aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/planar_drawing.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/planar_drawing.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/planar_drawing.py464
1 files changed, 464 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/planar_drawing.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/planar_drawing.py
new file mode 100644
index 00000000..ea25809b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/planar_drawing.py
@@ -0,0 +1,464 @@
+from collections import defaultdict
+
+import networkx as nx
+
+__all__ = ["combinatorial_embedding_to_pos"]
+
+
+def combinatorial_embedding_to_pos(embedding, fully_triangulate=False):
+ """Assigns every node a (x, y) position based on the given embedding
+
+ The algorithm iteratively inserts nodes of the input graph in a certain
+ order and rearranges previously inserted nodes so that the planar drawing
+ stays valid. This is done efficiently by only maintaining relative
+ positions during the node placements and calculating the absolute positions
+ at the end. For more information see [1]_.
+
+ Parameters
+ ----------
+ embedding : nx.PlanarEmbedding
+ This defines the order of the edges
+
+ fully_triangulate : bool
+ If set to True the algorithm adds edges to a copy of the input
+ embedding and makes it chordal.
+
+ Returns
+ -------
+ pos : dict
+ Maps each node to a tuple that defines the (x, y) position
+
+ References
+ ----------
+ .. [1] M. Chrobak and T.H. Payne:
+ A Linear-time Algorithm for Drawing a Planar Graph on a Grid 1989
+ http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6677
+
+ """
+ if len(embedding.nodes()) < 4:
+ # Position the node in any triangle
+ default_positions = [(0, 0), (2, 0), (1, 1)]
+ pos = {}
+ for i, v in enumerate(embedding.nodes()):
+ pos[v] = default_positions[i]
+ return pos
+
+ embedding, outer_face = triangulate_embedding(embedding, fully_triangulate)
+
+ # The following dicts map a node to another node
+ # If a node is not in the key set it means that the node is not yet in G_k
+ # If a node maps to None then the corresponding subtree does not exist
+ left_t_child = {}
+ right_t_child = {}
+
+ # The following dicts map a node to an integer
+ delta_x = {}
+ y_coordinate = {}
+
+ node_list = get_canonical_ordering(embedding, outer_face)
+
+ # 1. Phase: Compute relative positions
+
+ # Initialization
+ v1, v2, v3 = node_list[0][0], node_list[1][0], node_list[2][0]
+
+ delta_x[v1] = 0
+ y_coordinate[v1] = 0
+ right_t_child[v1] = v3
+ left_t_child[v1] = None
+
+ delta_x[v2] = 1
+ y_coordinate[v2] = 0
+ right_t_child[v2] = None
+ left_t_child[v2] = None
+
+ delta_x[v3] = 1
+ y_coordinate[v3] = 1
+ right_t_child[v3] = v2
+ left_t_child[v3] = None
+
+ for k in range(3, len(node_list)):
+ vk, contour_nbrs = node_list[k]
+ wp = contour_nbrs[0]
+ wp1 = contour_nbrs[1]
+ wq = contour_nbrs[-1]
+ wq1 = contour_nbrs[-2]
+ adds_mult_tri = len(contour_nbrs) > 2
+
+ # Stretch gaps:
+ delta_x[wp1] += 1
+ delta_x[wq] += 1
+
+ delta_x_wp_wq = sum(delta_x[x] for x in contour_nbrs[1:])
+
+ # Adjust offsets
+ delta_x[vk] = (-y_coordinate[wp] + delta_x_wp_wq + y_coordinate[wq]) // 2
+ y_coordinate[vk] = (y_coordinate[wp] + delta_x_wp_wq + y_coordinate[wq]) // 2
+ delta_x[wq] = delta_x_wp_wq - delta_x[vk]
+ if adds_mult_tri:
+ delta_x[wp1] -= delta_x[vk]
+
+ # Install v_k:
+ right_t_child[wp] = vk
+ right_t_child[vk] = wq
+ if adds_mult_tri:
+ left_t_child[vk] = wp1
+ right_t_child[wq1] = None
+ else:
+ left_t_child[vk] = None
+
+ # 2. Phase: Set absolute positions
+ pos = {}
+ pos[v1] = (0, y_coordinate[v1])
+ remaining_nodes = [v1]
+ while remaining_nodes:
+ parent_node = remaining_nodes.pop()
+
+ # Calculate position for left child
+ set_position(
+ parent_node, left_t_child, remaining_nodes, delta_x, y_coordinate, pos
+ )
+ # Calculate position for right child
+ set_position(
+ parent_node, right_t_child, remaining_nodes, delta_x, y_coordinate, pos
+ )
+ return pos
+
+
+def set_position(parent, tree, remaining_nodes, delta_x, y_coordinate, pos):
+ """Helper method to calculate the absolute position of nodes."""
+ child = tree[parent]
+ parent_node_x = pos[parent][0]
+ if child is not None:
+ # Calculate pos of child
+ child_x = parent_node_x + delta_x[child]
+ pos[child] = (child_x, y_coordinate[child])
+ # Remember to calculate pos of its children
+ remaining_nodes.append(child)
+
+
+def get_canonical_ordering(embedding, outer_face):
+ """Returns a canonical ordering of the nodes
+
+ The canonical ordering of nodes (v1, ..., vn) must fulfill the following
+ conditions:
+ (See Lemma 1 in [2]_)
+
+ - For the subgraph G_k of the input graph induced by v1, ..., vk it holds:
+ - 2-connected
+ - internally triangulated
+ - the edge (v1, v2) is part of the outer face
+ - For a node v(k+1) the following holds:
+ - The node v(k+1) is part of the outer face of G_k
+ - It has at least two neighbors in G_k
+ - All neighbors of v(k+1) in G_k lie consecutively on the outer face of
+ G_k (excluding the edge (v1, v2)).
+
+ The algorithm used here starts with G_n (containing all nodes). It first
+ selects the nodes v1 and v2. And then tries to find the order of the other
+ nodes by checking which node can be removed in order to fulfill the
+ conditions mentioned above. This is done by calculating the number of
+ chords of nodes on the outer face. For more information see [1]_.
+
+ Parameters
+ ----------
+ embedding : nx.PlanarEmbedding
+ The embedding must be triangulated
+ outer_face : list
+ The nodes on the outer face of the graph
+
+ Returns
+ -------
+ ordering : list
+ A list of tuples `(vk, wp_wq)`. Here `vk` is the node at this position
+ in the canonical ordering. The element `wp_wq` is a list of nodes that
+ make up the outer face of G_k.
+
+ References
+ ----------
+ .. [1] Steven Chaplick.
+ Canonical Orders of Planar Graphs and (some of) Their Applications 2015
+ https://wuecampus2.uni-wuerzburg.de/moodle/pluginfile.php/545727/mod_resource/content/0/vg-ss15-vl03-canonical-orders-druckversion.pdf
+ .. [2] M. Chrobak and T.H. Payne:
+ A Linear-time Algorithm for Drawing a Planar Graph on a Grid 1989
+ http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6677
+
+ """
+ v1 = outer_face[0]
+ v2 = outer_face[1]
+ chords = defaultdict(int) # Maps nodes to the number of their chords
+ marked_nodes = set()
+ ready_to_pick = set(outer_face)
+
+ # Initialize outer_face_ccw_nbr (do not include v1 -> v2)
+ outer_face_ccw_nbr = {}
+ prev_nbr = v2
+ for idx in range(2, len(outer_face)):
+ outer_face_ccw_nbr[prev_nbr] = outer_face[idx]
+ prev_nbr = outer_face[idx]
+ outer_face_ccw_nbr[prev_nbr] = v1
+
+ # Initialize outer_face_cw_nbr (do not include v2 -> v1)
+ outer_face_cw_nbr = {}
+ prev_nbr = v1
+ for idx in range(len(outer_face) - 1, 0, -1):
+ outer_face_cw_nbr[prev_nbr] = outer_face[idx]
+ prev_nbr = outer_face[idx]
+
+ def is_outer_face_nbr(x, y):
+ if x not in outer_face_ccw_nbr:
+ return outer_face_cw_nbr[x] == y
+ if x not in outer_face_cw_nbr:
+ return outer_face_ccw_nbr[x] == y
+ return outer_face_ccw_nbr[x] == y or outer_face_cw_nbr[x] == y
+
+ def is_on_outer_face(x):
+ return x not in marked_nodes and (x in outer_face_ccw_nbr or x == v1)
+
+ # Initialize number of chords
+ for v in outer_face:
+ for nbr in embedding.neighbors_cw_order(v):
+ if is_on_outer_face(nbr) and not is_outer_face_nbr(v, nbr):
+ chords[v] += 1
+ ready_to_pick.discard(v)
+
+ # Initialize canonical_ordering
+ canonical_ordering = [None] * len(embedding.nodes())
+ canonical_ordering[0] = (v1, [])
+ canonical_ordering[1] = (v2, [])
+ ready_to_pick.discard(v1)
+ ready_to_pick.discard(v2)
+
+ for k in range(len(embedding.nodes()) - 1, 1, -1):
+ # 1. Pick v from ready_to_pick
+ v = ready_to_pick.pop()
+ marked_nodes.add(v)
+
+ # v has exactly two neighbors on the outer face (wp and wq)
+ wp = None
+ wq = None
+ # Iterate over neighbors of v to find wp and wq
+ nbr_iterator = iter(embedding.neighbors_cw_order(v))
+ while True:
+ nbr = next(nbr_iterator)
+ if nbr in marked_nodes:
+ # Only consider nodes that are not yet removed
+ continue
+ if is_on_outer_face(nbr):
+ # nbr is either wp or wq
+ if nbr == v1:
+ wp = v1
+ elif nbr == v2:
+ wq = v2
+ else:
+ if outer_face_cw_nbr[nbr] == v:
+ # nbr is wp
+ wp = nbr
+ else:
+ # nbr is wq
+ wq = nbr
+ if wp is not None and wq is not None:
+ # We don't need to iterate any further
+ break
+
+ # Obtain new nodes on outer face (neighbors of v from wp to wq)
+ wp_wq = [wp]
+ nbr = wp
+ while nbr != wq:
+ # Get next neighbor (clockwise on the outer face)
+ next_nbr = embedding[v][nbr]["ccw"]
+ wp_wq.append(next_nbr)
+ # Update outer face
+ outer_face_cw_nbr[nbr] = next_nbr
+ outer_face_ccw_nbr[next_nbr] = nbr
+ # Move to next neighbor of v
+ nbr = next_nbr
+
+ if len(wp_wq) == 2:
+ # There was a chord between wp and wq, decrease number of chords
+ chords[wp] -= 1
+ if chords[wp] == 0:
+ ready_to_pick.add(wp)
+ chords[wq] -= 1
+ if chords[wq] == 0:
+ ready_to_pick.add(wq)
+ else:
+ # Update all chords involving w_(p+1) to w_(q-1)
+ new_face_nodes = set(wp_wq[1:-1])
+ for w in new_face_nodes:
+ # If we do not find a chord for w later we can pick it next
+ ready_to_pick.add(w)
+ for nbr in embedding.neighbors_cw_order(w):
+ if is_on_outer_face(nbr) and not is_outer_face_nbr(w, nbr):
+ # There is a chord involving w
+ chords[w] += 1
+ ready_to_pick.discard(w)
+ if nbr not in new_face_nodes:
+ # Also increase chord for the neighbor
+ # We only iterator over new_face_nodes
+ chords[nbr] += 1
+ ready_to_pick.discard(nbr)
+ # Set the canonical ordering node and the list of contour neighbors
+ canonical_ordering[k] = (v, wp_wq)
+
+ return canonical_ordering
+
+
+def triangulate_face(embedding, v1, v2):
+ """Triangulates the face given by half edge (v, w)
+
+ Parameters
+ ----------
+ embedding : nx.PlanarEmbedding
+ v1 : node
+ The half-edge (v1, v2) belongs to the face that gets triangulated
+ v2 : node
+ """
+ _, v3 = embedding.next_face_half_edge(v1, v2)
+ _, v4 = embedding.next_face_half_edge(v2, v3)
+ if v1 in (v2, v3):
+ # The component has less than 3 nodes
+ return
+ while v1 != v4:
+ # Add edge if not already present on other side
+ if embedding.has_edge(v1, v3):
+ # Cannot triangulate at this position
+ v1, v2, v3 = v2, v3, v4
+ else:
+ # Add edge for triangulation
+ embedding.add_half_edge(v1, v3, ccw=v2)
+ embedding.add_half_edge(v3, v1, cw=v2)
+ v1, v2, v3 = v1, v3, v4
+ # Get next node
+ _, v4 = embedding.next_face_half_edge(v2, v3)
+
+
+def triangulate_embedding(embedding, fully_triangulate=True):
+ """Triangulates the embedding.
+
+ Traverses faces of the embedding and adds edges to a copy of the
+ embedding to triangulate it.
+ The method also ensures that the resulting graph is 2-connected by adding
+ edges if the same vertex is contained twice on a path around a face.
+
+ Parameters
+ ----------
+ embedding : nx.PlanarEmbedding
+ The input graph must contain at least 3 nodes.
+
+ fully_triangulate : bool
+ If set to False the face with the most nodes is chooses as outer face.
+ This outer face does not get triangulated.
+
+ Returns
+ -------
+ (embedding, outer_face) : (nx.PlanarEmbedding, list) tuple
+ The element `embedding` is a new embedding containing all edges from
+ the input embedding and the additional edges to triangulate the graph.
+ The element `outer_face` is a list of nodes that lie on the outer face.
+ If the graph is fully triangulated these are three arbitrary connected
+ nodes.
+
+ """
+ if len(embedding.nodes) <= 1:
+ return embedding, list(embedding.nodes)
+ embedding = nx.PlanarEmbedding(embedding)
+
+ # Get a list with a node for each connected component
+ component_nodes = [next(iter(x)) for x in nx.connected_components(embedding)]
+
+ # 1. Make graph a single component (add edge between components)
+ for i in range(len(component_nodes) - 1):
+ v1 = component_nodes[i]
+ v2 = component_nodes[i + 1]
+ embedding.connect_components(v1, v2)
+
+ # 2. Calculate faces, ensure 2-connectedness and determine outer face
+ outer_face = [] # A face with the most number of nodes
+ face_list = []
+ edges_visited = set() # Used to keep track of already visited faces
+ for v in embedding.nodes():
+ for w in embedding.neighbors_cw_order(v):
+ new_face = make_bi_connected(embedding, v, w, edges_visited)
+ if new_face:
+ # Found a new face
+ face_list.append(new_face)
+ if len(new_face) > len(outer_face):
+ # The face is a candidate to be the outer face
+ outer_face = new_face
+
+ # 3. Triangulate (internal) faces
+ for face in face_list:
+ if face is not outer_face or fully_triangulate:
+ # Triangulate this face
+ triangulate_face(embedding, face[0], face[1])
+
+ if fully_triangulate:
+ v1 = outer_face[0]
+ v2 = outer_face[1]
+ v3 = embedding[v2][v1]["ccw"]
+ outer_face = [v1, v2, v3]
+
+ return embedding, outer_face
+
+
+def make_bi_connected(embedding, starting_node, outgoing_node, edges_counted):
+ """Triangulate a face and make it 2-connected
+
+ This method also adds all edges on the face to `edges_counted`.
+
+ Parameters
+ ----------
+ embedding: nx.PlanarEmbedding
+ The embedding that defines the faces
+ starting_node : node
+ A node on the face
+ outgoing_node : node
+ A node such that the half edge (starting_node, outgoing_node) belongs
+ to the face
+ edges_counted: set
+ Set of all half-edges that belong to a face that have been visited
+
+ Returns
+ -------
+ face_nodes: list
+ A list of all nodes at the border of this face
+ """
+
+ # Check if the face has already been calculated
+ if (starting_node, outgoing_node) in edges_counted:
+ # This face was already counted
+ return []
+ edges_counted.add((starting_node, outgoing_node))
+
+ # Add all edges to edges_counted which have this face to their left
+ v1 = starting_node
+ v2 = outgoing_node
+ face_list = [starting_node] # List of nodes around the face
+ face_set = set(face_list) # Set for faster queries
+ _, v3 = embedding.next_face_half_edge(v1, v2)
+
+ # Move the nodes v1, v2, v3 around the face:
+ while v2 != starting_node or v3 != outgoing_node:
+ if v1 == v2:
+ raise nx.NetworkXException("Invalid half-edge")
+ # cycle is not completed yet
+ if v2 in face_set:
+ # v2 encountered twice: Add edge to ensure 2-connectedness
+ embedding.add_half_edge(v1, v3, ccw=v2)
+ embedding.add_half_edge(v3, v1, cw=v2)
+ edges_counted.add((v2, v3))
+ edges_counted.add((v3, v1))
+ v2 = v1
+ else:
+ face_set.add(v2)
+ face_list.append(v2)
+
+ # set next edge
+ v1 = v2
+ v2, v3 = embedding.next_face_half_edge(v2, v3)
+
+ # remember that this edge has been counted
+ edges_counted.add((v1, v2))
+
+ return face_list