aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_matching.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_matching.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_matching.py605
1 files changed, 605 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_matching.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_matching.py
new file mode 100644
index 00000000..37853e38
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_matching.py
@@ -0,0 +1,605 @@
+import math
+from itertools import permutations
+
+from pytest import raises
+
+import networkx as nx
+from networkx.algorithms.matching import matching_dict_to_set
+from networkx.utils import edges_equal
+
+
+class TestMaxWeightMatching:
+ """Unit tests for the
+ :func:`~networkx.algorithms.matching.max_weight_matching` function.
+
+ """
+
+ def test_trivial1(self):
+ """Empty graph"""
+ G = nx.Graph()
+ assert nx.max_weight_matching(G) == set()
+ assert nx.min_weight_matching(G) == set()
+
+ def test_selfloop(self):
+ G = nx.Graph()
+ G.add_edge(0, 0, weight=100)
+ assert nx.max_weight_matching(G) == set()
+ assert nx.min_weight_matching(G) == set()
+
+ def test_single_edge(self):
+ G = nx.Graph()
+ G.add_edge(0, 1)
+ assert edges_equal(
+ nx.max_weight_matching(G), matching_dict_to_set({0: 1, 1: 0})
+ )
+ assert edges_equal(
+ nx.min_weight_matching(G), matching_dict_to_set({0: 1, 1: 0})
+ )
+
+ def test_two_path(self):
+ G = nx.Graph()
+ G.add_edge("one", "two", weight=10)
+ G.add_edge("two", "three", weight=11)
+ assert edges_equal(
+ nx.max_weight_matching(G),
+ matching_dict_to_set({"three": "two", "two": "three"}),
+ )
+ assert edges_equal(
+ nx.min_weight_matching(G),
+ matching_dict_to_set({"one": "two", "two": "one"}),
+ )
+
+ def test_path(self):
+ G = nx.Graph()
+ G.add_edge(1, 2, weight=5)
+ G.add_edge(2, 3, weight=11)
+ G.add_edge(3, 4, weight=5)
+ assert edges_equal(
+ nx.max_weight_matching(G), matching_dict_to_set({2: 3, 3: 2})
+ )
+ assert edges_equal(
+ nx.max_weight_matching(G, 1), matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3})
+ )
+ assert edges_equal(
+ nx.min_weight_matching(G), matching_dict_to_set({1: 2, 3: 4})
+ )
+ assert edges_equal(
+ nx.min_weight_matching(G, 1), matching_dict_to_set({1: 2, 3: 4})
+ )
+
+ def test_square(self):
+ G = nx.Graph()
+ G.add_edge(1, 4, weight=2)
+ G.add_edge(2, 3, weight=2)
+ G.add_edge(1, 2, weight=1)
+ G.add_edge(3, 4, weight=4)
+ assert edges_equal(
+ nx.max_weight_matching(G), matching_dict_to_set({1: 2, 3: 4})
+ )
+ assert edges_equal(
+ nx.min_weight_matching(G), matching_dict_to_set({1: 4, 2: 3})
+ )
+
+ def test_edge_attribute_name(self):
+ G = nx.Graph()
+ G.add_edge("one", "two", weight=10, abcd=11)
+ G.add_edge("two", "three", weight=11, abcd=10)
+ assert edges_equal(
+ nx.max_weight_matching(G, weight="abcd"),
+ matching_dict_to_set({"one": "two", "two": "one"}),
+ )
+ assert edges_equal(
+ nx.min_weight_matching(G, weight="abcd"),
+ matching_dict_to_set({"three": "two"}),
+ )
+
+ def test_floating_point_weights(self):
+ G = nx.Graph()
+ G.add_edge(1, 2, weight=math.pi)
+ G.add_edge(2, 3, weight=math.exp(1))
+ G.add_edge(1, 3, weight=3.0)
+ G.add_edge(1, 4, weight=math.sqrt(2.0))
+ assert edges_equal(
+ nx.max_weight_matching(G), matching_dict_to_set({1: 4, 2: 3, 3: 2, 4: 1})
+ )
+ assert edges_equal(
+ nx.min_weight_matching(G), matching_dict_to_set({1: 4, 2: 3, 3: 2, 4: 1})
+ )
+
+ def test_negative_weights(self):
+ G = nx.Graph()
+ G.add_edge(1, 2, weight=2)
+ G.add_edge(1, 3, weight=-2)
+ G.add_edge(2, 3, weight=1)
+ G.add_edge(2, 4, weight=-1)
+ G.add_edge(3, 4, weight=-6)
+ assert edges_equal(
+ nx.max_weight_matching(G), matching_dict_to_set({1: 2, 2: 1})
+ )
+ assert edges_equal(
+ nx.max_weight_matching(G, maxcardinality=True),
+ matching_dict_to_set({1: 3, 2: 4, 3: 1, 4: 2}),
+ )
+ assert edges_equal(
+ nx.min_weight_matching(G), matching_dict_to_set({1: 2, 3: 4})
+ )
+
+ def test_s_blossom(self):
+ """Create S-blossom and use it for augmentation:"""
+ G = nx.Graph()
+ G.add_weighted_edges_from([(1, 2, 8), (1, 3, 9), (2, 3, 10), (3, 4, 7)])
+ answer = matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3})
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ G.add_weighted_edges_from([(1, 6, 5), (4, 5, 6)])
+ answer = matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_s_t_blossom(self):
+ """Create S-blossom, relabel as T-blossom, use for augmentation:"""
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [(1, 2, 9), (1, 3, 8), (2, 3, 10), (1, 4, 5), (4, 5, 4), (1, 6, 3)]
+ )
+ answer = matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ G.add_edge(4, 5, weight=3)
+ G.add_edge(1, 6, weight=4)
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ G.remove_edge(1, 6)
+ G.add_edge(3, 6, weight=4)
+ answer = matching_dict_to_set({1: 2, 2: 1, 3: 6, 4: 5, 5: 4, 6: 3})
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_nested_s_blossom(self):
+ """Create nested S-blossom, use for augmentation:"""
+
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 9),
+ (1, 3, 9),
+ (2, 3, 10),
+ (2, 4, 8),
+ (3, 5, 8),
+ (4, 5, 10),
+ (5, 6, 6),
+ ]
+ )
+ dict_format = {1: 3, 2: 4, 3: 1, 4: 2, 5: 6, 6: 5}
+ expected = {frozenset(e) for e in matching_dict_to_set(dict_format)}
+ answer = {frozenset(e) for e in nx.max_weight_matching(G)}
+ assert answer == expected
+ answer = {frozenset(e) for e in nx.min_weight_matching(G)}
+ assert answer == expected
+
+ def test_nested_s_blossom_relabel(self):
+ """Create S-blossom, relabel as S, include in nested S-blossom:"""
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 10),
+ (1, 7, 10),
+ (2, 3, 12),
+ (3, 4, 20),
+ (3, 5, 20),
+ (4, 5, 25),
+ (5, 6, 10),
+ (6, 7, 10),
+ (7, 8, 8),
+ ]
+ )
+ answer = matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3, 5: 6, 6: 5, 7: 8, 8: 7})
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_nested_s_blossom_expand(self):
+ """Create nested S-blossom, augment, expand recursively:"""
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 8),
+ (1, 3, 8),
+ (2, 3, 10),
+ (2, 4, 12),
+ (3, 5, 12),
+ (4, 5, 14),
+ (4, 6, 12),
+ (5, 7, 12),
+ (6, 7, 14),
+ (7, 8, 12),
+ ]
+ )
+ answer = matching_dict_to_set({1: 2, 2: 1, 3: 5, 4: 6, 5: 3, 6: 4, 7: 8, 8: 7})
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_s_blossom_relabel_expand(self):
+ """Create S-blossom, relabel as T, expand:"""
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 23),
+ (1, 5, 22),
+ (1, 6, 15),
+ (2, 3, 25),
+ (3, 4, 22),
+ (4, 5, 25),
+ (4, 8, 14),
+ (5, 7, 13),
+ ]
+ )
+ answer = matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4})
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_nested_s_blossom_relabel_expand(self):
+ """Create nested S-blossom, relabel as T, expand:"""
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 19),
+ (1, 3, 20),
+ (1, 8, 8),
+ (2, 3, 25),
+ (2, 4, 18),
+ (3, 5, 18),
+ (4, 5, 13),
+ (4, 7, 7),
+ (5, 6, 7),
+ ]
+ )
+ answer = matching_dict_to_set({1: 8, 2: 3, 3: 2, 4: 7, 5: 6, 6: 5, 7: 4, 8: 1})
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_nasty_blossom1(self):
+ """Create blossom, relabel as T in more than one way, expand,
+ augment:
+ """
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 45),
+ (1, 5, 45),
+ (2, 3, 50),
+ (3, 4, 45),
+ (4, 5, 50),
+ (1, 6, 30),
+ (3, 9, 35),
+ (4, 8, 35),
+ (5, 7, 26),
+ (9, 10, 5),
+ ]
+ )
+ ansdict = {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}
+ answer = matching_dict_to_set(ansdict)
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_nasty_blossom2(self):
+ """Again but slightly different:"""
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 45),
+ (1, 5, 45),
+ (2, 3, 50),
+ (3, 4, 45),
+ (4, 5, 50),
+ (1, 6, 30),
+ (3, 9, 35),
+ (4, 8, 26),
+ (5, 7, 40),
+ (9, 10, 5),
+ ]
+ )
+ ans = {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}
+ answer = matching_dict_to_set(ans)
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_nasty_blossom_least_slack(self):
+ """Create blossom, relabel as T, expand such that a new
+ least-slack S-to-free dge is produced, augment:
+ """
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 45),
+ (1, 5, 45),
+ (2, 3, 50),
+ (3, 4, 45),
+ (4, 5, 50),
+ (1, 6, 30),
+ (3, 9, 35),
+ (4, 8, 28),
+ (5, 7, 26),
+ (9, 10, 5),
+ ]
+ )
+ ans = {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}
+ answer = matching_dict_to_set(ans)
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_nasty_blossom_augmenting(self):
+ """Create nested blossom, relabel as T in more than one way"""
+ # expand outer blossom such that inner blossom ends up on an
+ # augmenting path:
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 45),
+ (1, 7, 45),
+ (2, 3, 50),
+ (3, 4, 45),
+ (4, 5, 95),
+ (4, 6, 94),
+ (5, 6, 94),
+ (6, 7, 50),
+ (1, 8, 30),
+ (3, 11, 35),
+ (5, 9, 36),
+ (7, 10, 26),
+ (11, 12, 5),
+ ]
+ )
+ ans = {
+ 1: 8,
+ 2: 3,
+ 3: 2,
+ 4: 6,
+ 5: 9,
+ 6: 4,
+ 7: 10,
+ 8: 1,
+ 9: 5,
+ 10: 7,
+ 11: 12,
+ 12: 11,
+ }
+ answer = matching_dict_to_set(ans)
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_nasty_blossom_expand_recursively(self):
+ """Create nested S-blossom, relabel as S, expand recursively:"""
+ G = nx.Graph()
+ G.add_weighted_edges_from(
+ [
+ (1, 2, 40),
+ (1, 3, 40),
+ (2, 3, 60),
+ (2, 4, 55),
+ (3, 5, 55),
+ (4, 5, 50),
+ (1, 8, 15),
+ (5, 7, 30),
+ (7, 6, 10),
+ (8, 10, 10),
+ (4, 9, 30),
+ ]
+ )
+ ans = {1: 2, 2: 1, 3: 5, 4: 9, 5: 3, 6: 7, 7: 6, 8: 10, 9: 4, 10: 8}
+ answer = matching_dict_to_set(ans)
+ assert edges_equal(nx.max_weight_matching(G), answer)
+ assert edges_equal(nx.min_weight_matching(G), answer)
+
+ def test_wrong_graph_type(self):
+ error = nx.NetworkXNotImplemented
+ raises(error, nx.max_weight_matching, nx.MultiGraph())
+ raises(error, nx.max_weight_matching, nx.MultiDiGraph())
+ raises(error, nx.max_weight_matching, nx.DiGraph())
+ raises(error, nx.min_weight_matching, nx.DiGraph())
+
+
+class TestIsMatching:
+ """Unit tests for the
+ :func:`~networkx.algorithms.matching.is_matching` function.
+
+ """
+
+ def test_dict(self):
+ G = nx.path_graph(4)
+ assert nx.is_matching(G, {0: 1, 1: 0, 2: 3, 3: 2})
+
+ def test_empty_matching(self):
+ G = nx.path_graph(4)
+ assert nx.is_matching(G, set())
+
+ def test_single_edge(self):
+ G = nx.path_graph(4)
+ assert nx.is_matching(G, {(1, 2)})
+
+ def test_edge_order(self):
+ G = nx.path_graph(4)
+ assert nx.is_matching(G, {(0, 1), (2, 3)})
+ assert nx.is_matching(G, {(1, 0), (2, 3)})
+ assert nx.is_matching(G, {(0, 1), (3, 2)})
+ assert nx.is_matching(G, {(1, 0), (3, 2)})
+
+ def test_valid_matching(self):
+ G = nx.path_graph(4)
+ assert nx.is_matching(G, {(0, 1), (2, 3)})
+
+ def test_invalid_input(self):
+ error = nx.NetworkXError
+ G = nx.path_graph(4)
+ # edge to node not in G
+ raises(error, nx.is_matching, G, {(0, 5), (2, 3)})
+ # edge not a 2-tuple
+ raises(error, nx.is_matching, G, {(0, 1, 2), (2, 3)})
+ raises(error, nx.is_matching, G, {(0,), (2, 3)})
+
+ def test_selfloops(self):
+ error = nx.NetworkXError
+ G = nx.path_graph(4)
+ # selfloop for node not in G
+ raises(error, nx.is_matching, G, {(5, 5), (2, 3)})
+ # selfloop edge not in G
+ assert not nx.is_matching(G, {(0, 0), (1, 2), (2, 3)})
+ # selfloop edge in G
+ G.add_edge(0, 0)
+ assert not nx.is_matching(G, {(0, 0), (1, 2)})
+
+ def test_invalid_matching(self):
+ G = nx.path_graph(4)
+ assert not nx.is_matching(G, {(0, 1), (1, 2), (2, 3)})
+
+ def test_invalid_edge(self):
+ G = nx.path_graph(4)
+ assert not nx.is_matching(G, {(0, 3), (1, 2)})
+ raises(nx.NetworkXError, nx.is_matching, G, {(0, 55)})
+
+ G = nx.DiGraph(G.edges)
+ assert nx.is_matching(G, {(0, 1)})
+ assert not nx.is_matching(G, {(1, 0)})
+
+
+class TestIsMaximalMatching:
+ """Unit tests for the
+ :func:`~networkx.algorithms.matching.is_maximal_matching` function.
+
+ """
+
+ def test_dict(self):
+ G = nx.path_graph(4)
+ assert nx.is_maximal_matching(G, {0: 1, 1: 0, 2: 3, 3: 2})
+
+ def test_invalid_input(self):
+ error = nx.NetworkXError
+ G = nx.path_graph(4)
+ # edge to node not in G
+ raises(error, nx.is_maximal_matching, G, {(0, 5)})
+ raises(error, nx.is_maximal_matching, G, {(5, 0)})
+ # edge not a 2-tuple
+ raises(error, nx.is_maximal_matching, G, {(0, 1, 2), (2, 3)})
+ raises(error, nx.is_maximal_matching, G, {(0,), (2, 3)})
+
+ def test_valid(self):
+ G = nx.path_graph(4)
+ assert nx.is_maximal_matching(G, {(0, 1), (2, 3)})
+
+ def test_not_matching(self):
+ G = nx.path_graph(4)
+ assert not nx.is_maximal_matching(G, {(0, 1), (1, 2), (2, 3)})
+ assert not nx.is_maximal_matching(G, {(0, 3)})
+ G.add_edge(0, 0)
+ assert not nx.is_maximal_matching(G, {(0, 0)})
+
+ def test_not_maximal(self):
+ G = nx.path_graph(4)
+ assert not nx.is_maximal_matching(G, {(0, 1)})
+
+
+class TestIsPerfectMatching:
+ """Unit tests for the
+ :func:`~networkx.algorithms.matching.is_perfect_matching` function.
+
+ """
+
+ def test_dict(self):
+ G = nx.path_graph(4)
+ assert nx.is_perfect_matching(G, {0: 1, 1: 0, 2: 3, 3: 2})
+
+ def test_valid(self):
+ G = nx.path_graph(4)
+ assert nx.is_perfect_matching(G, {(0, 1), (2, 3)})
+
+ def test_valid_not_path(self):
+ G = nx.cycle_graph(4)
+ G.add_edge(0, 4)
+ G.add_edge(1, 4)
+ G.add_edge(5, 2)
+
+ assert nx.is_perfect_matching(G, {(1, 4), (0, 3), (5, 2)})
+
+ def test_invalid_input(self):
+ error = nx.NetworkXError
+ G = nx.path_graph(4)
+ # edge to node not in G
+ raises(error, nx.is_perfect_matching, G, {(0, 5)})
+ raises(error, nx.is_perfect_matching, G, {(5, 0)})
+ # edge not a 2-tuple
+ raises(error, nx.is_perfect_matching, G, {(0, 1, 2), (2, 3)})
+ raises(error, nx.is_perfect_matching, G, {(0,), (2, 3)})
+
+ def test_selfloops(self):
+ error = nx.NetworkXError
+ G = nx.path_graph(4)
+ # selfloop for node not in G
+ raises(error, nx.is_perfect_matching, G, {(5, 5), (2, 3)})
+ # selfloop edge not in G
+ assert not nx.is_perfect_matching(G, {(0, 0), (1, 2), (2, 3)})
+ # selfloop edge in G
+ G.add_edge(0, 0)
+ assert not nx.is_perfect_matching(G, {(0, 0), (1, 2)})
+
+ def test_not_matching(self):
+ G = nx.path_graph(4)
+ assert not nx.is_perfect_matching(G, {(0, 3)})
+ assert not nx.is_perfect_matching(G, {(0, 1), (1, 2), (2, 3)})
+
+ def test_maximal_but_not_perfect(self):
+ G = nx.cycle_graph(4)
+ G.add_edge(0, 4)
+ G.add_edge(1, 4)
+
+ assert not nx.is_perfect_matching(G, {(1, 4), (0, 3)})
+
+
+class TestMaximalMatching:
+ """Unit tests for the
+ :func:`~networkx.algorithms.matching.maximal_matching`.
+
+ """
+
+ def test_valid_matching(self):
+ edges = [(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (3, 6), (5, 6)]
+ G = nx.Graph(edges)
+ matching = nx.maximal_matching(G)
+ assert nx.is_maximal_matching(G, matching)
+
+ def test_single_edge_matching(self):
+ # In the star graph, any maximal matching has just one edge.
+ G = nx.star_graph(5)
+ matching = nx.maximal_matching(G)
+ assert 1 == len(matching)
+ assert nx.is_maximal_matching(G, matching)
+
+ def test_self_loops(self):
+ # Create the path graph with two self-loops.
+ G = nx.path_graph(3)
+ G.add_edges_from([(0, 0), (1, 1)])
+ matching = nx.maximal_matching(G)
+ assert len(matching) == 1
+ # The matching should never include self-loops.
+ assert not any(u == v for u, v in matching)
+ assert nx.is_maximal_matching(G, matching)
+
+ def test_ordering(self):
+ """Tests that a maximal matching is computed correctly
+ regardless of the order in which nodes are added to the graph.
+
+ """
+ for nodes in permutations(range(3)):
+ G = nx.Graph()
+ G.add_nodes_from(nodes)
+ G.add_edges_from([(0, 1), (0, 2)])
+ matching = nx.maximal_matching(G)
+ assert len(matching) == 1
+ assert nx.is_maximal_matching(G, matching)
+
+ def test_wrong_graph_type(self):
+ error = nx.NetworkXNotImplemented
+ raises(error, nx.maximal_matching, nx.MultiGraph())
+ raises(error, nx.maximal_matching, nx.MultiDiGraph())
+ raises(error, nx.maximal_matching, nx.DiGraph())