about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_cycles.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_cycles.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_cycles.py974
1 files changed, 974 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_cycles.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_cycles.py
new file mode 100644
index 00000000..dd21405f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_cycles.py
@@ -0,0 +1,974 @@
+from itertools import chain, islice, tee
+from math import inf
+from random import shuffle
+
+import pytest
+
+import networkx as nx
+from networkx.algorithms.traversal.edgedfs import FORWARD, REVERSE
+
+
+def check_independent(basis):
+    if len(basis) == 0:
+        return
+
+    np = pytest.importorskip("numpy")
+    sp = pytest.importorskip("scipy")  # Required by incidence_matrix
+
+    H = nx.Graph()
+    for b in basis:
+        nx.add_cycle(H, b)
+    inc = nx.incidence_matrix(H, oriented=True)
+    rank = np.linalg.matrix_rank(inc.toarray(), tol=None, hermitian=False)
+    assert inc.shape[1] - rank == len(basis)
+
+
+class TestCycles:
+    @classmethod
+    def setup_class(cls):
+        G = nx.Graph()
+        nx.add_cycle(G, [0, 1, 2, 3])
+        nx.add_cycle(G, [0, 3, 4, 5])
+        nx.add_cycle(G, [0, 1, 6, 7, 8])
+        G.add_edge(8, 9)
+        cls.G = G
+
+    def is_cyclic_permutation(self, a, b):
+        n = len(a)
+        if len(b) != n:
+            return False
+        l = a + a
+        return any(l[i : i + n] == b for i in range(n))
+
+    def test_cycle_basis(self):
+        G = self.G
+        cy = nx.cycle_basis(G, 0)
+        sort_cy = sorted(sorted(c) for c in cy)
+        assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
+        cy = nx.cycle_basis(G, 1)
+        sort_cy = sorted(sorted(c) for c in cy)
+        assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
+        cy = nx.cycle_basis(G, 9)
+        sort_cy = sorted(sorted(c) for c in cy)
+        assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
+        # test disconnected graphs
+        nx.add_cycle(G, "ABC")
+        cy = nx.cycle_basis(G, 9)
+        sort_cy = sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])]
+        assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5], ["A", "B", "C"]]
+
+    def test_cycle_basis2(self):
+        with pytest.raises(nx.NetworkXNotImplemented):
+            G = nx.DiGraph()
+            cy = nx.cycle_basis(G, 0)
+
+    def test_cycle_basis3(self):
+        with pytest.raises(nx.NetworkXNotImplemented):
+            G = nx.MultiGraph()
+            cy = nx.cycle_basis(G, 0)
+
+    def test_cycle_basis_ordered(self):
+        # see gh-6654 replace sets with (ordered) dicts
+        G = nx.cycle_graph(5)
+        G.update(nx.cycle_graph(range(3, 8)))
+        cbG = nx.cycle_basis(G)
+
+        perm = {1: 0, 0: 1}  # switch 0 and 1
+        H = nx.relabel_nodes(G, perm)
+        cbH = [[perm.get(n, n) for n in cyc] for cyc in nx.cycle_basis(H)]
+        assert cbG == cbH
+
+    def test_cycle_basis_self_loop(self):
+        """Tests the function for graphs with self loops"""
+        G = nx.Graph()
+        nx.add_cycle(G, [0, 1, 2, 3])
+        nx.add_cycle(G, [0, 0, 6, 2])
+        cy = nx.cycle_basis(G)
+        sort_cy = sorted(sorted(c) for c in cy)
+        assert sort_cy == [[0], [0, 1, 2], [0, 2, 3], [0, 2, 6]]
+
+    def test_simple_cycles(self):
+        edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
+        G = nx.DiGraph(edges)
+        cc = sorted(nx.simple_cycles(G))
+        ca = [[0], [0, 1, 2], [0, 2], [1, 2], [2]]
+        assert len(cc) == len(ca)
+        for c in cc:
+            assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
+
+    def test_simple_cycles_singleton(self):
+        G = nx.Graph([(0, 0)])  # self-loop
+        assert list(nx.simple_cycles(G)) == [[0]]
+
+    def test_unsortable(self):
+        # this test ensures that graphs whose nodes without an intrinsic
+        # ordering do not cause issues
+        G = nx.DiGraph()
+        nx.add_cycle(G, ["a", 1])
+        c = list(nx.simple_cycles(G))
+        assert len(c) == 1
+
+    def test_simple_cycles_small(self):
+        G = nx.DiGraph()
+        nx.add_cycle(G, [1, 2, 3])
+        c = sorted(nx.simple_cycles(G))
+        assert len(c) == 1
+        assert self.is_cyclic_permutation(c[0], [1, 2, 3])
+        nx.add_cycle(G, [10, 20, 30])
+        cc = sorted(nx.simple_cycles(G))
+        assert len(cc) == 2
+        ca = [[1, 2, 3], [10, 20, 30]]
+        for c in cc:
+            assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
+
+    def test_simple_cycles_empty(self):
+        G = nx.DiGraph()
+        assert list(nx.simple_cycles(G)) == []
+
+    def worst_case_graph(self, k):
+        # see figure 1 in Johnson's paper
+        # this graph has exactly 3k simple cycles
+        G = nx.DiGraph()
+        for n in range(2, k + 2):
+            G.add_edge(1, n)
+            G.add_edge(n, k + 2)
+        G.add_edge(2 * k + 1, 1)
+        for n in range(k + 2, 2 * k + 2):
+            G.add_edge(n, 2 * k + 2)
+            G.add_edge(n, n + 1)
+        G.add_edge(2 * k + 3, k + 2)
+        for n in range(2 * k + 3, 3 * k + 3):
+            G.add_edge(2 * k + 2, n)
+            G.add_edge(n, 3 * k + 3)
+        G.add_edge(3 * k + 3, 2 * k + 2)
+        return G
+
+    def test_worst_case_graph(self):
+        # see figure 1 in Johnson's paper
+        for k in range(3, 10):
+            G = self.worst_case_graph(k)
+            l = len(list(nx.simple_cycles(G)))
+            assert l == 3 * k
+
+    def test_recursive_simple_and_not(self):
+        for k in range(2, 10):
+            G = self.worst_case_graph(k)
+            cc = sorted(nx.simple_cycles(G))
+            rcc = sorted(nx.recursive_simple_cycles(G))
+            assert len(cc) == len(rcc)
+            for c in cc:
+                assert any(self.is_cyclic_permutation(c, r) for r in rcc)
+            for rc in rcc:
+                assert any(self.is_cyclic_permutation(rc, c) for c in cc)
+
+    def test_simple_graph_with_reported_bug(self):
+        G = nx.DiGraph()
+        edges = [
+            (0, 2),
+            (0, 3),
+            (1, 0),
+            (1, 3),
+            (2, 1),
+            (2, 4),
+            (3, 2),
+            (3, 4),
+            (4, 0),
+            (4, 1),
+            (4, 5),
+            (5, 0),
+            (5, 1),
+            (5, 2),
+            (5, 3),
+        ]
+        G.add_edges_from(edges)
+        cc = sorted(nx.simple_cycles(G))
+        assert len(cc) == 26
+        rcc = sorted(nx.recursive_simple_cycles(G))
+        assert len(cc) == len(rcc)
+        for c in cc:
+            assert any(self.is_cyclic_permutation(c, rc) for rc in rcc)
+        for rc in rcc:
+            assert any(self.is_cyclic_permutation(rc, c) for c in cc)
+
+
+def pairwise(iterable):
+    a, b = tee(iterable)
+    next(b, None)
+    return zip(a, b)
+
+
+def cycle_edges(c):
+    return pairwise(chain(c, islice(c, 1)))
+
+
+def directed_cycle_edgeset(c):
+    return frozenset(cycle_edges(c))
+
+
+def undirected_cycle_edgeset(c):
+    if len(c) == 1:
+        return frozenset(cycle_edges(c))
+    return frozenset(map(frozenset, cycle_edges(c)))
+
+
+def multigraph_cycle_edgeset(c):
+    if len(c) <= 2:
+        return frozenset(cycle_edges(c))
+    else:
+        return frozenset(map(frozenset, cycle_edges(c)))
+
+
+class TestCycleEnumeration:
+    @staticmethod
+    def K(n):
+        return nx.complete_graph(n)
+
+    @staticmethod
+    def D(n):
+        return nx.complete_graph(n).to_directed()
+
+    @staticmethod
+    def edgeset_function(g):
+        if g.is_directed():
+            return directed_cycle_edgeset
+        elif g.is_multigraph():
+            return multigraph_cycle_edgeset
+        else:
+            return undirected_cycle_edgeset
+
+    def check_cycle(self, g, c, es, cache, source, original_c, length_bound, chordless):
+        if length_bound is not None and len(c) > length_bound:
+            raise RuntimeError(
+                f"computed cycle {original_c} exceeds length bound {length_bound}"
+            )
+        if source == "computed":
+            if es in cache:
+                raise RuntimeError(
+                    f"computed cycle {original_c} has already been found!"
+                )
+            else:
+                cache[es] = tuple(original_c)
+        else:
+            if es in cache:
+                cache.pop(es)
+            else:
+                raise RuntimeError(f"expected cycle {original_c} was not computed")
+
+        if not all(g.has_edge(*e) for e in es):
+            raise RuntimeError(
+                f"{source} claimed cycle {original_c} is not a cycle of g"
+            )
+        if chordless and len(g.subgraph(c).edges) > len(c):
+            raise RuntimeError(f"{source} cycle {original_c} is not chordless")
+
+    def check_cycle_algorithm(
+        self,
+        g,
+        expected_cycles,
+        length_bound=None,
+        chordless=False,
+        algorithm=None,
+    ):
+        if algorithm is None:
+            algorithm = nx.chordless_cycles if chordless else nx.simple_cycles
+
+        # note: we shuffle the labels of g to rule out accidentally-correct
+        # behavior which occurred during the development of chordless cycle
+        # enumeration algorithms
+
+        relabel = list(range(len(g)))
+        shuffle(relabel)
+        label = dict(zip(g, relabel))
+        unlabel = dict(zip(relabel, g))
+        h = nx.relabel_nodes(g, label, copy=True)
+
+        edgeset = self.edgeset_function(h)
+
+        params = {}
+        if length_bound is not None:
+            params["length_bound"] = length_bound
+
+        cycle_cache = {}
+        for c in algorithm(h, **params):
+            original_c = [unlabel[x] for x in c]
+            es = edgeset(c)
+            self.check_cycle(
+                h, c, es, cycle_cache, "computed", original_c, length_bound, chordless
+            )
+
+        if isinstance(expected_cycles, int):
+            if len(cycle_cache) != expected_cycles:
+                raise RuntimeError(
+                    f"expected {expected_cycles} cycles, got {len(cycle_cache)}"
+                )
+            return
+        for original_c in expected_cycles:
+            c = [label[x] for x in original_c]
+            es = edgeset(c)
+            self.check_cycle(
+                h, c, es, cycle_cache, "expected", original_c, length_bound, chordless
+            )
+
+        if len(cycle_cache):
+            for c in cycle_cache.values():
+                raise RuntimeError(
+                    f"computed cycle {c} is valid but not in the expected cycle set!"
+                )
+
+    def check_cycle_enumeration_integer_sequence(
+        self,
+        g_family,
+        cycle_counts,
+        length_bound=None,
+        chordless=False,
+        algorithm=None,
+    ):
+        for g, num_cycles in zip(g_family, cycle_counts):
+            self.check_cycle_algorithm(
+                g,
+                num_cycles,
+                length_bound=length_bound,
+                chordless=chordless,
+                algorithm=algorithm,
+            )
+
+    def test_directed_chordless_cycle_digons(self):
+        g = nx.DiGraph()
+        nx.add_cycle(g, range(5))
+        nx.add_cycle(g, range(5)[::-1])
+        g.add_edge(0, 0)
+        expected_cycles = [(0,), (1, 2), (2, 3), (3, 4)]
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True)
+
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=2)
+
+        expected_cycles = [c for c in expected_cycles if len(c) < 2]
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=1)
+
+    def test_directed_chordless_cycle_undirected(self):
+        g = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 5), (5, 0), (5, 1), (0, 2)])
+        expected_cycles = [(0, 2, 3, 4, 5), (1, 2, 3, 4, 5)]
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True)
+
+        g = nx.DiGraph()
+        nx.add_cycle(g, range(5))
+        nx.add_cycle(g, range(4, 9))
+        g.add_edge(7, 3)
+        expected_cycles = [(0, 1, 2, 3, 4), (3, 4, 5, 6, 7), (4, 5, 6, 7, 8)]
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True)
+
+        g.add_edge(3, 7)
+        expected_cycles = [(0, 1, 2, 3, 4), (3, 7), (4, 5, 6, 7, 8)]
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True)
+
+        expected_cycles = [(3, 7)]
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=4)
+
+        g.remove_edge(7, 3)
+        expected_cycles = [(0, 1, 2, 3, 4), (4, 5, 6, 7, 8)]
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True)
+
+        g = nx.DiGraph((i, j) for i in range(10) for j in range(i))
+        expected_cycles = []
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True)
+
+    def test_chordless_cycles_directed(self):
+        G = nx.DiGraph()
+        nx.add_cycle(G, range(5))
+        nx.add_cycle(G, range(4, 12))
+        expected = [[*range(5)], [*range(4, 12)]]
+        self.check_cycle_algorithm(G, expected, chordless=True)
+        self.check_cycle_algorithm(
+            G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
+        )
+
+        G.add_edge(7, 3)
+        expected.append([*range(3, 8)])
+        self.check_cycle_algorithm(G, expected, chordless=True)
+        self.check_cycle_algorithm(
+            G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
+        )
+
+        G.add_edge(3, 7)
+        expected[-1] = [7, 3]
+        self.check_cycle_algorithm(G, expected, chordless=True)
+        self.check_cycle_algorithm(
+            G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
+        )
+
+        expected.pop()
+        G.remove_edge(7, 3)
+        self.check_cycle_algorithm(G, expected, chordless=True)
+        self.check_cycle_algorithm(
+            G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
+        )
+
+    def test_directed_chordless_cycle_diclique(self):
+        g_family = [self.D(n) for n in range(10)]
+        expected_cycles = [(n * n - n) // 2 for n in range(10)]
+        self.check_cycle_enumeration_integer_sequence(
+            g_family, expected_cycles, chordless=True
+        )
+
+        expected_cycles = [(n * n - n) // 2 for n in range(10)]
+        self.check_cycle_enumeration_integer_sequence(
+            g_family, expected_cycles, length_bound=2
+        )
+
+    def test_directed_chordless_loop_blockade(self):
+        g = nx.DiGraph((i, i) for i in range(10))
+        nx.add_cycle(g, range(10))
+        expected_cycles = [(i,) for i in range(10)]
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True)
+
+        self.check_cycle_algorithm(g, expected_cycles, length_bound=1)
+
+        g = nx.MultiDiGraph(g)
+        g.add_edges_from((i, i) for i in range(0, 10, 2))
+        expected_cycles = [(i,) for i in range(1, 10, 2)]
+        self.check_cycle_algorithm(g, expected_cycles, chordless=True)
+
+    def test_simple_cycles_notable_clique_sequences(self):
+        # A000292: Number of labeled graphs on n+3 nodes that are triangles.
+        g_family = [self.K(n) for n in range(2, 12)]
+        expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220]
+        self.check_cycle_enumeration_integer_sequence(
+            g_family, expected, length_bound=3
+        )
+
+        def triangles(g, **kwargs):
+            yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 3)
+
+        # directed complete graphs have twice as many triangles thanks to reversal
+        g_family = [self.D(n) for n in range(2, 12)]
+        expected = [2 * e for e in expected]
+        self.check_cycle_enumeration_integer_sequence(
+            g_family, expected, length_bound=3, algorithm=triangles
+        )
+
+        def four_cycles(g, **kwargs):
+            yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 4)
+
+        # A050534: the number of 4-cycles in the complete graph K_{n+1}
+        expected = [0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990]
+        g_family = [self.K(n) for n in range(1, 12)]
+        self.check_cycle_enumeration_integer_sequence(
+            g_family, expected, length_bound=4, algorithm=four_cycles
+        )
+
+        # directed complete graphs have twice as many 4-cycles thanks to reversal
+        expected = [2 * e for e in expected]
+        g_family = [self.D(n) for n in range(1, 15)]
+        self.check_cycle_enumeration_integer_sequence(
+            g_family, expected, length_bound=4, algorithm=four_cycles
+        )
+
+        # A006231: the number of elementary circuits in a complete directed graph with n nodes
+        expected = [0, 1, 5, 20, 84, 409, 2365]
+        g_family = [self.D(n) for n in range(1, 8)]
+        self.check_cycle_enumeration_integer_sequence(g_family, expected)
+
+        # A002807: Number of cycles in the complete graph on n nodes K_{n}.
+        expected = [0, 0, 0, 1, 7, 37, 197, 1172]
+        g_family = [self.K(n) for n in range(8)]
+        self.check_cycle_enumeration_integer_sequence(g_family, expected)
+
+    def test_directed_chordless_cycle_parallel_multiedges(self):
+        g = nx.MultiGraph()
+
+        nx.add_cycle(g, range(5))
+        expected = [[*range(5)]]
+        self.check_cycle_algorithm(g, expected, chordless=True)
+
+        nx.add_cycle(g, range(5))
+        expected = [*cycle_edges(range(5))]
+        self.check_cycle_algorithm(g, expected, chordless=True)
+
+        nx.add_cycle(g, range(5))
+        expected = []
+        self.check_cycle_algorithm(g, expected, chordless=True)
+
+        g = nx.MultiDiGraph()
+
+        nx.add_cycle(g, range(5))
+        expected = [[*range(5)]]
+        self.check_cycle_algorithm(g, expected, chordless=True)
+
+        nx.add_cycle(g, range(5))
+        self.check_cycle_algorithm(g, [], chordless=True)
+
+        nx.add_cycle(g, range(5))
+        self.check_cycle_algorithm(g, [], chordless=True)
+
+        g = nx.MultiDiGraph()
+
+        nx.add_cycle(g, range(5))
+        nx.add_cycle(g, range(5)[::-1])
+        expected = [*cycle_edges(range(5))]
+        self.check_cycle_algorithm(g, expected, chordless=True)
+
+        nx.add_cycle(g, range(5))
+        self.check_cycle_algorithm(g, [], chordless=True)
+
+    def test_chordless_cycles_graph(self):
+        G = nx.Graph()
+        nx.add_cycle(G, range(5))
+        nx.add_cycle(G, range(4, 12))
+        expected = [[*range(5)], [*range(4, 12)]]
+        self.check_cycle_algorithm(G, expected, chordless=True)
+        self.check_cycle_algorithm(
+            G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
+        )
+
+        G.add_edge(7, 3)
+        expected.append([*range(3, 8)])
+        expected.append([4, 3, 7, 8, 9, 10, 11])
+        self.check_cycle_algorithm(G, expected, chordless=True)
+        self.check_cycle_algorithm(
+            G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
+        )
+
+    def test_chordless_cycles_giant_hamiltonian(self):
+        # ... o - e - o - e - o ... # o = odd, e = even
+        # ... ---/ \-----/ \--- ... # <-- "long" edges
+        #
+        # each long edge belongs to exactly one triangle, and one giant cycle
+        # of length n/2.  The remaining edges each belong to a triangle
+
+        n = 1000
+        assert n % 2 == 0
+        G = nx.Graph()
+        for v in range(n):
+            if not v % 2:
+                G.add_edge(v, (v + 2) % n)
+            G.add_edge(v, (v + 1) % n)
+
+        expected = [[*range(0, n, 2)]] + [
+            [x % n for x in range(i, i + 3)] for i in range(0, n, 2)
+        ]
+        self.check_cycle_algorithm(G, expected, chordless=True)
+        self.check_cycle_algorithm(
+            G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True
+        )
+
+        # ... o -> e -> o -> e -> o ... # o = odd, e = even
+        # ... <---/ \---<---/ \---< ... # <-- "long" edges
+        #
+        # this time, we orient the short and long edges in opposition
+        # the cycle structure of this graph is the same, but we need to reverse
+        # the long one in our representation.  Also, we need to drop the size
+        # because our partitioning algorithm uses strongly connected components
+        # instead of separating graphs by their strong articulation points
+
+        n = 100
+        assert n % 2 == 0
+        G = nx.DiGraph()
+        for v in range(n):
+            G.add_edge(v, (v + 1) % n)
+            if not v % 2:
+                G.add_edge((v + 2) % n, v)
+
+        expected = [[*range(n - 2, -2, -2)]] + [
+            [x % n for x in range(i, i + 3)] for i in range(0, n, 2)
+        ]
+        self.check_cycle_algorithm(G, expected, chordless=True)
+        self.check_cycle_algorithm(
+            G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True
+        )
+
+    def test_simple_cycles_acyclic_tournament(self):
+        n = 10
+        G = nx.DiGraph((x, y) for x in range(n) for y in range(x))
+        self.check_cycle_algorithm(G, [])
+        self.check_cycle_algorithm(G, [], chordless=True)
+
+        for k in range(n + 1):
+            self.check_cycle_algorithm(G, [], length_bound=k)
+            self.check_cycle_algorithm(G, [], length_bound=k, chordless=True)
+
+    def test_simple_cycles_graph(self):
+        testG = nx.cycle_graph(8)
+        cyc1 = tuple(range(8))
+        self.check_cycle_algorithm(testG, [cyc1])
+
+        testG.add_edge(4, -1)
+        nx.add_path(testG, [3, -2, -3, -4])
+        self.check_cycle_algorithm(testG, [cyc1])
+
+        testG.update(nx.cycle_graph(range(8, 16)))
+        cyc2 = tuple(range(8, 16))
+        self.check_cycle_algorithm(testG, [cyc1, cyc2])
+
+        testG.update(nx.cycle_graph(range(4, 12)))
+        cyc3 = tuple(range(4, 12))
+        expected = {
+            (0, 1, 2, 3, 4, 5, 6, 7),  # cyc1
+            (8, 9, 10, 11, 12, 13, 14, 15),  # cyc2
+            (4, 5, 6, 7, 8, 9, 10, 11),  # cyc3
+            (4, 5, 6, 7, 8, 15, 14, 13, 12, 11),  # cyc2 + cyc3
+            (0, 1, 2, 3, 4, 11, 10, 9, 8, 7),  # cyc1 + cyc3
+            (0, 1, 2, 3, 4, 11, 12, 13, 14, 15, 8, 7),  # cyc1 + cyc2 + cyc3
+        }
+        self.check_cycle_algorithm(testG, expected)
+        assert len(expected) == (2**3 - 1) - 1  # 1 disjoint comb: cyc1 + cyc2
+
+        # Basis size = 5 (2 loops overlapping gives 5 small loops
+        #        E
+        #       / \         Note: A-F = 10-15
+        #    1-2-3-4-5
+        #    / |   |  \   cyc1=012DAB -- left
+        #   0  D   F  6   cyc2=234E   -- top
+        #   \  |   |  /   cyc3=45678F -- right
+        #    B-A-9-8-7    cyc4=89AC   -- bottom
+        #       \ /       cyc5=234F89AD -- middle
+        #        C
+        #
+        # combinations of 5 basis elements: 2^5 - 1  (one includes no cycles)
+        #
+        # disjoint combs: (11 total) not simple cycles
+        #   Any pair not including cyc5 => choose(4, 2) = 6
+        #   Any triple not including cyc5 => choose(4, 3) = 4
+        #   Any quad not including cyc5 => choose(4, 4) = 1
+        #
+        # we expect 31 - 11 = 20 simple cycles
+        #
+        testG = nx.cycle_graph(12)
+        testG.update(nx.cycle_graph([12, 10, 13, 2, 14, 4, 15, 8]).edges)
+        expected = (2**5 - 1) - 11  # 11 disjoint combinations
+        self.check_cycle_algorithm(testG, expected)
+
+    def test_simple_cycles_bounded(self):
+        # iteratively construct a cluster of nested cycles running in the same direction
+        # there should be one cycle of every length
+        d = nx.DiGraph()
+        expected = []
+        for n in range(10):
+            nx.add_cycle(d, range(n))
+            expected.append(n)
+            for k, e in enumerate(expected):
+                self.check_cycle_algorithm(d, e, length_bound=k)
+
+        # iteratively construct a path of undirected cycles, connected at articulation
+        # points.  there should be one cycle of every length except 2: no digons
+        g = nx.Graph()
+        top = 0
+        expected = []
+        for n in range(10):
+            expected.append(n if n < 2 else n - 1)
+            if n == 2:
+                # no digons in undirected graphs
+                continue
+            nx.add_cycle(g, range(top, top + n))
+            top += n
+            for k, e in enumerate(expected):
+                self.check_cycle_algorithm(g, e, length_bound=k)
+
+    def test_simple_cycles_bound_corner_cases(self):
+        G = nx.cycle_graph(4)
+        DG = nx.cycle_graph(4, create_using=nx.DiGraph)
+        assert list(nx.simple_cycles(G, length_bound=0)) == []
+        assert list(nx.simple_cycles(DG, length_bound=0)) == []
+        assert list(nx.chordless_cycles(G, length_bound=0)) == []
+        assert list(nx.chordless_cycles(DG, length_bound=0)) == []
+
+    def test_simple_cycles_bound_error(self):
+        with pytest.raises(ValueError):
+            G = nx.DiGraph()
+            for c in nx.simple_cycles(G, -1):
+                assert False
+
+        with pytest.raises(ValueError):
+            G = nx.Graph()
+            for c in nx.simple_cycles(G, -1):
+                assert False
+
+        with pytest.raises(ValueError):
+            G = nx.Graph()
+            for c in nx.chordless_cycles(G, -1):
+                assert False
+
+        with pytest.raises(ValueError):
+            G = nx.DiGraph()
+            for c in nx.chordless_cycles(G, -1):
+                assert False
+
+    def test_chordless_cycles_clique(self):
+        g_family = [self.K(n) for n in range(2, 15)]
+        expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364]
+        self.check_cycle_enumeration_integer_sequence(
+            g_family, expected, chordless=True
+        )
+
+        # directed cliques have as many digons as undirected graphs have edges
+        expected = [(n * n - n) // 2 for n in range(15)]
+        g_family = [self.D(n) for n in range(15)]
+        self.check_cycle_enumeration_integer_sequence(
+            g_family, expected, chordless=True
+        )
+
+
+# These tests might fail with hash randomization since they depend on
+# edge_dfs. For more information, see the comments in:
+#    networkx/algorithms/traversal/tests/test_edgedfs.py
+
+
+class TestFindCycle:
+    @classmethod
+    def setup_class(cls):
+        cls.nodes = [0, 1, 2, 3]
+        cls.edges = [(-1, 0), (0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]
+
+    def test_graph_nocycle(self):
+        G = nx.Graph(self.edges)
+        pytest.raises(nx.exception.NetworkXNoCycle, nx.find_cycle, G, self.nodes)
+
+    def test_graph_cycle(self):
+        G = nx.Graph(self.edges)
+        G.add_edge(2, 0)
+        x = list(nx.find_cycle(G, self.nodes))
+        x_ = [(0, 1), (1, 2), (2, 0)]
+        assert x == x_
+
+    def test_graph_orientation_none(self):
+        G = nx.Graph(self.edges)
+        G.add_edge(2, 0)
+        x = list(nx.find_cycle(G, self.nodes, orientation=None))
+        x_ = [(0, 1), (1, 2), (2, 0)]
+        assert x == x_
+
+    def test_graph_orientation_original(self):
+        G = nx.Graph(self.edges)
+        G.add_edge(2, 0)
+        x = list(nx.find_cycle(G, self.nodes, orientation="original"))
+        x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 0, FORWARD)]
+        assert x == x_
+
+    def test_digraph(self):
+        G = nx.DiGraph(self.edges)
+        x = list(nx.find_cycle(G, self.nodes))
+        x_ = [(0, 1), (1, 0)]
+        assert x == x_
+
+    def test_digraph_orientation_none(self):
+        G = nx.DiGraph(self.edges)
+        x = list(nx.find_cycle(G, self.nodes, orientation=None))
+        x_ = [(0, 1), (1, 0)]
+        assert x == x_
+
+    def test_digraph_orientation_original(self):
+        G = nx.DiGraph(self.edges)
+        x = list(nx.find_cycle(G, self.nodes, orientation="original"))
+        x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
+        assert x == x_
+
+    def test_multigraph(self):
+        G = nx.MultiGraph(self.edges)
+        x = list(nx.find_cycle(G, self.nodes))
+        x_ = [(0, 1, 0), (1, 0, 1)]  # or (1, 0, 2)
+        # Hash randomization...could be any edge.
+        assert x[0] == x_[0]
+        assert x[1][:2] == x_[1][:2]
+
+    def test_multidigraph(self):
+        G = nx.MultiDiGraph(self.edges)
+        x = list(nx.find_cycle(G, self.nodes))
+        x_ = [(0, 1, 0), (1, 0, 0)]  # (1, 0, 1)
+        assert x[0] == x_[0]
+        assert x[1][:2] == x_[1][:2]
+
+    def test_digraph_ignore(self):
+        G = nx.DiGraph(self.edges)
+        x = list(nx.find_cycle(G, self.nodes, orientation="ignore"))
+        x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
+        assert x == x_
+
+    def test_digraph_reverse(self):
+        G = nx.DiGraph(self.edges)
+        x = list(nx.find_cycle(G, self.nodes, orientation="reverse"))
+        x_ = [(1, 0, REVERSE), (0, 1, REVERSE)]
+        assert x == x_
+
+    def test_multidigraph_ignore(self):
+        G = nx.MultiDiGraph(self.edges)
+        x = list(nx.find_cycle(G, self.nodes, orientation="ignore"))
+        x_ = [(0, 1, 0, FORWARD), (1, 0, 0, FORWARD)]  # or (1, 0, 1, 1)
+        assert x[0] == x_[0]
+        assert x[1][:2] == x_[1][:2]
+        assert x[1][3] == x_[1][3]
+
+    def test_multidigraph_ignore2(self):
+        # Loop traversed an edge while ignoring its orientation.
+        G = nx.MultiDiGraph([(0, 1), (1, 2), (1, 2)])
+        x = list(nx.find_cycle(G, [0, 1, 2], orientation="ignore"))
+        x_ = [(1, 2, 0, FORWARD), (1, 2, 1, REVERSE)]
+        assert x == x_
+
+    def test_multidigraph_original(self):
+        # Node 2 doesn't need to be searched again from visited from 4.
+        # The goal here is to cover the case when 2 to be researched from 4,
+        # when 4 is visited from the first time (so we must make sure that 4
+        # is not visited from 2, and hence, we respect the edge orientation).
+        G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 3), (4, 2)])
+        pytest.raises(
+            nx.exception.NetworkXNoCycle,
+            nx.find_cycle,
+            G,
+            [0, 1, 2, 3, 4],
+            orientation="original",
+        )
+
+    def test_dag(self):
+        G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
+        pytest.raises(
+            nx.exception.NetworkXNoCycle, nx.find_cycle, G, orientation="original"
+        )
+        x = list(nx.find_cycle(G, orientation="ignore"))
+        assert x == [(0, 1, FORWARD), (1, 2, FORWARD), (0, 2, REVERSE)]
+
+    def test_prev_explored(self):
+        # https://github.com/networkx/networkx/issues/2323
+
+        G = nx.DiGraph()
+        G.add_edges_from([(1, 0), (2, 0), (1, 2), (2, 1)])
+        pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0)
+        x = list(nx.find_cycle(G, 1))
+        x_ = [(1, 2), (2, 1)]
+        assert x == x_
+
+        x = list(nx.find_cycle(G, 2))
+        x_ = [(2, 1), (1, 2)]
+        assert x == x_
+
+        x = list(nx.find_cycle(G))
+        x_ = [(1, 2), (2, 1)]
+        assert x == x_
+
+    def test_no_cycle(self):
+        # https://github.com/networkx/networkx/issues/2439
+
+        G = nx.DiGraph()
+        G.add_edges_from([(1, 2), (2, 0), (3, 1), (3, 2)])
+        pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0)
+        pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G)
+
+
+def assert_basis_equal(a, b):
+    assert sorted(a) == sorted(b)
+
+
+class TestMinimumCycleBasis:
+    @classmethod
+    def setup_class(cls):
+        T = nx.Graph()
+        nx.add_cycle(T, [1, 2, 3, 4], weight=1)
+        T.add_edge(2, 4, weight=5)
+        cls.diamond_graph = T
+
+    def test_unweighted_diamond(self):
+        mcb = nx.minimum_cycle_basis(self.diamond_graph)
+        assert_basis_equal(mcb, [[2, 4, 1], [3, 4, 2]])
+
+    def test_weighted_diamond(self):
+        mcb = nx.minimum_cycle_basis(self.diamond_graph, weight="weight")
+        assert_basis_equal(mcb, [[2, 4, 1], [4, 3, 2, 1]])
+
+    def test_dimensionality(self):
+        # checks |MCB|=|E|-|V|+|NC|
+        ntrial = 10
+        for seed in range(1234, 1234 + ntrial):
+            rg = nx.erdos_renyi_graph(10, 0.3, seed=seed)
+            nnodes = rg.number_of_nodes()
+            nedges = rg.number_of_edges()
+            ncomp = nx.number_connected_components(rg)
+
+            mcb = nx.minimum_cycle_basis(rg)
+            assert len(mcb) == nedges - nnodes + ncomp
+            check_independent(mcb)
+
+    def test_complete_graph(self):
+        cg = nx.complete_graph(5)
+        mcb = nx.minimum_cycle_basis(cg)
+        assert all(len(cycle) == 3 for cycle in mcb)
+        check_independent(mcb)
+
+    def test_tree_graph(self):
+        tg = nx.balanced_tree(3, 3)
+        assert not nx.minimum_cycle_basis(tg)
+
+    def test_petersen_graph(self):
+        G = nx.petersen_graph()
+        mcb = list(nx.minimum_cycle_basis(G))
+        expected = [
+            [4, 9, 7, 5, 0],
+            [1, 2, 3, 4, 0],
+            [1, 6, 8, 5, 0],
+            [4, 3, 8, 5, 0],
+            [1, 6, 9, 4, 0],
+            [1, 2, 7, 5, 0],
+        ]
+        assert len(mcb) == len(expected)
+        assert all(c in expected for c in mcb)
+
+        # check that order of the nodes is a path
+        for c in mcb:
+            assert all(G.has_edge(u, v) for u, v in nx.utils.pairwise(c, cyclic=True))
+        # check independence of the basis
+        check_independent(mcb)
+
+    def test_gh6787_variable_weighted_complete_graph(self):
+        N = 8
+        cg = nx.complete_graph(N)
+        cg.add_weighted_edges_from([(u, v, 9) for u, v in cg.edges])
+        cg.add_weighted_edges_from([(u, v, 1) for u, v in nx.cycle_graph(N).edges])
+        mcb = nx.minimum_cycle_basis(cg, weight="weight")
+        check_independent(mcb)
+
+    def test_gh6787_and_edge_attribute_names(self):
+        G = nx.cycle_graph(4)
+        G.add_weighted_edges_from([(0, 2, 10), (1, 3, 10)], weight="dist")
+        expected = [[1, 3, 0], [3, 2, 1, 0], [1, 2, 0]]
+        mcb = list(nx.minimum_cycle_basis(G, weight="dist"))
+        assert len(mcb) == len(expected)
+        assert all(c in expected for c in mcb)
+
+        # test not using a weight with weight attributes
+        expected = [[1, 3, 0], [1, 2, 0], [3, 2, 0]]
+        mcb = list(nx.minimum_cycle_basis(G))
+        assert len(mcb) == len(expected)
+        assert all(c in expected for c in mcb)
+
+
+class TestGirth:
+    @pytest.mark.parametrize(
+        ("G", "expected"),
+        (
+            (nx.chvatal_graph(), 4),
+            (nx.tutte_graph(), 4),
+            (nx.petersen_graph(), 5),
+            (nx.heawood_graph(), 6),
+            (nx.pappus_graph(), 6),
+            (nx.random_labeled_tree(10, seed=42), inf),
+            (nx.empty_graph(10), inf),
+            (nx.Graph(chain(cycle_edges(range(5)), cycle_edges(range(6, 10)))), 4),
+            (
+                nx.Graph(
+                    [
+                        (0, 6),
+                        (0, 8),
+                        (0, 9),
+                        (1, 8),
+                        (2, 8),
+                        (2, 9),
+                        (4, 9),
+                        (5, 9),
+                        (6, 8),
+                        (6, 9),
+                        (7, 8),
+                    ]
+                ),
+                3,
+            ),
+        ),
+    )
+    def test_girth(self, G, expected):
+        assert nx.girth(G) == expected