear_cache(self)
+
+ @cached_property
+ def edges(self):
+ """An OutMultiEdgeView of the Graph as G.edges or G.edges().
+
+ edges(self, nbunch=None, data=False, keys=False, default=None)
+
+ The OutMultiEdgeView provides set-like operations on the edge-tuples
+ as well as edge attribute lookup. When called, it also provides
+ an EdgeDataView object which allows control of access to edge
+ attributes (but does not provide set-like operations).
+ Hence, ``G.edges[u, v, k]['color']`` provides the value of the color
+ attribute for the edge from ``u`` to ``v`` with key ``k`` while
+ ``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):``
+ iterates through all the edges yielding the color attribute with
+ default `'red'` if no color attribute exists.
+
+ Edges are returned as tuples with optional data and keys
+ in the order (node, neighbor, key, data). If ``keys=True`` is not
+ provided, the tuples will just be (node, neighbor, data), but
+ multiple tuples with the same node and neighbor will be
+ generated when multiple edges between two nodes exist.
+
+ Parameters
+ ----------
+ nbunch : single node, container, or all nodes (default= all nodes)
+ The view will only report edges from these nodes.
+ data : string or bool, optional (default=False)
+ The edge attribute returned in 3-tuple (u, v, ddict[data]).
+ If True, return edge attribute dict in 3-tuple (u, v, ddict).
+ If False, return 2-tuple (u, v).
+ keys : bool, optional (default=False)
+ If True, return edge keys with each edge, creating (u, v, k,
+ d) tuples when data is also requested (the default) and (u,
+ v, k) tuples when data is not requested.
+ default : value, optional (default=None)
+ Value used for edges that don't have the requested attribute.
+ Only relevant if data is not True or False.
+
+ Returns
+ -------
+ edges : OutMultiEdgeView
+ A view of edge attributes, usually it iterates over (u, v)
+ (u, v, k) or (u, v, k, d) tuples of edges, but can also be
+ used for attribute lookup as ``edges[u, v, k]['foo']``.
+
+ Notes
+ -----
+ Nodes in nbunch that are not in the graph will be (quietly) ignored.
+ For directed graphs this returns the out-edges.
+
+ Examples
+ --------
+ >>> G = nx.MultiDiGraph()
+ >>> nx.add_path(G, [0, 1, 2])
+ >>> key = G.add_edge(2, 3, weight=5)
+ >>> key2 = G.add_edge(1, 2) # second edge between these nodes
+ >>> [e for e in G.edges()]
+ [(0, 1), (1, 2), (1, 2), (2, 3)]
+ >>> list(G.edges(data=True)) # default data is {} (empty dict)
+ [(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})]
+ >>> list(G.edges(data="weight", default=1))
+ [(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)]
+ >>> list(G.edges(keys=True)) # default keys are integers
+ [(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)]
+ >>> list(G.edges(data=True, keys=True))
+ [(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})]
+ >>> list(G.edges(data="weight", default=1, keys=True))
+ [(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)]
+ >>> list(G.edges([0, 2]))
+ [(0, 1), (2, 3)]
+ >>> list(G.edges(0))
+ [(0, 1)]
+ >>> list(G.edges(1))
+ [(1, 2), (1, 2)]
+
+ See Also
+ --------
+ in_edges, out_edges
+ """
+ return OutMultiEdgeView(self)
+
+ # alias out_edges to edges
+ @cached_property
+ def out_edges(self):
+ return OutMultiEdgeView(self)
+
+ out_edges.__doc__ = edges.__doc__
+
+ @cached_property
+ def in_edges(self):
+ """A view of the in edges of the graph as G.in_edges or G.in_edges().
+
+ in_edges(self, nbunch=None, data=False, keys=False, default=None)
+
+ Parameters
+ ----------
+ nbunch : single node, container, or all nodes (default= all nodes)
+ The view will only report edges incident to these nodes.
+ data : string or bool, optional (default=False)
+ The edge attribute returned in 3-tuple (u, v, ddict[data]).
+ If True, return edge attribute dict in 3-tuple (u, v, ddict).
+ If False, return 2-tuple (u, v).
+ keys : bool, optional (default=False)
+ If True, return edge keys with each edge, creating 3-tuples
+ (u, v, k) or with data, 4-tuples (u, v, k, d).
+ default : value, optional (default=None)
+ Value used for edges that don't have the requested attribute.
+ Only relevant if data is not True or False.
+
+ Returns
+ -------
+ in_edges : InMultiEdgeView or InMultiEdgeDataView
+ A view of edge attributes, usually it iterates over (u, v)
+ or (u, v, k) or (u, v, k, d) tuples of edges, but can also be
+ used for attribute lookup as `edges[u, v, k]['foo']`.
+
+ See Also
+ --------
+ edges
+ """
+ return InMultiEdgeView(self)
+
+ @cached_property
+ def degree(self):
+ """A DegreeView for the Graph as G.degree or G.degree().
+
+ The node degree is the number of edges adjacent to the node.
+ The weighted node degree is the sum of the edge weights for
+ edges incident to that node.
+
+ This object provides an iterator for (node, degree) as well as
+ lookup for the degree for a single node.
+
+ Parameters
+ ----------
+ nbunch : single node, container, or all nodes (default= all nodes)
+ The view will only report edges incident to these nodes.
+
+ weight : string or None, optional (default=None)
+ The name of an edge attribute that holds the numerical value used
+ as a weight. If None, then each edge has weight 1.
+ The degree is the sum of the edge weights adjacent to the node.
+
+ Returns
+ -------
+ DiMultiDegreeView or int
+ If multiple nodes are requested (the default), returns a `DiMultiDegreeView`
+ mapping nodes to their degree.
+ If a single node is requested, returns the degree of the node as an integer.
+
+ See Also
+ --------
+ out_degree, in_degree
+
+ Examples
+ --------
+ >>> G = nx.MultiDiGraph()
+ >>> nx.add_path(G, [0, 1, 2, 3])
+ >>> G.degree(0) # node 0 with degree 1
+ 1
+ >>> list(G.degree([0, 1, 2]))
+ [(0, 1), (1, 2), (2, 2)]
+ >>> G.add_edge(0, 1) # parallel edge
+ 1
+ >>> list(G.degree([0, 1, 2])) # parallel edges are counted
+ [(0, 2), (1, 3), (2, 2)]
+
+ """
+ return DiMultiDegreeView(self)
+
+ @cached_property
+ def in_degree(self):
+ """A DegreeView for (node, in_degree) or in_degree for single node.
+
+ The node in-degree is the number of edges pointing into the node.
+ The weighted node degree is the sum of the edge weights for
+ edges incident to that node.
+
+ This object provides an iterator for (node, degree) as well as
+ lookup for the degree for a single node.
+
+ Parameters
+ ----------
+ nbunch : single node, container, or all nodes (default= all nodes)
+ The view will only report edges incident to these nodes.
+
+ weight : string or None, optional (default=None)
+ The edge attribute that holds the numerical value used
+ as a weight. If None, then each edge has weight 1.
+ The degree is the sum of the edge weights adjacent to the node.
+
+ Returns
+ -------
+ If a single node is requested
+ deg : int
+ Degree of the node
+
+ OR if multiple nodes are requested
+ nd_iter : iterator
+ The iterator returns two-tuples of (node, in-degree).
+
+ See Also
+ --------
+ degree, out_degree
+
+ Examples
+ --------
+ >>> G = nx.MultiDiGraph()
+ >>> nx.add_path(G, [0, 1, 2, 3])
+ >>> G.in_degree(0) # node 0 with degree 0
+ 0
+ >>> list(G.in_degree([0, 1, 2]))
+ [(0, 0), (1, 1), (2, 1)]
+ >>> G.add_edge(0, 1) # parallel edge
+ 1
+ >>> list(G.in_degree([0, 1, 2])) # parallel edges counted
+ [(0, 0), (1, 2), (2, 1)]
+
+ """
+ return InMultiDegreeView(self)
+
+ @cached_property
+ def out_degree(self):
+ """Returns an iterator for (node, out-degree) or out-degree for single node.
+
+ out_degree(self, nbunch=None, weight=None)
+
+ The node out-degree is the number of edges pointing out of the node.
+ This function returns the out-degree for a single node or an iterator
+ for a bunch of nodes or if nothing is passed as argument.
+
+ Parameters
+ ----------
+ nbunch : single node, container, or all nodes (default= all nodes)
+ The view will only report edges incident to these nodes.
+
+ weight : string or None, optional (default=None)
+ The edge attribute that holds the numerical value used
+ as a weight. If None, then each edge has weight 1.
+ The degree is the sum of the edge weights.
+
+ Returns
+ -------
+ If a single node is requested
+ deg : int
+ Degree of the node
+
+ OR if multiple nodes are requested
+ nd_iter : iterator
+ The iterator returns two-tuples of (node, out-degree).
+
+ See Also
+ --------
+ degree, in_degree
+
+ Examples
+ --------
+ >>> G = nx.MultiDiGraph()
+ >>> nx.add_path(G, [0, 1, 2, 3])
+ >>> G.out_degree(0) # node 0 with degree 1
+ 1
+ >>> list(G.out_degree([0, 1, 2]))
+ [(0, 1), (1, 1), (2, 1)]
+ >>> G.add_edge(0, 1) # parallel edge
+ 1
+ >>> list(G.out_degree([0, 1, 2])) # counts parallel edges
+ [(0, 2), (1, 1), (2, 1)]
+
+ """
+ return OutMultiDegreeView(self)
+
+ def is_multigraph(self):
+ """Returns True if graph is a multigraph, False otherwise."""
+ return True
+
+ def is_directed(self):
+ """Returns True if graph is directed, False otherwise."""
+ return True
+
+ def to_undirected(self, reciprocal=False, as_view=False):
+ """Returns an undirected representation of the digraph.
+
+ Parameters
+ ----------
+ reciprocal : bool (optional)
+ If True only keep edges that appear in both directions
+ in the original digraph.
+ as_view : bool (optional, default=False)
+ If True return an undirected view of the original directed graph.
+
+ Returns
+ -------
+ G : MultiGraph
+ An undirected graph with the same name and nodes and
+ with edge (u, v, data) if either (u, v, data) or (v, u, data)
+ is in the digraph. If both edges exist in digraph and
+ their edge data is different, only one edge is created
+ with an arbitrary choice of which edge data to use.
+ You must check and correct for this manually if desired.
+
+ See Also
+ --------
+ MultiGraph, copy, add_edge, add_edges_from
+
+ Notes
+ -----
+ This returns a "deepcopy" of the edge, node, and
+ graph attributes which attempts to completely copy
+ all of the data and references.
+
+ This is in contrast to the similar D=MultiDiGraph(G) which
+ returns a shallow copy of the data.
+
+ See the Python copy module for more information on shallow
+ and deep copies, https://docs.python.org/3/library/copy.html.
+
+ Warning: If you have subclassed MultiDiGraph to use dict-like
+ objects in the data structure, those changes do not transfer
+ to the MultiGraph created by this method.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(2) # or MultiGraph, etc
+ >>> H = G.to_directed()
+ >>> list(H.edges)
+ [(0, 1), (1, 0)]
+ >>> G2 = H.to_undirected()
+ >>> list(G2.edges)
+ [(0, 1)]
+ """
+ graph_class = self.to_undirected_class()
+ if as_view is True:
+ return nx.graphviews.generic_graph_view(self, graph_class)
+ # deepcopy when not a view
+ G = graph_class()
+ G.graph.update(deepcopy(self.graph))
+ G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
+ if reciprocal is True:
+ G.add_edges_from(
+ (u, v, key, deepcopy(data))
+ for u, nbrs in self._adj.items()
+ for v, keydict in nbrs.items()
+ for key, data in keydict.items()
+ if v in self._pred[u] and key in self._pred[u][v]
+ )
+ else:
+ G.add_edges_from(
+ (u, v, key, deepcopy(data))
+ for u, nbrs in self._adj.items()
+ for v, keydict in nbrs.items()
+ for key, data in keydict.items()
+ )
+ return G
+
+ def reverse(self, copy=True):
+ """Returns the reverse of the graph.
+
+ The reverse is a graph with the same nodes and edges
+ but with the directions of the edges reversed.
+
+ Parameters
+ ----------
+ copy : bool optional (default=True)
+ If True, return a new DiGraph holding the reversed edges.
+ If False, the reverse graph is created using a view of
+ the original graph.
+ """
+ if copy:
+ H = self.__class__()
+ H.graph.update(deepcopy(self.graph))
+ H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
+ H.add_edges_from(
+ (v, u, k, deepcopy(d))
+ for u, v, k, d in self.edges(keys=True, data=True)
+ )
+ return H
+ return nx.reverse_view(self)