diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/classes/graphviews.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/classes/graphviews.py | 269 |
1 files changed, 269 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/classes/graphviews.py b/.venv/lib/python3.12/site-packages/networkx/classes/graphviews.py new file mode 100644 index 00000000..0b09df64 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/classes/graphviews.py @@ -0,0 +1,269 @@ +"""View of Graphs as SubGraph, Reverse, Directed, Undirected. + +In some algorithms it is convenient to temporarily morph +a graph to exclude some nodes or edges. It should be better +to do that via a view than to remove and then re-add. +In other algorithms it is convenient to temporarily morph +a graph to reverse directed edges, or treat a directed graph +as undirected, etc. This module provides those graph views. + +The resulting views are essentially read-only graphs that +report data from the original graph object. We provide an +attribute G._graph which points to the underlying graph object. + +Note: Since graphviews look like graphs, one can end up with +view-of-view-of-view chains. Be careful with chains because +they become very slow with about 15 nested views. +For the common simple case of node induced subgraphs created +from the graph class, we short-cut the chain by returning a +subgraph of the original graph directly rather than a subgraph +of a subgraph. We are careful not to disrupt any edge filter in +the middle subgraph. In general, determining how to short-cut +the chain is tricky and much harder with restricted_views than +with induced subgraphs. +Often it is easiest to use .copy() to avoid chains. +""" + +import networkx as nx +from networkx.classes.coreviews import ( + FilterAdjacency, + FilterAtlas, + FilterMultiAdjacency, + UnionAdjacency, + UnionMultiAdjacency, +) +from networkx.classes.filters import no_filter +from networkx.exception import NetworkXError +from networkx.utils import not_implemented_for + +__all__ = ["generic_graph_view", "subgraph_view", "reverse_view"] + + +def generic_graph_view(G, create_using=None): + """Returns a read-only view of `G`. + + The graph `G` and its attributes are not copied but viewed through the new graph object + of the same class as `G` (or of the class specified in `create_using`). + + Parameters + ---------- + G : graph + A directed/undirected graph/multigraph. + + create_using : NetworkX graph constructor, optional (default=None) + Graph type to create. If graph instance, then cleared before populated. + If `None`, then the appropriate Graph type is inferred from `G`. + + Returns + ------- + newG : graph + A view of the input graph `G` and its attributes as viewed through + the `create_using` class. + + Raises + ------ + NetworkXError + If `G` is a multigraph (or multidigraph) but `create_using` is not, or vice versa. + + Notes + ----- + The returned graph view is read-only (cannot modify the graph). + Yet the view reflects any changes in `G`. The intent is to mimic dict views. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_edge(1, 2, weight=0.3) + >>> G.add_edge(2, 3, weight=0.5) + >>> G.edges(data=True) + EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})]) + + The view exposes the attributes from the original graph. + + >>> viewG = nx.graphviews.generic_graph_view(G) + >>> viewG.edges(data=True) + EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})]) + + Changes to `G` are reflected in `viewG`. + + >>> G.remove_edge(2, 3) + >>> G.edges(data=True) + EdgeDataView([(1, 2, {'weight': 0.3})]) + + >>> viewG.edges(data=True) + EdgeDataView([(1, 2, {'weight': 0.3})]) + + We can change the graph type with the `create_using` parameter. + + >>> type(G) + <class 'networkx.classes.graph.Graph'> + >>> viewDG = nx.graphviews.generic_graph_view(G, create_using=nx.DiGraph) + >>> type(viewDG) + <class 'networkx.classes.digraph.DiGraph'> + """ + if create_using is None: + newG = G.__class__() + else: + newG = nx.empty_graph(0, create_using) + if G.is_multigraph() != newG.is_multigraph(): + raise NetworkXError("Multigraph for G must agree with create_using") + newG = nx.freeze(newG) + + # create view by assigning attributes from G + newG._graph = G + newG.graph = G.graph + + newG._node = G._node + if newG.is_directed(): + if G.is_directed(): + newG._succ = G._succ + newG._pred = G._pred + # newG._adj is synced with _succ + else: + newG._succ = G._adj + newG._pred = G._adj + # newG._adj is synced with _succ + elif G.is_directed(): + if G.is_multigraph(): + newG._adj = UnionMultiAdjacency(G._succ, G._pred) + else: + newG._adj = UnionAdjacency(G._succ, G._pred) + else: + newG._adj = G._adj + return newG + + +def subgraph_view(G, *, filter_node=no_filter, filter_edge=no_filter): + """View of `G` applying a filter on nodes and edges. + + `subgraph_view` provides a read-only view of the input graph that excludes + nodes and edges based on the outcome of two filter functions `filter_node` + and `filter_edge`. + + The `filter_node` function takes one argument --- the node --- and returns + `True` if the node should be included in the subgraph, and `False` if it + should not be included. + + The `filter_edge` function takes two (or three arguments if `G` is a + multi-graph) --- the nodes describing an edge, plus the edge-key if + parallel edges are possible --- and returns `True` if the edge should be + included in the subgraph, and `False` if it should not be included. + + Both node and edge filter functions are called on graph elements as they + are queried, meaning there is no up-front cost to creating the view. + + Parameters + ---------- + G : networkx.Graph + A directed/undirected graph/multigraph + + filter_node : callable, optional + A function taking a node as input, which returns `True` if the node + should appear in the view. + + filter_edge : callable, optional + A function taking as input the two nodes describing an edge (plus the + edge-key if `G` is a multi-graph), which returns `True` if the edge + should appear in the view. + + Returns + ------- + graph : networkx.Graph + A read-only graph view of the input graph. + + Examples + -------- + >>> G = nx.path_graph(6) + + Filter functions operate on the node, and return `True` if the node should + appear in the view: + + >>> def filter_node(n1): + ... return n1 != 5 + >>> view = nx.subgraph_view(G, filter_node=filter_node) + >>> view.nodes() + NodeView((0, 1, 2, 3, 4)) + + We can use a closure pattern to filter graph elements based on additional + data --- for example, filtering on edge data attached to the graph: + + >>> G[3][4]["cross_me"] = False + >>> def filter_edge(n1, n2): + ... return G[n1][n2].get("cross_me", True) + >>> view = nx.subgraph_view(G, filter_edge=filter_edge) + >>> view.edges() + EdgeView([(0, 1), (1, 2), (2, 3), (4, 5)]) + + >>> view = nx.subgraph_view( + ... G, + ... filter_node=filter_node, + ... filter_edge=filter_edge, + ... ) + >>> view.nodes() + NodeView((0, 1, 2, 3, 4)) + >>> view.edges() + EdgeView([(0, 1), (1, 2), (2, 3)]) + """ + newG = nx.freeze(G.__class__()) + newG._NODE_OK = filter_node + newG._EDGE_OK = filter_edge + + # create view by assigning attributes from G + newG._graph = G + newG.graph = G.graph + + newG._node = FilterAtlas(G._node, filter_node) + if G.is_multigraph(): + Adj = FilterMultiAdjacency + + def reverse_edge(u, v, k=None): + return filter_edge(v, u, k) + + else: + Adj = FilterAdjacency + + def reverse_edge(u, v, k=None): + return filter_edge(v, u) + + if G.is_directed(): + newG._succ = Adj(G._succ, filter_node, filter_edge) + newG._pred = Adj(G._pred, filter_node, reverse_edge) + # newG._adj is synced with _succ + else: + newG._adj = Adj(G._adj, filter_node, filter_edge) + return newG + + +@not_implemented_for("undirected") +def reverse_view(G): + """View of `G` with edge directions reversed + + `reverse_view` returns a read-only view of the input graph where + edge directions are reversed. + + Identical to digraph.reverse(copy=False) + + Parameters + ---------- + G : networkx.DiGraph + + Returns + ------- + graph : networkx.DiGraph + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_edge(1, 2) + >>> G.add_edge(2, 3) + >>> G.edges() + OutEdgeView([(1, 2), (2, 3)]) + + >>> view = nx.reverse_view(G) + >>> view.edges() + OutEdgeView([(2, 1), (3, 2)]) + """ + newG = generic_graph_view(G) + newG._succ, newG._pred = G._pred, G._succ + # newG._adj is synced with _succ + return newG |