diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/walks.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/walks.py | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/walks.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/walks.py new file mode 100644 index 00000000..0ef9dac1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/walks.py @@ -0,0 +1,79 @@ +"""Function for computing walks in a graph.""" + +import networkx as nx + +__all__ = ["number_of_walks"] + + +@nx._dispatchable +def number_of_walks(G, walk_length): + """Returns the number of walks connecting each pair of nodes in `G` + + A *walk* is a sequence of nodes in which each adjacent pair of nodes + in the sequence is adjacent in the graph. A walk can repeat the same + edge and go in the opposite direction just as people can walk on a + set of paths, but standing still is not counted as part of the walk. + + This function only counts the walks with `walk_length` edges. Note that + the number of nodes in the walk sequence is one more than `walk_length`. + The number of walks can grow very quickly on a larger graph + and with a larger walk length. + + Parameters + ---------- + G : NetworkX graph + + walk_length : int + A nonnegative integer representing the length of a walk. + + Returns + ------- + dict + A dictionary of dictionaries in which outer keys are source + nodes, inner keys are target nodes, and inner values are the + number of walks of length `walk_length` connecting those nodes. + + Raises + ------ + ValueError + If `walk_length` is negative + + Examples + -------- + + >>> G = nx.Graph([(0, 1), (1, 2)]) + >>> walks = nx.number_of_walks(G, 2) + >>> walks + {0: {0: 1, 1: 0, 2: 1}, 1: {0: 0, 1: 2, 2: 0}, 2: {0: 1, 1: 0, 2: 1}} + >>> total_walks = sum(sum(tgts.values()) for _, tgts in walks.items()) + + You can also get the number of walks from a specific source node using the + returned dictionary. For example, number of walks of length 1 from node 0 + can be found as follows: + + >>> walks = nx.number_of_walks(G, 1) + >>> walks[0] + {0: 0, 1: 1, 2: 0} + >>> sum(walks[0].values()) # walks from 0 of length 1 + 1 + + Similarly, a target node can also be specified: + + >>> walks[0][1] + 1 + + """ + import numpy as np + + if walk_length < 0: + raise ValueError(f"`walk_length` cannot be negative: {walk_length}") + + A = nx.adjacency_matrix(G, weight=None) + # TODO: Use matrix_power from scipy.sparse when available + # power = sp.sparse.linalg.matrix_power(A, walk_length) + power = np.linalg.matrix_power(A.toarray(), walk_length) + result = { + u: {v: power.item(u_idx, v_idx) for v_idx, v in enumerate(G)} + for u_idx, u in enumerate(G) + } + return result |