about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_structuralholes.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_structuralholes.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_structuralholes.py137
1 files changed, 137 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_structuralholes.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_structuralholes.py
new file mode 100644
index 00000000..1e5952b2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_structuralholes.py
@@ -0,0 +1,137 @@
+"""Unit tests for the :mod:`networkx.algorithms.structuralholes` module."""
+
+import math
+
+import pytest
+
+import networkx as nx
+from networkx.classes.tests import dispatch_interface
+
+
+class TestStructuralHoles:
+    """Unit tests for computing measures of structural holes.
+
+    The expected values for these functions were originally computed using the
+    proprietary software `UCINET`_ and the free software `IGraph`_ , and then
+    computed by hand to make sure that the results are correct.
+
+    .. _UCINET: https://sites.google.com/site/ucinetsoftware/home
+    .. _IGraph: http://igraph.org/
+
+    """
+
+    def setup_method(self):
+        self.D = nx.DiGraph()
+        self.D.add_edges_from([(0, 1), (0, 2), (1, 0), (2, 1)])
+        self.D_weights = {(0, 1): 2, (0, 2): 2, (1, 0): 1, (2, 1): 1}
+        # Example from http://www.analytictech.com/connections/v20(1)/holes.htm
+        self.G = nx.Graph()
+        self.G.add_edges_from(
+            [
+                ("A", "B"),
+                ("A", "F"),
+                ("A", "G"),
+                ("A", "E"),
+                ("E", "G"),
+                ("F", "G"),
+                ("B", "G"),
+                ("B", "D"),
+                ("D", "G"),
+                ("G", "C"),
+            ]
+        )
+        self.G_weights = {
+            ("A", "B"): 2,
+            ("A", "F"): 3,
+            ("A", "G"): 5,
+            ("A", "E"): 2,
+            ("E", "G"): 8,
+            ("F", "G"): 3,
+            ("B", "G"): 4,
+            ("B", "D"): 1,
+            ("D", "G"): 3,
+            ("G", "C"): 10,
+        }
+
+    def test_constraint_directed(self):
+        constraint = nx.constraint(self.D)
+        assert constraint[0] == pytest.approx(1.003, abs=1e-3)
+        assert constraint[1] == pytest.approx(1.003, abs=1e-3)
+        assert constraint[2] == pytest.approx(1.389, abs=1e-3)
+
+    def test_effective_size_directed(self):
+        effective_size = nx.effective_size(self.D)
+        assert effective_size[0] == pytest.approx(1.167, abs=1e-3)
+        assert effective_size[1] == pytest.approx(1.167, abs=1e-3)
+        assert effective_size[2] == pytest.approx(1, abs=1e-3)
+
+    def test_constraint_weighted_directed(self):
+        D = self.D.copy()
+        nx.set_edge_attributes(D, self.D_weights, "weight")
+        constraint = nx.constraint(D, weight="weight")
+        assert constraint[0] == pytest.approx(0.840, abs=1e-3)
+        assert constraint[1] == pytest.approx(1.143, abs=1e-3)
+        assert constraint[2] == pytest.approx(1.378, abs=1e-3)
+
+    def test_effective_size_weighted_directed(self):
+        D = self.D.copy()
+        nx.set_edge_attributes(D, self.D_weights, "weight")
+        effective_size = nx.effective_size(D, weight="weight")
+        assert effective_size[0] == pytest.approx(1.567, abs=1e-3)
+        assert effective_size[1] == pytest.approx(1.083, abs=1e-3)
+        assert effective_size[2] == pytest.approx(1, abs=1e-3)
+
+    def test_constraint_undirected(self):
+        constraint = nx.constraint(self.G)
+        assert constraint["G"] == pytest.approx(0.400, abs=1e-3)
+        assert constraint["A"] == pytest.approx(0.595, abs=1e-3)
+        assert constraint["C"] == pytest.approx(1, abs=1e-3)
+
+    def test_effective_size_undirected_borgatti(self):
+        effective_size = nx.effective_size(self.G)
+        assert effective_size["G"] == pytest.approx(4.67, abs=1e-2)
+        assert effective_size["A"] == pytest.approx(2.50, abs=1e-2)
+        assert effective_size["C"] == pytest.approx(1, abs=1e-2)
+
+    def test_effective_size_undirected(self):
+        G = self.G.copy()
+        nx.set_edge_attributes(G, 1, "weight")
+        effective_size = nx.effective_size(G, weight="weight")
+        assert effective_size["G"] == pytest.approx(4.67, abs=1e-2)
+        assert effective_size["A"] == pytest.approx(2.50, abs=1e-2)
+        assert effective_size["C"] == pytest.approx(1, abs=1e-2)
+
+    def test_constraint_weighted_undirected(self):
+        G = self.G.copy()
+        nx.set_edge_attributes(G, self.G_weights, "weight")
+        constraint = nx.constraint(G, weight="weight")
+        assert constraint["G"] == pytest.approx(0.299, abs=1e-3)
+        assert constraint["A"] == pytest.approx(0.795, abs=1e-3)
+        assert constraint["C"] == pytest.approx(1, abs=1e-3)
+
+    def test_effective_size_weighted_undirected(self):
+        G = self.G.copy()
+        nx.set_edge_attributes(G, self.G_weights, "weight")
+        effective_size = nx.effective_size(G, weight="weight")
+        assert effective_size["G"] == pytest.approx(5.47, abs=1e-2)
+        assert effective_size["A"] == pytest.approx(2.47, abs=1e-2)
+        assert effective_size["C"] == pytest.approx(1, abs=1e-2)
+
+    def test_constraint_isolated(self):
+        G = self.G.copy()
+        G.add_node(1)
+        constraint = nx.constraint(G)
+        assert math.isnan(constraint[1])
+
+    def test_effective_size_isolated(self):
+        G = self.G.copy()
+        G.add_node(1)
+        nx.set_edge_attributes(G, self.G_weights, "weight")
+        effective_size = nx.effective_size(G, weight="weight")
+        assert math.isnan(effective_size[1])
+
+    def test_effective_size_borgatti_isolated(self):
+        G = self.G.copy()
+        G.add_node(1)
+        effective_size = nx.effective_size(G)
+        assert math.isnan(effective_size[1])