about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/node_classification.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/node_classification.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/node_classification.py219
1 files changed, 219 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/node_classification.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/node_classification.py
new file mode 100644
index 00000000..b69a6c97
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/node_classification.py
@@ -0,0 +1,219 @@
+"""This module provides the functions for node classification problem.
+
+The functions in this module are not imported
+into the top level `networkx` namespace.
+You can access these functions by importing
+the `networkx.algorithms.node_classification` modules,
+then accessing the functions as attributes of `node_classification`.
+For example:
+
+  >>> from networkx.algorithms import node_classification
+  >>> G = nx.path_graph(4)
+  >>> G.edges()
+  EdgeView([(0, 1), (1, 2), (2, 3)])
+  >>> G.nodes[0]["label"] = "A"
+  >>> G.nodes[3]["label"] = "B"
+  >>> node_classification.harmonic_function(G)
+  ['A', 'A', 'B', 'B']
+
+References
+----------
+Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August).
+Semi-supervised learning using gaussian fields and harmonic functions.
+In ICML (Vol. 3, pp. 912-919).
+"""
+
+import networkx as nx
+
+__all__ = ["harmonic_function", "local_and_global_consistency"]
+
+
+@nx.utils.not_implemented_for("directed")
+@nx._dispatchable(node_attrs="label_name")
+def harmonic_function(G, max_iter=30, label_name="label"):
+    """Node classification by Harmonic function
+
+    Function for computing Harmonic function algorithm by Zhu et al.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+    max_iter : int
+        maximum number of iterations allowed
+    label_name : string
+        name of target labels to predict
+
+    Returns
+    -------
+    predicted : list
+        List of length ``len(G)`` with the predicted labels for each node.
+
+    Raises
+    ------
+    NetworkXError
+        If no nodes in `G` have attribute `label_name`.
+
+    Examples
+    --------
+    >>> from networkx.algorithms import node_classification
+    >>> G = nx.path_graph(4)
+    >>> G.nodes[0]["label"] = "A"
+    >>> G.nodes[3]["label"] = "B"
+    >>> G.nodes(data=True)
+    NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}})
+    >>> G.edges()
+    EdgeView([(0, 1), (1, 2), (2, 3)])
+    >>> predicted = node_classification.harmonic_function(G)
+    >>> predicted
+    ['A', 'A', 'B', 'B']
+
+    References
+    ----------
+    Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August).
+    Semi-supervised learning using gaussian fields and harmonic functions.
+    In ICML (Vol. 3, pp. 912-919).
+    """
+    import numpy as np
+    import scipy as sp
+
+    X = nx.to_scipy_sparse_array(G)  # adjacency matrix
+    labels, label_dict = _get_label_info(G, label_name)
+
+    if labels.shape[0] == 0:
+        raise nx.NetworkXError(
+            f"No node on the input graph is labeled by '{label_name}'."
+        )
+
+    n_samples = X.shape[0]
+    n_classes = label_dict.shape[0]
+    F = np.zeros((n_samples, n_classes))
+
+    # Build propagation matrix
+    degrees = X.sum(axis=0)
+    degrees[degrees == 0] = 1  # Avoid division by 0
+    # TODO: csr_array
+    D = sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0))
+    P = (D @ X).tolil()
+    P[labels[:, 0]] = 0  # labels[:, 0] indicates IDs of labeled nodes
+    # Build base matrix
+    B = np.zeros((n_samples, n_classes))
+    B[labels[:, 0], labels[:, 1]] = 1
+
+    for _ in range(max_iter):
+        F = (P @ F) + B
+
+    return label_dict[np.argmax(F, axis=1)].tolist()
+
+
+@nx.utils.not_implemented_for("directed")
+@nx._dispatchable(node_attrs="label_name")
+def local_and_global_consistency(G, alpha=0.99, max_iter=30, label_name="label"):
+    """Node classification by Local and Global Consistency
+
+    Function for computing Local and global consistency algorithm by Zhou et al.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+    alpha : float
+        Clamping factor
+    max_iter : int
+        Maximum number of iterations allowed
+    label_name : string
+        Name of target labels to predict
+
+    Returns
+    -------
+    predicted : list
+        List of length ``len(G)`` with the predicted labels for each node.
+
+    Raises
+    ------
+    NetworkXError
+        If no nodes in `G` have attribute `label_name`.
+
+    Examples
+    --------
+    >>> from networkx.algorithms import node_classification
+    >>> G = nx.path_graph(4)
+    >>> G.nodes[0]["label"] = "A"
+    >>> G.nodes[3]["label"] = "B"
+    >>> G.nodes(data=True)
+    NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}})
+    >>> G.edges()
+    EdgeView([(0, 1), (1, 2), (2, 3)])
+    >>> predicted = node_classification.local_and_global_consistency(G)
+    >>> predicted
+    ['A', 'A', 'B', 'B']
+
+    References
+    ----------
+    Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004).
+    Learning with local and global consistency.
+    Advances in neural information processing systems, 16(16), 321-328.
+    """
+    import numpy as np
+    import scipy as sp
+
+    X = nx.to_scipy_sparse_array(G)  # adjacency matrix
+    labels, label_dict = _get_label_info(G, label_name)
+
+    if labels.shape[0] == 0:
+        raise nx.NetworkXError(
+            f"No node on the input graph is labeled by '{label_name}'."
+        )
+
+    n_samples = X.shape[0]
+    n_classes = label_dict.shape[0]
+    F = np.zeros((n_samples, n_classes))
+
+    # Build propagation matrix
+    degrees = X.sum(axis=0)
+    degrees[degrees == 0] = 1  # Avoid division by 0
+    # TODO: csr_array
+    D2 = np.sqrt(sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0)))
+    P = alpha * ((D2 @ X) @ D2)
+    # Build base matrix
+    B = np.zeros((n_samples, n_classes))
+    B[labels[:, 0], labels[:, 1]] = 1 - alpha
+
+    for _ in range(max_iter):
+        F = (P @ F) + B
+
+    return label_dict[np.argmax(F, axis=1)].tolist()
+
+
+def _get_label_info(G, label_name):
+    """Get and return information of labels from the input graph
+
+    Parameters
+    ----------
+    G : Network X graph
+    label_name : string
+        Name of the target label
+
+    Returns
+    -------
+    labels : numpy array, shape = [n_labeled_samples, 2]
+        Array of pairs of labeled node ID and label ID
+    label_dict : numpy array, shape = [n_classes]
+        Array of labels
+        i-th element contains the label corresponding label ID `i`
+    """
+    import numpy as np
+
+    labels = []
+    label_to_id = {}
+    lid = 0
+    for i, n in enumerate(G.nodes(data=True)):
+        if label_name in n[1]:
+            label = n[1][label_name]
+            if label not in label_to_id:
+                label_to_id[label] = lid
+                lid += 1
+            labels.append([i, label_to_id[label]])
+    labels = np.array(labels)
+    label_dict = np.array(
+        [label for label, _ in sorted(label_to_id.items(), key=lambda x: x[1])]
+    )
+    return (labels, label_dict)