aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py624
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_coding.py114
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_decomposition.py79
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_mst.py918
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_operations.py53
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_recognition.py174
7 files changed, 1962 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/__init__.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py
new file mode 100644
index 00000000..e19ddee3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py
@@ -0,0 +1,624 @@
+import math
+from operator import itemgetter
+
+import pytest
+
+np = pytest.importorskip("numpy")
+
+import networkx as nx
+from networkx.algorithms.tree import branchings, recognition
+
+#
+# Explicitly discussed examples from Edmonds paper.
+#
+
+# Used in Figures A-F.
+#
+# fmt: off
+G_array = np.array([
+ # 0 1 2 3 4 5 6 7 8
+ [0, 0, 12, 0, 12, 0, 0, 0, 0], # 0
+ [4, 0, 0, 0, 0, 13, 0, 0, 0], # 1
+ [0, 17, 0, 21, 0, 12, 0, 0, 0], # 2
+ [5, 0, 0, 0, 17, 0, 18, 0, 0], # 3
+ [0, 0, 0, 0, 0, 0, 0, 12, 0], # 4
+ [0, 0, 0, 0, 0, 0, 14, 0, 12], # 5
+ [0, 0, 21, 0, 0, 0, 0, 0, 15], # 6
+ [0, 0, 0, 19, 0, 0, 15, 0, 0], # 7
+ [0, 0, 0, 0, 0, 0, 0, 18, 0], # 8
+], dtype=int)
+
+# Two copies of the graph from the original paper as disconnected components
+G_big_array = np.zeros(np.array(G_array.shape) * 2, dtype=int)
+G_big_array[:G_array.shape[0], :G_array.shape[1]] = G_array
+G_big_array[G_array.shape[0]:, G_array.shape[1]:] = G_array
+
+# fmt: on
+
+
+def G1():
+ G = nx.from_numpy_array(G_array, create_using=nx.MultiDiGraph)
+ return G
+
+
+def G2():
+ # Now we shift all the weights by -10.
+ # Should not affect optimal arborescence, but does affect optimal branching.
+ Garr = G_array.copy()
+ Garr[np.nonzero(Garr)] -= 10
+ G = nx.from_numpy_array(Garr, create_using=nx.MultiDiGraph)
+ return G
+
+
+# An optimal branching for G1 that is also a spanning arborescence. So it is
+# also an optimal spanning arborescence.
+#
+optimal_arborescence_1 = [
+ (0, 2, 12),
+ (2, 1, 17),
+ (2, 3, 21),
+ (1, 5, 13),
+ (3, 4, 17),
+ (3, 6, 18),
+ (6, 8, 15),
+ (8, 7, 18),
+]
+
+# For G2, the optimal branching of G1 (with shifted weights) is no longer
+# an optimal branching, but it is still an optimal spanning arborescence
+# (just with shifted weights). An optimal branching for G2 is similar to what
+# appears in figure G (this is greedy_subopt_branching_1a below), but with the
+# edge (3, 0, 5), which is now (3, 0, -5), removed. Thus, the optimal branching
+# is not a spanning arborescence. The code finds optimal_branching_2a.
+# An alternative and equivalent branching is optimal_branching_2b. We would
+# need to modify the code to iterate through all equivalent optimal branchings.
+#
+# These are maximal branchings or arborescences.
+optimal_branching_2a = [
+ (5, 6, 4),
+ (6, 2, 11),
+ (6, 8, 5),
+ (8, 7, 8),
+ (2, 1, 7),
+ (2, 3, 11),
+ (3, 4, 7),
+]
+optimal_branching_2b = [
+ (8, 7, 8),
+ (7, 3, 9),
+ (3, 4, 7),
+ (3, 6, 8),
+ (6, 2, 11),
+ (2, 1, 7),
+ (1, 5, 3),
+]
+optimal_arborescence_2 = [
+ (0, 2, 2),
+ (2, 1, 7),
+ (2, 3, 11),
+ (1, 5, 3),
+ (3, 4, 7),
+ (3, 6, 8),
+ (6, 8, 5),
+ (8, 7, 8),
+]
+
+# Two suboptimal maximal branchings on G1 obtained from a greedy algorithm.
+# 1a matches what is shown in Figure G in Edmonds's paper.
+greedy_subopt_branching_1a = [
+ (5, 6, 14),
+ (6, 2, 21),
+ (6, 8, 15),
+ (8, 7, 18),
+ (2, 1, 17),
+ (2, 3, 21),
+ (3, 0, 5),
+ (3, 4, 17),
+]
+greedy_subopt_branching_1b = [
+ (8, 7, 18),
+ (7, 6, 15),
+ (6, 2, 21),
+ (2, 1, 17),
+ (2, 3, 21),
+ (1, 5, 13),
+ (3, 0, 5),
+ (3, 4, 17),
+]
+
+
+def build_branching(edges, double=False):
+ G = nx.DiGraph()
+ for u, v, weight in edges:
+ G.add_edge(u, v, weight=weight)
+ if double:
+ G.add_edge(u + 9, v + 9, weight=weight)
+ return G
+
+
+def sorted_edges(G, attr="weight", default=1):
+ edges = [(u, v, data.get(attr, default)) for (u, v, data) in G.edges(data=True)]
+ edges = sorted(edges, key=lambda x: (x[2], x[1], x[0]))
+ return edges
+
+
+def assert_equal_branchings(G1, G2, attr="weight", default=1):
+ edges1 = list(G1.edges(data=True))
+ edges2 = list(G2.edges(data=True))
+ assert len(edges1) == len(edges2)
+
+ # Grab the weights only.
+ e1 = sorted_edges(G1, attr, default)
+ e2 = sorted_edges(G2, attr, default)
+
+ for a, b in zip(e1, e2):
+ assert a[:2] == b[:2]
+ np.testing.assert_almost_equal(a[2], b[2])
+
+
+################
+
+
+def test_optimal_branching1():
+ G = build_branching(optimal_arborescence_1)
+ assert recognition.is_arborescence(G), True
+ assert branchings.branching_weight(G) == 131
+
+
+def test_optimal_branching2a():
+ G = build_branching(optimal_branching_2a)
+ assert recognition.is_arborescence(G), True
+ assert branchings.branching_weight(G) == 53
+
+
+def test_optimal_branching2b():
+ G = build_branching(optimal_branching_2b)
+ assert recognition.is_arborescence(G), True
+ assert branchings.branching_weight(G) == 53
+
+
+def test_optimal_arborescence2():
+ G = build_branching(optimal_arborescence_2)
+ assert recognition.is_arborescence(G), True
+ assert branchings.branching_weight(G) == 51
+
+
+def test_greedy_suboptimal_branching1a():
+ G = build_branching(greedy_subopt_branching_1a)
+ assert recognition.is_arborescence(G), True
+ assert branchings.branching_weight(G) == 128
+
+
+def test_greedy_suboptimal_branching1b():
+ G = build_branching(greedy_subopt_branching_1b)
+ assert recognition.is_arborescence(G), True
+ assert branchings.branching_weight(G) == 127
+
+
+def test_greedy_max1():
+ # Standard test.
+ #
+ G = G1()
+ B = branchings.greedy_branching(G)
+ # There are only two possible greedy branchings. The sorting is such
+ # that it should equal the second suboptimal branching: 1b.
+ B_ = build_branching(greedy_subopt_branching_1b)
+ assert_equal_branchings(B, B_)
+
+
+def test_greedy_branching_kwarg_kind():
+ G = G1()
+ with pytest.raises(nx.NetworkXException, match="Unknown value for `kind`."):
+ B = branchings.greedy_branching(G, kind="lol")
+
+
+def test_greedy_branching_for_unsortable_nodes():
+ G = nx.DiGraph()
+ G.add_weighted_edges_from([((2, 3), 5, 1), (3, "a", 1), (2, 4, 5)])
+ edges = [(u, v, data.get("weight", 1)) for (u, v, data) in G.edges(data=True)]
+ with pytest.raises(TypeError):
+ edges.sort(key=itemgetter(2, 0, 1), reverse=True)
+ B = branchings.greedy_branching(G, kind="max").edges(data=True)
+ assert list(B) == [
+ ((2, 3), 5, {"weight": 1}),
+ (3, "a", {"weight": 1}),
+ (2, 4, {"weight": 5}),
+ ]
+
+
+def test_greedy_max2():
+ # Different default weight.
+ #
+ G = G1()
+ del G[1][0][0]["weight"]
+ B = branchings.greedy_branching(G, default=6)
+ # Chosen so that edge (3,0,5) is not selected and (1,0,6) is instead.
+
+ edges = [
+ (1, 0, 6),
+ (1, 5, 13),
+ (7, 6, 15),
+ (2, 1, 17),
+ (3, 4, 17),
+ (8, 7, 18),
+ (2, 3, 21),
+ (6, 2, 21),
+ ]
+ B_ = build_branching(edges)
+ assert_equal_branchings(B, B_)
+
+
+def test_greedy_max3():
+ # All equal weights.
+ #
+ G = G1()
+ B = branchings.greedy_branching(G, attr=None)
+
+ # This is mostly arbitrary...the output was generated by running the algo.
+ edges = [
+ (2, 1, 1),
+ (3, 0, 1),
+ (3, 4, 1),
+ (5, 8, 1),
+ (6, 2, 1),
+ (7, 3, 1),
+ (7, 6, 1),
+ (8, 7, 1),
+ ]
+ B_ = build_branching(edges)
+ assert_equal_branchings(B, B_, default=1)
+
+
+def test_greedy_min():
+ G = G1()
+ B = branchings.greedy_branching(G, kind="min")
+
+ edges = [
+ (1, 0, 4),
+ (0, 2, 12),
+ (0, 4, 12),
+ (2, 5, 12),
+ (4, 7, 12),
+ (5, 8, 12),
+ (5, 6, 14),
+ (7, 3, 19),
+ ]
+ B_ = build_branching(edges)
+ assert_equal_branchings(B, B_)
+
+
+def test_edmonds1_maxbranch():
+ G = G1()
+ x = branchings.maximum_branching(G)
+ x_ = build_branching(optimal_arborescence_1)
+ assert_equal_branchings(x, x_)
+
+
+def test_edmonds1_maxarbor():
+ G = G1()
+ x = branchings.maximum_spanning_arborescence(G)
+ x_ = build_branching(optimal_arborescence_1)
+ assert_equal_branchings(x, x_)
+
+
+def test_edmonds1_minimal_branching():
+ # graph will have something like a minimum arborescence but no spanning one
+ G = nx.from_numpy_array(G_big_array, create_using=nx.DiGraph)
+ B = branchings.minimal_branching(G)
+ edges = [
+ (3, 0, 5),
+ (0, 2, 12),
+ (0, 4, 12),
+ (2, 5, 12),
+ (4, 7, 12),
+ (5, 8, 12),
+ (5, 6, 14),
+ (2, 1, 17),
+ ]
+ B_ = build_branching(edges, double=True)
+ assert_equal_branchings(B, B_)
+
+
+def test_edmonds2_maxbranch():
+ G = G2()
+ x = branchings.maximum_branching(G)
+ x_ = build_branching(optimal_branching_2a)
+ assert_equal_branchings(x, x_)
+
+
+def test_edmonds2_maxarbor():
+ G = G2()
+ x = branchings.maximum_spanning_arborescence(G)
+ x_ = build_branching(optimal_arborescence_2)
+ assert_equal_branchings(x, x_)
+
+
+def test_edmonds2_minarbor():
+ G = G1()
+ x = branchings.minimum_spanning_arborescence(G)
+ # This was obtained from algorithm. Need to verify it independently.
+ # Branch weight is: 96
+ edges = [
+ (3, 0, 5),
+ (0, 2, 12),
+ (0, 4, 12),
+ (2, 5, 12),
+ (4, 7, 12),
+ (5, 8, 12),
+ (5, 6, 14),
+ (2, 1, 17),
+ ]
+ x_ = build_branching(edges)
+ assert_equal_branchings(x, x_)
+
+
+def test_edmonds3_minbranch1():
+ G = G1()
+ x = branchings.minimum_branching(G)
+ edges = []
+ x_ = build_branching(edges)
+ assert_equal_branchings(x, x_)
+
+
+def test_edmonds3_minbranch2():
+ G = G1()
+ G.add_edge(8, 9, weight=-10)
+ x = branchings.minimum_branching(G)
+ edges = [(8, 9, -10)]
+ x_ = build_branching(edges)
+ assert_equal_branchings(x, x_)
+
+
+# Need more tests
+
+
+def test_mst():
+ # Make sure we get the same results for undirected graphs.
+ # Example from: https://en.wikipedia.org/wiki/Kruskal's_algorithm
+ G = nx.Graph()
+ edgelist = [
+ (0, 3, [("weight", 5)]),
+ (0, 1, [("weight", 7)]),
+ (1, 3, [("weight", 9)]),
+ (1, 2, [("weight", 8)]),
+ (1, 4, [("weight", 7)]),
+ (3, 4, [("weight", 15)]),
+ (3, 5, [("weight", 6)]),
+ (2, 4, [("weight", 5)]),
+ (4, 5, [("weight", 8)]),
+ (4, 6, [("weight", 9)]),
+ (5, 6, [("weight", 11)]),
+ ]
+ G.add_edges_from(edgelist)
+ G = G.to_directed()
+ x = branchings.minimum_spanning_arborescence(G)
+
+ edges = [
+ ({0, 1}, 7),
+ ({0, 3}, 5),
+ ({3, 5}, 6),
+ ({1, 4}, 7),
+ ({4, 2}, 5),
+ ({4, 6}, 9),
+ ]
+
+ assert x.number_of_edges() == len(edges)
+ for u, v, d in x.edges(data=True):
+ assert ({u, v}, d["weight"]) in edges
+
+
+def test_mixed_nodetypes():
+ # Smoke test to make sure no TypeError is raised for mixed node types.
+ G = nx.Graph()
+ edgelist = [(0, 3, [("weight", 5)]), (0, "1", [("weight", 5)])]
+ G.add_edges_from(edgelist)
+ G = G.to_directed()
+ x = branchings.minimum_spanning_arborescence(G)
+
+
+def test_edmonds1_minbranch():
+ # Using -G_array and min should give the same as optimal_arborescence_1,
+ # but with all edges negative.
+ edges = [(u, v, -w) for (u, v, w) in optimal_arborescence_1]
+
+ G = nx.from_numpy_array(-G_array, create_using=nx.DiGraph)
+
+ # Quickly make sure max branching is empty.
+ x = branchings.maximum_branching(G)
+ x_ = build_branching([])
+ assert_equal_branchings(x, x_)
+
+ # Now test the min branching.
+ x = branchings.minimum_branching(G)
+ x_ = build_branching(edges)
+ assert_equal_branchings(x, x_)
+
+
+def test_edge_attribute_preservation_normal_graph():
+ # Test that edge attributes are preserved when finding an optimum graph
+ # using the Edmonds class for normal graphs.
+ G = nx.Graph()
+
+ edgelist = [
+ (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]),
+ (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]),
+ (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]),
+ ]
+ G.add_edges_from(edgelist)
+
+ B = branchings.maximum_branching(G, preserve_attrs=True)
+
+ assert B[0][1]["otherattr"] == 1
+ assert B[0][1]["otherattr2"] == 3
+
+
+def test_edge_attribute_preservation_multigraph():
+ # Test that edge attributes are preserved when finding an optimum graph
+ # using the Edmonds class for multigraphs.
+ G = nx.MultiGraph()
+
+ edgelist = [
+ (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]),
+ (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]),
+ (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]),
+ ]
+ G.add_edges_from(edgelist * 2) # Make sure we have duplicate edge paths
+
+ B = branchings.maximum_branching(G, preserve_attrs=True)
+
+ assert B[0][1][0]["otherattr"] == 1
+ assert B[0][1][0]["otherattr2"] == 3
+
+
+def test_edge_attribute_discard():
+ # Test that edge attributes are discarded if we do not specify to keep them
+ G = nx.Graph()
+
+ edgelist = [
+ (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]),
+ (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]),
+ (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]),
+ ]
+ G.add_edges_from(edgelist)
+
+ B = branchings.maximum_branching(G, preserve_attrs=False)
+
+ edge_dict = B[0][1]
+ with pytest.raises(KeyError):
+ _ = edge_dict["otherattr"]
+
+
+def test_partition_spanning_arborescence():
+ """
+ Test that we can generate minimum spanning arborescences which respect the
+ given partition.
+ """
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
+ G[3][0]["partition"] = nx.EdgePartition.EXCLUDED
+ G[2][3]["partition"] = nx.EdgePartition.INCLUDED
+ G[7][3]["partition"] = nx.EdgePartition.EXCLUDED
+ G[0][2]["partition"] = nx.EdgePartition.EXCLUDED
+ G[6][2]["partition"] = nx.EdgePartition.INCLUDED
+
+ actual_edges = [
+ (0, 4, 12),
+ (1, 0, 4),
+ (1, 5, 13),
+ (2, 3, 21),
+ (4, 7, 12),
+ (5, 6, 14),
+ (5, 8, 12),
+ (6, 2, 21),
+ ]
+
+ B = branchings.minimum_spanning_arborescence(G, partition="partition")
+ assert_equal_branchings(build_branching(actual_edges), B)
+
+
+def test_arborescence_iterator_min():
+ """
+ Tests the arborescence iterator.
+
+ A brute force method found 680 arborescences in this graph.
+ This test will not verify all of them individually, but will check two
+ things
+
+ * The iterator returns 680 arborescences
+ * The weight of the arborescences is non-strictly increasing
+
+ for more information please visit
+ https://mjschwenne.github.io/2021/06/10/implementing-the-iterators.html
+ """
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
+
+ arborescence_count = 0
+ arborescence_weight = -math.inf
+ for B in branchings.ArborescenceIterator(G):
+ arborescence_count += 1
+ new_arborescence_weight = B.size(weight="weight")
+ assert new_arborescence_weight >= arborescence_weight
+ arborescence_weight = new_arborescence_weight
+
+ assert arborescence_count == 680
+
+
+def test_arborescence_iterator_max():
+ """
+ Tests the arborescence iterator.
+
+ A brute force method found 680 arborescences in this graph.
+ This test will not verify all of them individually, but will check two
+ things
+
+ * The iterator returns 680 arborescences
+ * The weight of the arborescences is non-strictly decreasing
+
+ for more information please visit
+ https://mjschwenne.github.io/2021/06/10/implementing-the-iterators.html
+ """
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
+
+ arborescence_count = 0
+ arborescence_weight = math.inf
+ for B in branchings.ArborescenceIterator(G, minimum=False):
+ arborescence_count += 1
+ new_arborescence_weight = B.size(weight="weight")
+ assert new_arborescence_weight <= arborescence_weight
+ arborescence_weight = new_arborescence_weight
+
+ assert arborescence_count == 680
+
+
+def test_arborescence_iterator_initial_partition():
+ """
+ Tests the arborescence iterator with three included edges and three excluded
+ in the initial partition.
+
+ A brute force method similar to the one used in the above tests found that
+ there are 16 arborescences which contain the included edges and not the
+ excluded edges.
+ """
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
+ included_edges = [(1, 0), (5, 6), (8, 7)]
+ excluded_edges = [(0, 2), (3, 6), (1, 5)]
+
+ arborescence_count = 0
+ arborescence_weight = -math.inf
+ for B in branchings.ArborescenceIterator(
+ G, init_partition=(included_edges, excluded_edges)
+ ):
+ arborescence_count += 1
+ new_arborescence_weight = B.size(weight="weight")
+ assert new_arborescence_weight >= arborescence_weight
+ arborescence_weight = new_arborescence_weight
+ for e in included_edges:
+ assert e in B.edges
+ for e in excluded_edges:
+ assert e not in B.edges
+ assert arborescence_count == 16
+
+
+def test_branchings_with_default_weights():
+ """
+ Tests that various branching algorithms work on graphs without weights.
+ For more information, see issue #7279.
+ """
+ graph = nx.erdos_renyi_graph(10, p=0.2, directed=True, seed=123)
+
+ assert all(
+ "weight" not in d for (u, v, d) in graph.edges(data=True)
+ ), "test is for graphs without a weight attribute"
+
+ # Calling these functions will modify graph inplace to add weights
+ # copy the graph to avoid this.
+ nx.minimum_spanning_arborescence(graph.copy())
+ nx.maximum_spanning_arborescence(graph.copy())
+ nx.minimum_branching(graph.copy())
+ nx.maximum_branching(graph.copy())
+ nx.algorithms.tree.minimal_branching(graph.copy())
+ nx.algorithms.tree.branching_weight(graph.copy())
+ nx.algorithms.tree.greedy_branching(graph.copy())
+
+ assert all(
+ "weight" not in d for (u, v, d) in graph.edges(data=True)
+ ), "The above calls should not modify the initial graph in-place"
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_coding.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_coding.py
new file mode 100644
index 00000000..26bd4083
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_coding.py
@@ -0,0 +1,114 @@
+"""Unit tests for the :mod:`~networkx.algorithms.tree.coding` module."""
+
+from itertools import product
+
+import pytest
+
+import networkx as nx
+from networkx.utils import edges_equal, nodes_equal
+
+
+class TestPruferSequence:
+ """Unit tests for the Prüfer sequence encoding and decoding
+ functions.
+
+ """
+
+ def test_nontree(self):
+ with pytest.raises(nx.NotATree):
+ G = nx.cycle_graph(3)
+ nx.to_prufer_sequence(G)
+
+ def test_null_graph(self):
+ with pytest.raises(nx.NetworkXPointlessConcept):
+ nx.to_prufer_sequence(nx.null_graph())
+
+ def test_trivial_graph(self):
+ with pytest.raises(nx.NetworkXPointlessConcept):
+ nx.to_prufer_sequence(nx.trivial_graph())
+
+ def test_bad_integer_labels(self):
+ with pytest.raises(KeyError):
+ T = nx.Graph(nx.utils.pairwise("abc"))
+ nx.to_prufer_sequence(T)
+
+ def test_encoding(self):
+ """Tests for encoding a tree as a Prüfer sequence using the
+ iterative strategy.
+
+ """
+ # Example from Wikipedia.
+ tree = nx.Graph([(0, 3), (1, 3), (2, 3), (3, 4), (4, 5)])
+ sequence = nx.to_prufer_sequence(tree)
+ assert sequence == [3, 3, 3, 4]
+
+ def test_decoding(self):
+ """Tests for decoding a tree from a Prüfer sequence."""
+ # Example from Wikipedia.
+ sequence = [3, 3, 3, 4]
+ tree = nx.from_prufer_sequence(sequence)
+ assert nodes_equal(list(tree), list(range(6)))
+ edges = [(0, 3), (1, 3), (2, 3), (3, 4), (4, 5)]
+ assert edges_equal(list(tree.edges()), edges)
+
+ def test_decoding2(self):
+ # Example from "An Optimal Algorithm for Prufer Codes".
+ sequence = [2, 4, 0, 1, 3, 3]
+ tree = nx.from_prufer_sequence(sequence)
+ assert nodes_equal(list(tree), list(range(8)))
+ edges = [(0, 1), (0, 4), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7)]
+ assert edges_equal(list(tree.edges()), edges)
+
+ def test_inverse(self):
+ """Tests that the encoding and decoding functions are inverses."""
+ for T in nx.nonisomorphic_trees(4):
+ T2 = nx.from_prufer_sequence(nx.to_prufer_sequence(T))
+ assert nodes_equal(list(T), list(T2))
+ assert edges_equal(list(T.edges()), list(T2.edges()))
+
+ for seq in product(range(4), repeat=2):
+ seq2 = nx.to_prufer_sequence(nx.from_prufer_sequence(seq))
+ assert list(seq) == seq2
+
+
+class TestNestedTuple:
+ """Unit tests for the nested tuple encoding and decoding functions."""
+
+ def test_nontree(self):
+ with pytest.raises(nx.NotATree):
+ G = nx.cycle_graph(3)
+ nx.to_nested_tuple(G, 0)
+
+ def test_unknown_root(self):
+ with pytest.raises(nx.NodeNotFound):
+ G = nx.path_graph(2)
+ nx.to_nested_tuple(G, "bogus")
+
+ def test_encoding(self):
+ T = nx.full_rary_tree(2, 2**3 - 1)
+ expected = (((), ()), ((), ()))
+ actual = nx.to_nested_tuple(T, 0)
+ assert nodes_equal(expected, actual)
+
+ def test_canonical_form(self):
+ T = nx.Graph()
+ T.add_edges_from([(0, 1), (0, 2), (0, 3)])
+ T.add_edges_from([(1, 4), (1, 5)])
+ T.add_edges_from([(3, 6), (3, 7)])
+ root = 0
+ actual = nx.to_nested_tuple(T, root, canonical_form=True)
+ expected = ((), ((), ()), ((), ()))
+ assert actual == expected
+
+ def test_decoding(self):
+ balanced = (((), ()), ((), ()))
+ expected = nx.full_rary_tree(2, 2**3 - 1)
+ actual = nx.from_nested_tuple(balanced)
+ assert nx.is_isomorphic(expected, actual)
+
+ def test_sensible_relabeling(self):
+ balanced = (((), ()), ((), ()))
+ T = nx.from_nested_tuple(balanced, sensible_relabeling=True)
+ edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]
+ assert nodes_equal(list(T), list(range(2**3 - 1)))
+ assert edges_equal(list(T.edges()), edges)
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_decomposition.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_decomposition.py
new file mode 100644
index 00000000..8c376053
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_decomposition.py
@@ -0,0 +1,79 @@
+import networkx as nx
+from networkx.algorithms.tree.decomposition import junction_tree
+
+
+def test_junction_tree_directed_confounders():
+ B = nx.DiGraph()
+ B.add_edges_from([("A", "C"), ("B", "C"), ("C", "D"), ("C", "E")])
+
+ G = junction_tree(B)
+ J = nx.Graph()
+ J.add_edges_from(
+ [
+ (("C", "E"), ("C",)),
+ (("C",), ("A", "B", "C")),
+ (("A", "B", "C"), ("C",)),
+ (("C",), ("C", "D")),
+ ]
+ )
+
+ assert nx.is_isomorphic(G, J)
+
+
+def test_junction_tree_directed_unconnected_nodes():
+ B = nx.DiGraph()
+ B.add_nodes_from([("A", "B", "C", "D")])
+ G = junction_tree(B)
+
+ J = nx.Graph()
+ J.add_nodes_from([("A", "B", "C", "D")])
+
+ assert nx.is_isomorphic(G, J)
+
+
+def test_junction_tree_directed_cascade():
+ B = nx.DiGraph()
+ B.add_edges_from([("A", "B"), ("B", "C"), ("C", "D")])
+ G = junction_tree(B)
+
+ J = nx.Graph()
+ J.add_edges_from(
+ [
+ (("A", "B"), ("B",)),
+ (("B",), ("B", "C")),
+ (("B", "C"), ("C",)),
+ (("C",), ("C", "D")),
+ ]
+ )
+ assert nx.is_isomorphic(G, J)
+
+
+def test_junction_tree_directed_unconnected_edges():
+ B = nx.DiGraph()
+ B.add_edges_from([("A", "B"), ("C", "D"), ("E", "F")])
+ G = junction_tree(B)
+
+ J = nx.Graph()
+ J.add_nodes_from([("A", "B"), ("C", "D"), ("E", "F")])
+
+ assert nx.is_isomorphic(G, J)
+
+
+def test_junction_tree_undirected():
+ B = nx.Graph()
+ B.add_edges_from([("A", "C"), ("A", "D"), ("B", "C"), ("C", "E")])
+ G = junction_tree(B)
+
+ J = nx.Graph()
+ J.add_edges_from(
+ [
+ (("A", "D"), ("A",)),
+ (("A",), ("A", "C")),
+ (("A", "C"), ("C",)),
+ (("C",), ("B", "C")),
+ (("B", "C"), ("C",)),
+ (("C",), ("C", "E")),
+ ]
+ )
+
+ assert nx.is_isomorphic(G, J)
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_mst.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_mst.py
new file mode 100644
index 00000000..f8945a71
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_mst.py
@@ -0,0 +1,918 @@
+"""Unit tests for the :mod:`networkx.algorithms.tree.mst` module."""
+
+import pytest
+
+import networkx as nx
+from networkx.utils import edges_equal, nodes_equal
+
+
+def test_unknown_algorithm():
+ with pytest.raises(ValueError):
+ nx.minimum_spanning_tree(nx.Graph(), algorithm="random")
+ with pytest.raises(
+ ValueError, match="random is not a valid choice for an algorithm."
+ ):
+ nx.maximum_spanning_edges(nx.Graph(), algorithm="random")
+
+
+class MinimumSpanningTreeTestBase:
+ """Base class for test classes for minimum spanning tree algorithms.
+ This class contains some common tests that will be inherited by
+ subclasses. Each subclass must have a class attribute
+ :data:`algorithm` that is a string representing the algorithm to
+ run, as described under the ``algorithm`` keyword argument for the
+ :func:`networkx.minimum_spanning_edges` function. Subclasses can
+ then implement any algorithm-specific tests.
+ """
+
+ def setup_method(self, method):
+ """Creates an example graph and stores the expected minimum and
+ maximum spanning tree edges.
+ """
+ # This stores the class attribute `algorithm` in an instance attribute.
+ self.algo = self.algorithm
+ # This example graph comes from Wikipedia:
+ # https://en.wikipedia.org/wiki/Kruskal's_algorithm
+ edges = [
+ (0, 1, 7),
+ (0, 3, 5),
+ (1, 2, 8),
+ (1, 3, 9),
+ (1, 4, 7),
+ (2, 4, 5),
+ (3, 4, 15),
+ (3, 5, 6),
+ (4, 5, 8),
+ (4, 6, 9),
+ (5, 6, 11),
+ ]
+ self.G = nx.Graph()
+ self.G.add_weighted_edges_from(edges)
+ self.minimum_spanning_edgelist = [
+ (0, 1, {"weight": 7}),
+ (0, 3, {"weight": 5}),
+ (1, 4, {"weight": 7}),
+ (2, 4, {"weight": 5}),
+ (3, 5, {"weight": 6}),
+ (4, 6, {"weight": 9}),
+ ]
+ self.maximum_spanning_edgelist = [
+ (0, 1, {"weight": 7}),
+ (1, 2, {"weight": 8}),
+ (1, 3, {"weight": 9}),
+ (3, 4, {"weight": 15}),
+ (4, 6, {"weight": 9}),
+ (5, 6, {"weight": 11}),
+ ]
+
+ def test_minimum_edges(self):
+ edges = nx.minimum_spanning_edges(self.G, algorithm=self.algo)
+ # Edges from the spanning edges functions don't come in sorted
+ # orientation, so we need to sort each edge individually.
+ actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges)
+ assert edges_equal(actual, self.minimum_spanning_edgelist)
+
+ def test_maximum_edges(self):
+ edges = nx.maximum_spanning_edges(self.G, algorithm=self.algo)
+ # Edges from the spanning edges functions don't come in sorted
+ # orientation, so we need to sort each edge individually.
+ actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges)
+ assert edges_equal(actual, self.maximum_spanning_edgelist)
+
+ def test_without_data(self):
+ edges = nx.minimum_spanning_edges(self.G, algorithm=self.algo, data=False)
+ # Edges from the spanning edges functions don't come in sorted
+ # orientation, so we need to sort each edge individually.
+ actual = sorted((min(u, v), max(u, v)) for u, v in edges)
+ expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist]
+ assert edges_equal(actual, expected)
+
+ def test_nan_weights(self):
+ # Edge weights NaN never appear in the spanning tree. see #2164
+ G = self.G
+ G.add_edge(0, 12, weight=float("nan"))
+ edges = nx.minimum_spanning_edges(
+ G, algorithm=self.algo, data=False, ignore_nan=True
+ )
+ actual = sorted((min(u, v), max(u, v)) for u, v in edges)
+ expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist]
+ assert edges_equal(actual, expected)
+ # Now test for raising exception
+ edges = nx.minimum_spanning_edges(
+ G, algorithm=self.algo, data=False, ignore_nan=False
+ )
+ with pytest.raises(ValueError):
+ list(edges)
+ # test default for ignore_nan as False
+ edges = nx.minimum_spanning_edges(G, algorithm=self.algo, data=False)
+ with pytest.raises(ValueError):
+ list(edges)
+
+ def test_nan_weights_MultiGraph(self):
+ G = nx.MultiGraph()
+ G.add_edge(0, 12, weight=float("nan"))
+ edges = nx.minimum_spanning_edges(
+ G, algorithm="prim", data=False, ignore_nan=False
+ )
+ with pytest.raises(ValueError):
+ list(edges)
+ # test default for ignore_nan as False
+ edges = nx.minimum_spanning_edges(G, algorithm="prim", data=False)
+ with pytest.raises(ValueError):
+ list(edges)
+
+ def test_nan_weights_order(self):
+ # now try again with a nan edge at the beginning of G.nodes
+ edges = [
+ (0, 1, 7),
+ (0, 3, 5),
+ (1, 2, 8),
+ (1, 3, 9),
+ (1, 4, 7),
+ (2, 4, 5),
+ (3, 4, 15),
+ (3, 5, 6),
+ (4, 5, 8),
+ (4, 6, 9),
+ (5, 6, 11),
+ ]
+ G = nx.Graph()
+ G.add_weighted_edges_from([(u + 1, v + 1, wt) for u, v, wt in edges])
+ G.add_edge(0, 7, weight=float("nan"))
+ edges = nx.minimum_spanning_edges(
+ G, algorithm=self.algo, data=False, ignore_nan=True
+ )
+ actual = sorted((min(u, v), max(u, v)) for u, v in edges)
+ shift = [(u + 1, v + 1) for u, v, d in self.minimum_spanning_edgelist]
+ assert edges_equal(actual, shift)
+
+ def test_isolated_node(self):
+ # now try again with an isolated node
+ edges = [
+ (0, 1, 7),
+ (0, 3, 5),
+ (1, 2, 8),
+ (1, 3, 9),
+ (1, 4, 7),
+ (2, 4, 5),
+ (3, 4, 15),
+ (3, 5, 6),
+ (4, 5, 8),
+ (4, 6, 9),
+ (5, 6, 11),
+ ]
+ G = nx.Graph()
+ G.add_weighted_edges_from([(u + 1, v + 1, wt) for u, v, wt in edges])
+ G.add_node(0)
+ edges = nx.minimum_spanning_edges(
+ G, algorithm=self.algo, data=False, ignore_nan=True
+ )
+ actual = sorted((min(u, v), max(u, v)) for u, v in edges)
+ shift = [(u + 1, v + 1) for u, v, d in self.minimum_spanning_edgelist]
+ assert edges_equal(actual, shift)
+
+ def test_minimum_tree(self):
+ T = nx.minimum_spanning_tree(self.G, algorithm=self.algo)
+ actual = sorted(T.edges(data=True))
+ assert edges_equal(actual, self.minimum_spanning_edgelist)
+
+ def test_maximum_tree(self):
+ T = nx.maximum_spanning_tree(self.G, algorithm=self.algo)
+ actual = sorted(T.edges(data=True))
+ assert edges_equal(actual, self.maximum_spanning_edgelist)
+
+ def test_disconnected(self):
+ G = nx.Graph([(0, 1, {"weight": 1}), (2, 3, {"weight": 2})])
+ T = nx.minimum_spanning_tree(G, algorithm=self.algo)
+ assert nodes_equal(list(T), list(range(4)))
+ assert edges_equal(list(T.edges()), [(0, 1), (2, 3)])
+
+ def test_empty_graph(self):
+ G = nx.empty_graph(3)
+ T = nx.minimum_spanning_tree(G, algorithm=self.algo)
+ assert nodes_equal(sorted(T), list(range(3)))
+ assert T.number_of_edges() == 0
+
+ def test_attributes(self):
+ G = nx.Graph()
+ G.add_edge(1, 2, weight=1, color="red", distance=7)
+ G.add_edge(2, 3, weight=1, color="green", distance=2)
+ G.add_edge(1, 3, weight=10, color="blue", distance=1)
+ G.graph["foo"] = "bar"
+ T = nx.minimum_spanning_tree(G, algorithm=self.algo)
+ assert T.graph == G.graph
+ assert nodes_equal(T, G)
+ for u, v in T.edges():
+ assert T.adj[u][v] == G.adj[u][v]
+
+ def test_weight_attribute(self):
+ G = nx.Graph()
+ G.add_edge(0, 1, weight=1, distance=7)
+ G.add_edge(0, 2, weight=30, distance=1)
+ G.add_edge(1, 2, weight=1, distance=1)
+ G.add_node(3)
+ T = nx.minimum_spanning_tree(G, algorithm=self.algo, weight="distance")
+ assert nodes_equal(sorted(T), list(range(4)))
+ assert edges_equal(sorted(T.edges()), [(0, 2), (1, 2)])
+ T = nx.maximum_spanning_tree(G, algorithm=self.algo, weight="distance")
+ assert nodes_equal(sorted(T), list(range(4)))
+ assert edges_equal(sorted(T.edges()), [(0, 1), (0, 2)])
+
+
+class TestBoruvka(MinimumSpanningTreeTestBase):
+ """Unit tests for computing a minimum (or maximum) spanning tree
+ using Borůvka's algorithm.
+ """
+
+ algorithm = "boruvka"
+
+ def test_unicode_name(self):
+ """Tests that using a Unicode string can correctly indicate
+ Borůvka's algorithm.
+ """
+ edges = nx.minimum_spanning_edges(self.G, algorithm="borůvka")
+ # Edges from the spanning edges functions don't come in sorted
+ # orientation, so we need to sort each edge individually.
+ actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges)
+ assert edges_equal(actual, self.minimum_spanning_edgelist)
+
+
+class MultigraphMSTTestBase(MinimumSpanningTreeTestBase):
+ # Abstract class
+
+ def test_multigraph_keys_min(self):
+ """Tests that the minimum spanning edges of a multigraph
+ preserves edge keys.
+ """
+ G = nx.MultiGraph()
+ G.add_edge(0, 1, key="a", weight=2)
+ G.add_edge(0, 1, key="b", weight=1)
+ min_edges = nx.minimum_spanning_edges
+ mst_edges = min_edges(G, algorithm=self.algo, data=False)
+ assert edges_equal([(0, 1, "b")], list(mst_edges))
+
+ def test_multigraph_keys_max(self):
+ """Tests that the maximum spanning edges of a multigraph
+ preserves edge keys.
+ """
+ G = nx.MultiGraph()
+ G.add_edge(0, 1, key="a", weight=2)
+ G.add_edge(0, 1, key="b", weight=1)
+ max_edges = nx.maximum_spanning_edges
+ mst_edges = max_edges(G, algorithm=self.algo, data=False)
+ assert edges_equal([(0, 1, "a")], list(mst_edges))
+
+
+class TestKruskal(MultigraphMSTTestBase):
+ """Unit tests for computing a minimum (or maximum) spanning tree
+ using Kruskal's algorithm.
+ """
+
+ algorithm = "kruskal"
+
+ def test_key_data_bool(self):
+ """Tests that the keys and data values are included in
+ MST edges based on whether keys and data parameters are
+ true or false"""
+ G = nx.MultiGraph()
+ G.add_edge(1, 2, key=1, weight=2)
+ G.add_edge(1, 2, key=2, weight=3)
+ G.add_edge(3, 2, key=1, weight=2)
+ G.add_edge(3, 1, key=1, weight=4)
+
+ # keys are included and data is not included
+ mst_edges = nx.minimum_spanning_edges(
+ G, algorithm=self.algo, keys=True, data=False
+ )
+ assert edges_equal([(1, 2, 1), (2, 3, 1)], list(mst_edges))
+
+ # keys are not included and data is included
+ mst_edges = nx.minimum_spanning_edges(
+ G, algorithm=self.algo, keys=False, data=True
+ )
+ assert edges_equal(
+ [(1, 2, {"weight": 2}), (2, 3, {"weight": 2})], list(mst_edges)
+ )
+
+ # both keys and data are not included
+ mst_edges = nx.minimum_spanning_edges(
+ G, algorithm=self.algo, keys=False, data=False
+ )
+ assert edges_equal([(1, 2), (2, 3)], list(mst_edges))
+
+ # both keys and data are included
+ mst_edges = nx.minimum_spanning_edges(
+ G, algorithm=self.algo, keys=True, data=True
+ )
+ assert edges_equal(
+ [(1, 2, 1, {"weight": 2}), (2, 3, 1, {"weight": 2})], list(mst_edges)
+ )
+
+
+class TestPrim(MultigraphMSTTestBase):
+ """Unit tests for computing a minimum (or maximum) spanning tree
+ using Prim's algorithm.
+ """
+
+ algorithm = "prim"
+
+ def test_prim_mst_edges_simple_graph(self):
+ H = nx.Graph()
+ H.add_edge(1, 2, key=2, weight=3)
+ H.add_edge(3, 2, key=1, weight=2)
+ H.add_edge(3, 1, key=1, weight=4)
+
+ mst_edges = nx.minimum_spanning_edges(H, algorithm=self.algo, ignore_nan=True)
+ assert edges_equal(
+ [(1, 2, {"key": 2, "weight": 3}), (2, 3, {"key": 1, "weight": 2})],
+ list(mst_edges),
+ )
+
+ def test_ignore_nan(self):
+ """Tests that the edges with NaN weights are ignored or
+ raise an Error based on ignore_nan is true or false"""
+ H = nx.MultiGraph()
+ H.add_edge(1, 2, key=1, weight=float("nan"))
+ H.add_edge(1, 2, key=2, weight=3)
+ H.add_edge(3, 2, key=1, weight=2)
+ H.add_edge(3, 1, key=1, weight=4)
+
+ # NaN weight edges are ignored when ignore_nan=True
+ mst_edges = nx.minimum_spanning_edges(H, algorithm=self.algo, ignore_nan=True)
+ assert edges_equal(
+ [(1, 2, 2, {"weight": 3}), (2, 3, 1, {"weight": 2})], list(mst_edges)
+ )
+
+ # NaN weight edges raise Error when ignore_nan=False
+ with pytest.raises(ValueError):
+ list(nx.minimum_spanning_edges(H, algorithm=self.algo, ignore_nan=False))
+
+ def test_multigraph_keys_tree(self):
+ G = nx.MultiGraph()
+ G.add_edge(0, 1, key="a", weight=2)
+ G.add_edge(0, 1, key="b", weight=1)
+ T = nx.minimum_spanning_tree(G, algorithm=self.algo)
+ assert edges_equal([(0, 1, 1)], list(T.edges(data="weight")))
+
+ def test_multigraph_keys_tree_max(self):
+ G = nx.MultiGraph()
+ G.add_edge(0, 1, key="a", weight=2)
+ G.add_edge(0, 1, key="b", weight=1)
+ T = nx.maximum_spanning_tree(G, algorithm=self.algo)
+ assert edges_equal([(0, 1, 2)], list(T.edges(data="weight")))
+
+
+class TestSpanningTreeIterator:
+ """
+ Tests the spanning tree iterator on the example graph in the 2005 Sörensen
+ and Janssens paper An Algorithm to Generate all Spanning Trees of a Graph in
+ Order of Increasing Cost
+ """
+
+ def setup_method(self):
+ # Original Graph
+ edges = [(0, 1, 5), (1, 2, 4), (1, 4, 6), (2, 3, 5), (2, 4, 7), (3, 4, 3)]
+ self.G = nx.Graph()
+ self.G.add_weighted_edges_from(edges)
+ # List of lists of spanning trees in increasing order
+ self.spanning_trees = [
+ # 1, MST, cost = 17
+ [
+ (0, 1, {"weight": 5}),
+ (1, 2, {"weight": 4}),
+ (2, 3, {"weight": 5}),
+ (3, 4, {"weight": 3}),
+ ],
+ # 2, cost = 18
+ [
+ (0, 1, {"weight": 5}),
+ (1, 2, {"weight": 4}),
+ (1, 4, {"weight": 6}),
+ (3, 4, {"weight": 3}),
+ ],
+ # 3, cost = 19
+ [
+ (0, 1, {"weight": 5}),
+ (1, 4, {"weight": 6}),
+ (2, 3, {"weight": 5}),
+ (3, 4, {"weight": 3}),
+ ],
+ # 4, cost = 19
+ [
+ (0, 1, {"weight": 5}),
+ (1, 2, {"weight": 4}),
+ (2, 4, {"weight": 7}),
+ (3, 4, {"weight": 3}),
+ ],
+ # 5, cost = 20
+ [
+ (0, 1, {"weight": 5}),
+ (1, 2, {"weight": 4}),
+ (1, 4, {"weight": 6}),
+ (2, 3, {"weight": 5}),
+ ],
+ # 6, cost = 21
+ [
+ (0, 1, {"weight": 5}),
+ (1, 4, {"weight": 6}),
+ (2, 4, {"weight": 7}),
+ (3, 4, {"weight": 3}),
+ ],
+ # 7, cost = 21
+ [
+ (0, 1, {"weight": 5}),
+ (1, 2, {"weight": 4}),
+ (2, 3, {"weight": 5}),
+ (2, 4, {"weight": 7}),
+ ],
+ # 8, cost = 23
+ [
+ (0, 1, {"weight": 5}),
+ (1, 4, {"weight": 6}),
+ (2, 3, {"weight": 5}),
+ (2, 4, {"weight": 7}),
+ ],
+ ]
+
+ def test_minimum_spanning_tree_iterator(self):
+ """
+ Tests that the spanning trees are correctly returned in increasing order
+ """
+ tree_index = 0
+ for tree in nx.SpanningTreeIterator(self.G):
+ actual = sorted(tree.edges(data=True))
+ assert edges_equal(actual, self.spanning_trees[tree_index])
+ tree_index += 1
+
+ def test_maximum_spanning_tree_iterator(self):
+ """
+ Tests that the spanning trees are correctly returned in decreasing order
+ """
+ tree_index = 7
+ for tree in nx.SpanningTreeIterator(self.G, minimum=False):
+ actual = sorted(tree.edges(data=True))
+ assert edges_equal(actual, self.spanning_trees[tree_index])
+ tree_index -= 1
+
+
+class TestSpanningTreeMultiGraphIterator:
+ """
+ Uses the same graph as the above class but with an added edge of twice the weight.
+ """
+
+ def setup_method(self):
+ # New graph
+ edges = [
+ (0, 1, 5),
+ (0, 1, 10),
+ (1, 2, 4),
+ (1, 2, 8),
+ (1, 4, 6),
+ (1, 4, 12),
+ (2, 3, 5),
+ (2, 3, 10),
+ (2, 4, 7),
+ (2, 4, 14),
+ (3, 4, 3),
+ (3, 4, 6),
+ ]
+ self.G = nx.MultiGraph()
+ self.G.add_weighted_edges_from(edges)
+
+ # There are 128 trees. I'd rather not list all 128 here, and computing them
+ # on such a small graph actually doesn't take that long.
+ from itertools import combinations
+
+ self.spanning_trees = []
+ for e in combinations(self.G.edges, 4):
+ tree = self.G.edge_subgraph(e)
+ if nx.is_tree(tree):
+ self.spanning_trees.append(sorted(tree.edges(keys=True, data=True)))
+
+ def test_minimum_spanning_tree_iterator_multigraph(self):
+ """
+ Tests that the spanning trees are correctly returned in increasing order
+ """
+ tree_index = 0
+ last_weight = 0
+ for tree in nx.SpanningTreeIterator(self.G):
+ actual = sorted(tree.edges(keys=True, data=True))
+ weight = sum([e[3]["weight"] for e in actual])
+ assert actual in self.spanning_trees
+ assert weight >= last_weight
+ tree_index += 1
+
+ def test_maximum_spanning_tree_iterator_multigraph(self):
+ """
+ Tests that the spanning trees are correctly returned in decreasing order
+ """
+ tree_index = 127
+ # Maximum weight tree is 46
+ last_weight = 50
+ for tree in nx.SpanningTreeIterator(self.G, minimum=False):
+ actual = sorted(tree.edges(keys=True, data=True))
+ weight = sum([e[3]["weight"] for e in actual])
+ assert actual in self.spanning_trees
+ assert weight <= last_weight
+ tree_index -= 1
+
+
+def test_random_spanning_tree_multiplicative_small():
+ """
+ Using a fixed seed, sample one tree for repeatability.
+ """
+ from math import exp
+
+ pytest.importorskip("scipy")
+
+ gamma = {
+ (0, 1): -0.6383,
+ (0, 2): -0.6827,
+ (0, 5): 0,
+ (1, 2): -1.0781,
+ (1, 4): 0,
+ (2, 3): 0,
+ (5, 3): -0.2820,
+ (5, 4): -0.3327,
+ (4, 3): -0.9927,
+ }
+
+ # The undirected support of gamma
+ G = nx.Graph()
+ for u, v in gamma:
+ G.add_edge(u, v, lambda_key=exp(gamma[(u, v)]))
+
+ solution_edges = [(2, 3), (3, 4), (0, 5), (5, 4), (4, 1)]
+ solution = nx.Graph()
+ solution.add_edges_from(solution_edges)
+
+ sampled_tree = nx.random_spanning_tree(G, "lambda_key", seed=42)
+
+ assert nx.utils.edges_equal(solution.edges, sampled_tree.edges)
+
+
+@pytest.mark.slow
+def test_random_spanning_tree_multiplicative_large():
+ """
+ Sample many trees from the distribution created in the last test
+ """
+ from math import exp
+ from random import Random
+
+ pytest.importorskip("numpy")
+ stats = pytest.importorskip("scipy.stats")
+
+ gamma = {
+ (0, 1): -0.6383,
+ (0, 2): -0.6827,
+ (0, 5): 0,
+ (1, 2): -1.0781,
+ (1, 4): 0,
+ (2, 3): 0,
+ (5, 3): -0.2820,
+ (5, 4): -0.3327,
+ (4, 3): -0.9927,
+ }
+
+ # The undirected support of gamma
+ G = nx.Graph()
+ for u, v in gamma:
+ G.add_edge(u, v, lambda_key=exp(gamma[(u, v)]))
+
+ # Find the multiplicative weight for each tree.
+ total_weight = 0
+ tree_expected = {}
+ for t in nx.SpanningTreeIterator(G):
+ # Find the multiplicative weight of the spanning tree
+ weight = 1
+ for u, v, d in t.edges(data="lambda_key"):
+ weight *= d
+ tree_expected[t] = weight
+ total_weight += weight
+
+ # Assert that every tree has an entry in the expected distribution
+ assert len(tree_expected) == 75
+
+ # Set the sample size and then calculate the expected number of times we
+ # expect to see each tree. This test uses a near minimum sample size where
+ # the most unlikely tree has an expected frequency of 5.15.
+ # (Minimum required is 5)
+ #
+ # Here we also initialize the tree_actual dict so that we know the keys
+ # match between the two. We will later take advantage of the fact that since
+ # python 3.7 dict order is guaranteed so the expected and actual data will
+ # have the same order.
+ sample_size = 1200
+ tree_actual = {}
+ for t in tree_expected:
+ tree_expected[t] = (tree_expected[t] / total_weight) * sample_size
+ tree_actual[t] = 0
+
+ # Sample the spanning trees
+ #
+ # Assert that they are actually trees and record which of the 75 trees we
+ # have sampled.
+ #
+ # For repeatability, we want to take advantage of the decorators in NetworkX
+ # to randomly sample the same sample each time. However, if we pass in a
+ # constant seed to sample_spanning_tree we will get the same tree each time.
+ # Instead, we can create our own random number generator with a fixed seed
+ # and pass those into sample_spanning_tree.
+ rng = Random(37)
+ for _ in range(sample_size):
+ sampled_tree = nx.random_spanning_tree(G, "lambda_key", seed=rng)
+ assert nx.is_tree(sampled_tree)
+
+ for t in tree_expected:
+ if nx.utils.edges_equal(t.edges, sampled_tree.edges):
+ tree_actual[t] += 1
+ break
+
+ # Conduct a Chi squared test to see if the actual distribution matches the
+ # expected one at an alpha = 0.05 significance level.
+ #
+ # H_0: The distribution of trees in tree_actual matches the normalized product
+ # of the edge weights in the tree.
+ #
+ # H_a: The distribution of trees in tree_actual follows some other
+ # distribution of spanning trees.
+ _, p = stats.chisquare(list(tree_actual.values()), list(tree_expected.values()))
+
+ # Assert that p is greater than the significance level so that we do not
+ # reject the null hypothesis
+ assert not p < 0.05
+
+
+def test_random_spanning_tree_additive_small():
+ """
+ Sample a single spanning tree from the additive method.
+ """
+ pytest.importorskip("scipy")
+
+ edges = {
+ (0, 1): 1,
+ (0, 2): 1,
+ (0, 5): 3,
+ (1, 2): 2,
+ (1, 4): 3,
+ (2, 3): 3,
+ (5, 3): 4,
+ (5, 4): 5,
+ (4, 3): 4,
+ }
+
+ # Build the graph
+ G = nx.Graph()
+ for u, v in edges:
+ G.add_edge(u, v, weight=edges[(u, v)])
+
+ solution_edges = [(0, 2), (1, 2), (2, 3), (3, 4), (3, 5)]
+ solution = nx.Graph()
+ solution.add_edges_from(solution_edges)
+
+ sampled_tree = nx.random_spanning_tree(
+ G, weight="weight", multiplicative=False, seed=37
+ )
+
+ assert nx.utils.edges_equal(solution.edges, sampled_tree.edges)
+
+
+@pytest.mark.slow
+def test_random_spanning_tree_additive_large():
+ """
+ Sample many spanning trees from the additive method.
+ """
+ from random import Random
+
+ pytest.importorskip("numpy")
+ stats = pytest.importorskip("scipy.stats")
+
+ edges = {
+ (0, 1): 1,
+ (0, 2): 1,
+ (0, 5): 3,
+ (1, 2): 2,
+ (1, 4): 3,
+ (2, 3): 3,
+ (5, 3): 4,
+ (5, 4): 5,
+ (4, 3): 4,
+ }
+
+ # Build the graph
+ G = nx.Graph()
+ for u, v in edges:
+ G.add_edge(u, v, weight=edges[(u, v)])
+
+ # Find the additive weight for each tree.
+ total_weight = 0
+ tree_expected = {}
+ for t in nx.SpanningTreeIterator(G):
+ # Find the multiplicative weight of the spanning tree
+ weight = 0
+ for u, v, d in t.edges(data="weight"):
+ weight += d
+ tree_expected[t] = weight
+ total_weight += weight
+
+ # Assert that every tree has an entry in the expected distribution
+ assert len(tree_expected) == 75
+
+ # Set the sample size and then calculate the expected number of times we
+ # expect to see each tree. This test uses a near minimum sample size where
+ # the most unlikely tree has an expected frequency of 5.07.
+ # (Minimum required is 5)
+ #
+ # Here we also initialize the tree_actual dict so that we know the keys
+ # match between the two. We will later take advantage of the fact that since
+ # python 3.7 dict order is guaranteed so the expected and actual data will
+ # have the same order.
+ sample_size = 500
+ tree_actual = {}
+ for t in tree_expected:
+ tree_expected[t] = (tree_expected[t] / total_weight) * sample_size
+ tree_actual[t] = 0
+
+ # Sample the spanning trees
+ #
+ # Assert that they are actually trees and record which of the 75 trees we
+ # have sampled.
+ #
+ # For repeatability, we want to take advantage of the decorators in NetworkX
+ # to randomly sample the same sample each time. However, if we pass in a
+ # constant seed to sample_spanning_tree we will get the same tree each time.
+ # Instead, we can create our own random number generator with a fixed seed
+ # and pass those into sample_spanning_tree.
+ rng = Random(37)
+ for _ in range(sample_size):
+ sampled_tree = nx.random_spanning_tree(
+ G, "weight", multiplicative=False, seed=rng
+ )
+ assert nx.is_tree(sampled_tree)
+
+ for t in tree_expected:
+ if nx.utils.edges_equal(t.edges, sampled_tree.edges):
+ tree_actual[t] += 1
+ break
+
+ # Conduct a Chi squared test to see if the actual distribution matches the
+ # expected one at an alpha = 0.05 significance level.
+ #
+ # H_0: The distribution of trees in tree_actual matches the normalized product
+ # of the edge weights in the tree.
+ #
+ # H_a: The distribution of trees in tree_actual follows some other
+ # distribution of spanning trees.
+ _, p = stats.chisquare(list(tree_actual.values()), list(tree_expected.values()))
+
+ # Assert that p is greater than the significance level so that we do not
+ # reject the null hypothesis
+ assert not p < 0.05
+
+
+def test_random_spanning_tree_empty_graph():
+ G = nx.Graph()
+ rst = nx.tree.random_spanning_tree(G)
+ assert len(rst.nodes) == 0
+ assert len(rst.edges) == 0
+
+
+def test_random_spanning_tree_single_node_graph():
+ G = nx.Graph()
+ G.add_node(0)
+ rst = nx.tree.random_spanning_tree(G)
+ assert len(rst.nodes) == 1
+ assert len(rst.edges) == 0
+
+
+def test_random_spanning_tree_single_node_loop():
+ G = nx.Graph()
+ G.add_node(0)
+ G.add_edge(0, 0)
+ rst = nx.tree.random_spanning_tree(G)
+ assert len(rst.nodes) == 1
+ assert len(rst.edges) == 0
+
+
+class TestNumberSpanningTrees:
+ @classmethod
+ def setup_class(cls):
+ global np
+ np = pytest.importorskip("numpy")
+ sp = pytest.importorskip("scipy")
+
+ def test_nst_disconnected(self):
+ G = nx.empty_graph(2)
+ assert np.isclose(nx.number_of_spanning_trees(G), 0)
+
+ def test_nst_no_nodes(self):
+ G = nx.Graph()
+ with pytest.raises(nx.NetworkXPointlessConcept):
+ nx.number_of_spanning_trees(G)
+
+ def test_nst_weight(self):
+ G = nx.Graph()
+ G.add_edge(1, 2, weight=1)
+ G.add_edge(1, 3, weight=1)
+ G.add_edge(2, 3, weight=2)
+ # weights are ignored
+ assert np.isclose(nx.number_of_spanning_trees(G), 3)
+ # including weight
+ assert np.isclose(nx.number_of_spanning_trees(G, weight="weight"), 5)
+
+ def test_nst_negative_weight(self):
+ G = nx.Graph()
+ G.add_edge(1, 2, weight=1)
+ G.add_edge(1, 3, weight=-1)
+ G.add_edge(2, 3, weight=-2)
+ # weights are ignored
+ assert np.isclose(nx.number_of_spanning_trees(G), 3)
+ # including weight
+ assert np.isclose(nx.number_of_spanning_trees(G, weight="weight"), -1)
+
+ def test_nst_selfloop(self):
+ # self-loops are ignored
+ G = nx.complete_graph(3)
+ G.add_edge(1, 1)
+ assert np.isclose(nx.number_of_spanning_trees(G), 3)
+
+ def test_nst_multigraph(self):
+ G = nx.MultiGraph()
+ G.add_edge(1, 2)
+ G.add_edge(1, 2)
+ G.add_edge(1, 3)
+ G.add_edge(2, 3)
+ assert np.isclose(nx.number_of_spanning_trees(G), 5)
+
+ def test_nst_complete_graph(self):
+ # this is known as Cayley's formula
+ N = 5
+ G = nx.complete_graph(N)
+ assert np.isclose(nx.number_of_spanning_trees(G), N ** (N - 2))
+
+ def test_nst_path_graph(self):
+ G = nx.path_graph(5)
+ assert np.isclose(nx.number_of_spanning_trees(G), 1)
+
+ def test_nst_cycle_graph(self):
+ G = nx.cycle_graph(5)
+ assert np.isclose(nx.number_of_spanning_trees(G), 5)
+
+ def test_nst_directed_noroot(self):
+ G = nx.empty_graph(3, create_using=nx.MultiDiGraph)
+ with pytest.raises(nx.NetworkXError):
+ nx.number_of_spanning_trees(G)
+
+ def test_nst_directed_root_not_exist(self):
+ G = nx.empty_graph(3, create_using=nx.MultiDiGraph)
+ with pytest.raises(nx.NetworkXError):
+ nx.number_of_spanning_trees(G, root=42)
+
+ def test_nst_directed_not_weak_connected(self):
+ G = nx.DiGraph()
+ G.add_edge(1, 2)
+ G.add_edge(3, 4)
+ assert np.isclose(nx.number_of_spanning_trees(G, root=1), 0)
+
+ def test_nst_directed_cycle_graph(self):
+ G = nx.DiGraph()
+ G = nx.cycle_graph(7, G)
+ assert np.isclose(nx.number_of_spanning_trees(G, root=0), 1)
+
+ def test_nst_directed_complete_graph(self):
+ G = nx.DiGraph()
+ G = nx.complete_graph(7, G)
+ assert np.isclose(nx.number_of_spanning_trees(G, root=0), 7**5)
+
+ def test_nst_directed_multi(self):
+ G = nx.MultiDiGraph()
+ G = nx.cycle_graph(3, G)
+ G.add_edge(1, 2)
+ assert np.isclose(nx.number_of_spanning_trees(G, root=0), 2)
+
+ def test_nst_directed_selfloop(self):
+ G = nx.MultiDiGraph()
+ G = nx.cycle_graph(3, G)
+ G.add_edge(1, 1)
+ assert np.isclose(nx.number_of_spanning_trees(G, root=0), 1)
+
+ def test_nst_directed_weak_connected(self):
+ G = nx.MultiDiGraph()
+ G = nx.cycle_graph(3, G)
+ G.remove_edge(1, 2)
+ assert np.isclose(nx.number_of_spanning_trees(G, root=0), 0)
+
+ def test_nst_directed_weighted(self):
+ # from root=1:
+ # arborescence 1: 1->2, 1->3, weight=2*1
+ # arborescence 2: 1->2, 2->3, weight=2*3
+ G = nx.DiGraph()
+ G.add_edge(1, 2, weight=2)
+ G.add_edge(1, 3, weight=1)
+ G.add_edge(2, 3, weight=3)
+ Nst = nx.number_of_spanning_trees(G, root=1, weight="weight")
+ assert np.isclose(Nst, 8)
+ Nst = nx.number_of_spanning_trees(G, root=2, weight="weight")
+ assert np.isclose(Nst, 0)
+ Nst = nx.number_of_spanning_trees(G, root=3, weight="weight")
+ assert np.isclose(Nst, 0)
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_operations.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_operations.py
new file mode 100644
index 00000000..284d94e2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_operations.py
@@ -0,0 +1,53 @@
+from itertools import chain
+
+import networkx as nx
+from networkx.utils import edges_equal, nodes_equal
+
+
+def _check_custom_label_attribute(input_trees, res_tree, label_attribute):
+ res_attr_dict = nx.get_node_attributes(res_tree, label_attribute)
+ res_attr_set = set(res_attr_dict.values())
+ input_label = (tree for tree, root in input_trees)
+ input_label_set = set(chain.from_iterable(input_label))
+ return res_attr_set == input_label_set
+
+
+def test_empty_sequence():
+ """Joining the empty sequence results in the tree with one node."""
+ T = nx.join_trees([])
+ assert len(T) == 1
+ assert T.number_of_edges() == 0
+
+
+def test_single():
+ """Joining just one tree yields a tree with one more node."""
+ T = nx.empty_graph(1)
+ trees = [(T, 0)]
+ actual_with_label = nx.join_trees(trees, label_attribute="custom_label")
+ expected = nx.path_graph(2)
+ assert nodes_equal(list(expected), list(actual_with_label))
+ assert edges_equal(list(expected.edges()), list(actual_with_label.edges()))
+
+
+def test_basic():
+ """Joining multiple subtrees at a root node."""
+ trees = [(nx.full_rary_tree(2, 2**2 - 1), 0) for i in range(2)]
+ expected = nx.full_rary_tree(2, 2**3 - 1)
+ actual = nx.join_trees(trees, label_attribute="old_labels")
+ assert nx.is_isomorphic(actual, expected)
+ assert _check_custom_label_attribute(trees, actual, "old_labels")
+
+ actual_without_label = nx.join_trees(trees)
+ assert nx.is_isomorphic(actual_without_label, expected)
+ # check that no labels were stored
+ assert all(not data for _, data in actual_without_label.nodes(data=True))
+
+
+def test_first_label():
+ """Test the functionality of the first_label argument."""
+ T1 = nx.path_graph(3)
+ T2 = nx.path_graph(2)
+ actual = nx.join_trees([(T1, 0), (T2, 0)], first_label=10)
+ expected_nodes = set(range(10, 16))
+ assert set(actual.nodes()) == expected_nodes
+ assert set(actual.neighbors(10)) == {11, 14}
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_recognition.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_recognition.py
new file mode 100644
index 00000000..105f5a89
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_recognition.py
@@ -0,0 +1,174 @@
+import pytest
+
+import networkx as nx
+
+
+class TestTreeRecognition:
+ graph = nx.Graph
+ multigraph = nx.MultiGraph
+
+ @classmethod
+ def setup_class(cls):
+ cls.T1 = cls.graph()
+
+ cls.T2 = cls.graph()
+ cls.T2.add_node(1)
+
+ cls.T3 = cls.graph()
+ cls.T3.add_nodes_from(range(5))
+ edges = [(i, i + 1) for i in range(4)]
+ cls.T3.add_edges_from(edges)
+
+ cls.T5 = cls.multigraph()
+ cls.T5.add_nodes_from(range(5))
+ edges = [(i, i + 1) for i in range(4)]
+ cls.T5.add_edges_from(edges)
+
+ cls.T6 = cls.graph()
+ cls.T6.add_nodes_from([6, 7])
+ cls.T6.add_edge(6, 7)
+
+ cls.F1 = nx.compose(cls.T6, cls.T3)
+
+ cls.N4 = cls.graph()
+ cls.N4.add_node(1)
+ cls.N4.add_edge(1, 1)
+
+ cls.N5 = cls.graph()
+ cls.N5.add_nodes_from(range(5))
+
+ cls.N6 = cls.graph()
+ cls.N6.add_nodes_from(range(3))
+ cls.N6.add_edges_from([(0, 1), (1, 2), (2, 0)])
+
+ cls.NF1 = nx.compose(cls.T6, cls.N6)
+
+ def test_null_tree(self):
+ with pytest.raises(nx.NetworkXPointlessConcept):
+ nx.is_tree(self.graph())
+
+ def test_null_tree2(self):
+ with pytest.raises(nx.NetworkXPointlessConcept):
+ nx.is_tree(self.multigraph())
+
+ def test_null_forest(self):
+ with pytest.raises(nx.NetworkXPointlessConcept):
+ nx.is_forest(self.graph())
+
+ def test_null_forest2(self):
+ with pytest.raises(nx.NetworkXPointlessConcept):
+ nx.is_forest(self.multigraph())
+
+ def test_is_tree(self):
+ assert nx.is_tree(self.T2)
+ assert nx.is_tree(self.T3)
+ assert nx.is_tree(self.T5)
+
+ def test_is_not_tree(self):
+ assert not nx.is_tree(self.N4)
+ assert not nx.is_tree(self.N5)
+ assert not nx.is_tree(self.N6)
+
+ def test_is_forest(self):
+ assert nx.is_forest(self.T2)
+ assert nx.is_forest(self.T3)
+ assert nx.is_forest(self.T5)
+ assert nx.is_forest(self.F1)
+ assert nx.is_forest(self.N5)
+
+ def test_is_not_forest(self):
+ assert not nx.is_forest(self.N4)
+ assert not nx.is_forest(self.N6)
+ assert not nx.is_forest(self.NF1)
+
+
+class TestDirectedTreeRecognition(TestTreeRecognition):
+ graph = nx.DiGraph
+ multigraph = nx.MultiDiGraph
+
+
+def test_disconnected_graph():
+ # https://github.com/networkx/networkx/issues/1144
+ G = nx.Graph()
+ G.add_edges_from([(0, 1), (1, 2), (2, 0), (3, 4)])
+ assert not nx.is_tree(G)
+
+ G = nx.DiGraph()
+ G.add_edges_from([(0, 1), (1, 2), (2, 0), (3, 4)])
+ assert not nx.is_tree(G)
+
+
+def test_dag_nontree():
+ G = nx.DiGraph()
+ G.add_edges_from([(0, 1), (0, 2), (1, 2)])
+ assert not nx.is_tree(G)
+ assert nx.is_directed_acyclic_graph(G)
+
+
+def test_multicycle():
+ G = nx.MultiDiGraph()
+ G.add_edges_from([(0, 1), (0, 1)])
+ assert not nx.is_tree(G)
+ assert nx.is_directed_acyclic_graph(G)
+
+
+def test_emptybranch():
+ G = nx.DiGraph()
+ G.add_nodes_from(range(10))
+ assert nx.is_branching(G)
+ assert not nx.is_arborescence(G)
+
+
+def test_is_branching_empty_graph_raises():
+ G = nx.DiGraph()
+ with pytest.raises(nx.NetworkXPointlessConcept, match="G has no nodes."):
+ nx.is_branching(G)
+
+
+def test_path():
+ G = nx.DiGraph()
+ nx.add_path(G, range(5))
+ assert nx.is_branching(G)
+ assert nx.is_arborescence(G)
+
+
+def test_notbranching1():
+ # Acyclic violation.
+ G = nx.MultiDiGraph()
+ G.add_nodes_from(range(10))
+ G.add_edges_from([(0, 1), (1, 0)])
+ assert not nx.is_branching(G)
+ assert not nx.is_arborescence(G)
+
+
+def test_notbranching2():
+ # In-degree violation.
+ G = nx.MultiDiGraph()
+ G.add_nodes_from(range(10))
+ G.add_edges_from([(0, 1), (0, 2), (3, 2)])
+ assert not nx.is_branching(G)
+ assert not nx.is_arborescence(G)
+
+
+def test_notarborescence1():
+ # Not an arborescence due to not spanning.
+ G = nx.MultiDiGraph()
+ G.add_nodes_from(range(10))
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (5, 6)])
+ assert nx.is_branching(G)
+ assert not nx.is_arborescence(G)
+
+
+def test_notarborescence2():
+ # Not an arborescence due to in-degree violation.
+ G = nx.MultiDiGraph()
+ nx.add_path(G, range(5))
+ G.add_edge(6, 4)
+ assert not nx.is_branching(G)
+ assert not nx.is_arborescence(G)
+
+
+def test_is_arborescense_empty_graph_raises():
+ G = nx.DiGraph()
+ with pytest.raises(nx.NetworkXPointlessConcept, match="G has no nodes."):
+ nx.is_arborescence(G)