diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/cycles.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/cycles.py | 1230 |
1 files changed, 1230 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/cycles.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/cycles.py new file mode 100644 index 00000000..975462a7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/cycles.py @@ -0,0 +1,1230 @@ +""" +======================== +Cycle finding algorithms +======================== +""" + +from collections import Counter, defaultdict +from itertools import combinations, product +from math import inf + +import networkx as nx +from networkx.utils import not_implemented_for, pairwise + +__all__ = [ + "cycle_basis", + "simple_cycles", + "recursive_simple_cycles", + "find_cycle", + "minimum_cycle_basis", + "chordless_cycles", + "girth", +] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable +def cycle_basis(G, root=None): + """Returns a list of cycles which form a basis for cycles of G. + + A basis for cycles of a network is a minimal collection of + cycles such that any cycle in the network can be written + as a sum of cycles in the basis. Here summation of cycles + is defined as "exclusive or" of the edges. Cycle bases are + useful, e.g. when deriving equations for electric circuits + using Kirchhoff's Laws. + + Parameters + ---------- + G : NetworkX Graph + root : node, optional + Specify starting node for basis. + + Returns + ------- + A list of cycle lists. Each cycle list is a list of nodes + which forms a cycle (loop) in G. + + Examples + -------- + >>> G = nx.Graph() + >>> nx.add_cycle(G, [0, 1, 2, 3]) + >>> nx.add_cycle(G, [0, 3, 4, 5]) + >>> nx.cycle_basis(G, 0) + [[3, 4, 5, 0], [1, 2, 3, 0]] + + Notes + ----- + This is adapted from algorithm CACM 491 [1]_. + + References + ---------- + .. [1] Paton, K. An algorithm for finding a fundamental set of + cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518. + + See Also + -------- + simple_cycles + minimum_cycle_basis + """ + gnodes = dict.fromkeys(G) # set-like object that maintains node order + cycles = [] + while gnodes: # loop over connected components + if root is None: + root = gnodes.popitem()[0] + stack = [root] + pred = {root: root} + used = {root: set()} + while stack: # walk the spanning tree finding cycles + z = stack.pop() # use last-in so cycles easier to find + zused = used[z] + for nbr in G[z]: + if nbr not in used: # new node + pred[nbr] = z + stack.append(nbr) + used[nbr] = {z} + elif nbr == z: # self loops + cycles.append([z]) + elif nbr not in zused: # found a cycle + pn = used[nbr] + cycle = [nbr, z] + p = pred[z] + while p not in pn: + cycle.append(p) + p = pred[p] + cycle.append(p) + cycles.append(cycle) + used[nbr].add(z) + for node in pred: + gnodes.pop(node, None) + root = None + return cycles + + +@nx._dispatchable +def simple_cycles(G, length_bound=None): + """Find simple cycles (elementary circuits) of a graph. + + A "simple cycle", or "elementary circuit", is a closed path where + no node appears twice. In a directed graph, two simple cycles are distinct + if they are not cyclic permutations of each other. In an undirected graph, + two simple cycles are distinct if they are not cyclic permutations of each + other nor of the other's reversal. + + Optionally, the cycles are bounded in length. In the unbounded case, we use + a nonrecursive, iterator/generator version of Johnson's algorithm [1]_. In + the bounded case, we use a version of the algorithm of Gupta and + Suzumura [2]_. There may be better algorithms for some cases [3]_ [4]_ [5]_. + + The algorithms of Johnson, and Gupta and Suzumura, are enhanced by some + well-known preprocessing techniques. When `G` is directed, we restrict our + attention to strongly connected components of `G`, generate all simple cycles + containing a certain node, remove that node, and further decompose the + remainder into strongly connected components. When `G` is undirected, we + restrict our attention to biconnected components, generate all simple cycles + containing a particular edge, remove that edge, and further decompose the + remainder into biconnected components. + + Note that multigraphs are supported by this function -- and in undirected + multigraphs, a pair of parallel edges is considered a cycle of length 2. + Likewise, self-loops are considered to be cycles of length 1. We define + cycles as sequences of nodes; so the presence of loops and parallel edges + does not change the number of simple cycles in a graph. + + Parameters + ---------- + G : NetworkX Graph + A networkx graph. Undirected, directed, and multigraphs are all supported. + + length_bound : int or None, optional (default=None) + If `length_bound` is an int, generate all simple cycles of `G` with length at + most `length_bound`. Otherwise, generate all simple cycles of `G`. + + Yields + ------ + list of nodes + Each cycle is represented by a list of nodes along the cycle. + + Examples + -------- + >>> G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]) + >>> sorted(nx.simple_cycles(G)) + [[0], [0, 1, 2], [0, 2], [1, 2], [2]] + + To filter the cycles so that they don't include certain nodes or edges, + copy your graph and eliminate those nodes or edges before calling. + For example, to exclude self-loops from the above example: + + >>> H = G.copy() + >>> H.remove_edges_from(nx.selfloop_edges(G)) + >>> sorted(nx.simple_cycles(H)) + [[0, 1, 2], [0, 2], [1, 2]] + + Notes + ----- + When `length_bound` is None, the time complexity is $O((n+e)(c+1))$ for $n$ + nodes, $e$ edges and $c$ simple circuits. Otherwise, when ``length_bound > 1``, + the time complexity is $O((c+n)(k-1)d^k)$ where $d$ is the average degree of + the nodes of `G` and $k$ = `length_bound`. + + Raises + ------ + ValueError + when ``length_bound < 0``. + + References + ---------- + .. [1] Finding all the elementary circuits of a directed graph. + D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975. + https://doi.org/10.1137/0204007 + .. [2] Finding All Bounded-Length Simple Cycles in a Directed Graph + A. Gupta and T. Suzumura https://arxiv.org/abs/2105.10094 + .. [3] Enumerating the cycles of a digraph: a new preprocessing strategy. + G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982. + .. [4] A search strategy for the elementary cycles of a directed graph. + J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS, + v. 16, no. 2, 192-204, 1976. + .. [5] Optimal Listing of Cycles and st-Paths in Undirected Graphs + R. Ferreira and R. Grossi and A. Marino and N. Pisanti and R. Rizzi and + G. Sacomoto https://arxiv.org/abs/1205.2766 + + See Also + -------- + cycle_basis + chordless_cycles + """ + + if length_bound is not None: + if length_bound == 0: + return + elif length_bound < 0: + raise ValueError("length bound must be non-negative") + + directed = G.is_directed() + yield from ([v] for v, Gv in G.adj.items() if v in Gv) + + if length_bound is not None and length_bound == 1: + return + + if G.is_multigraph() and not directed: + visited = set() + for u, Gu in G.adj.items(): + multiplicity = ((v, len(Guv)) for v, Guv in Gu.items() if v in visited) + yield from ([u, v] for v, m in multiplicity if m > 1) + visited.add(u) + + # explicitly filter out loops; implicitly filter out parallel edges + if directed: + G = nx.DiGraph((u, v) for u, Gu in G.adj.items() for v in Gu if v != u) + else: + G = nx.Graph((u, v) for u, Gu in G.adj.items() for v in Gu if v != u) + + # this case is not strictly necessary but improves performance + if length_bound is not None and length_bound == 2: + if directed: + visited = set() + for u, Gu in G.adj.items(): + yield from ( + [v, u] for v in visited.intersection(Gu) if G.has_edge(v, u) + ) + visited.add(u) + return + + if directed: + yield from _directed_cycle_search(G, length_bound) + else: + yield from _undirected_cycle_search(G, length_bound) + + +def _directed_cycle_search(G, length_bound): + """A dispatch function for `simple_cycles` for directed graphs. + + We generate all cycles of G through binary partition. + + 1. Pick a node v in G which belongs to at least one cycle + a. Generate all cycles of G which contain the node v. + b. Recursively generate all cycles of G \\ v. + + This is accomplished through the following: + + 1. Compute the strongly connected components SCC of G. + 2. Select and remove a biconnected component C from BCC. Select a + non-tree edge (u, v) of a depth-first search of G[C]. + 3. For each simple cycle P containing v in G[C], yield P. + 4. Add the biconnected components of G[C \\ v] to BCC. + + If the parameter length_bound is not None, then step 3 will be limited to + simple cycles of length at most length_bound. + + Parameters + ---------- + G : NetworkX DiGraph + A directed graph + + length_bound : int or None + If length_bound is an int, generate all simple cycles of G with length at most length_bound. + Otherwise, generate all simple cycles of G. + + Yields + ------ + list of nodes + Each cycle is represented by a list of nodes along the cycle. + """ + + scc = nx.strongly_connected_components + components = [c for c in scc(G) if len(c) >= 2] + while components: + c = components.pop() + Gc = G.subgraph(c) + v = next(iter(c)) + if length_bound is None: + yield from _johnson_cycle_search(Gc, [v]) + else: + yield from _bounded_cycle_search(Gc, [v], length_bound) + # delete v after searching G, to make sure we can find v + G.remove_node(v) + components.extend(c for c in scc(Gc) if len(c) >= 2) + + +def _undirected_cycle_search(G, length_bound): + """A dispatch function for `simple_cycles` for undirected graphs. + + We generate all cycles of G through binary partition. + + 1. Pick an edge (u, v) in G which belongs to at least one cycle + a. Generate all cycles of G which contain the edge (u, v) + b. Recursively generate all cycles of G \\ (u, v) + + This is accomplished through the following: + + 1. Compute the biconnected components BCC of G. + 2. Select and remove a biconnected component C from BCC. Select a + non-tree edge (u, v) of a depth-first search of G[C]. + 3. For each (v -> u) path P remaining in G[C] \\ (u, v), yield P. + 4. Add the biconnected components of G[C] \\ (u, v) to BCC. + + If the parameter length_bound is not None, then step 3 will be limited to simple paths + of length at most length_bound. + + Parameters + ---------- + G : NetworkX Graph + An undirected graph + + length_bound : int or None + If length_bound is an int, generate all simple cycles of G with length at most length_bound. + Otherwise, generate all simple cycles of G. + + Yields + ------ + list of nodes + Each cycle is represented by a list of nodes along the cycle. + """ + + bcc = nx.biconnected_components + components = [c for c in bcc(G) if len(c) >= 3] + while components: + c = components.pop() + Gc = G.subgraph(c) + uv = list(next(iter(Gc.edges))) + G.remove_edge(*uv) + # delete (u, v) before searching G, to avoid fake 3-cycles [u, v, u] + if length_bound is None: + yield from _johnson_cycle_search(Gc, uv) + else: + yield from _bounded_cycle_search(Gc, uv, length_bound) + components.extend(c for c in bcc(Gc) if len(c) >= 3) + + +class _NeighborhoodCache(dict): + """Very lightweight graph wrapper which caches neighborhoods as list. + + This dict subclass uses the __missing__ functionality to query graphs for + their neighborhoods, and store the result as a list. This is used to avoid + the performance penalty incurred by subgraph views. + """ + + def __init__(self, G): + self.G = G + + def __missing__(self, v): + Gv = self[v] = list(self.G[v]) + return Gv + + +def _johnson_cycle_search(G, path): + """The main loop of the cycle-enumeration algorithm of Johnson. + + Parameters + ---------- + G : NetworkX Graph or DiGraph + A graph + + path : list + A cycle prefix. All cycles generated will begin with this prefix. + + Yields + ------ + list of nodes + Each cycle is represented by a list of nodes along the cycle. + + References + ---------- + .. [1] Finding all the elementary circuits of a directed graph. + D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975. + https://doi.org/10.1137/0204007 + + """ + + G = _NeighborhoodCache(G) + blocked = set(path) + B = defaultdict(set) # graph portions that yield no elementary circuit + start = path[0] + stack = [iter(G[path[-1]])] + closed = [False] + while stack: + nbrs = stack[-1] + for w in nbrs: + if w == start: + yield path[:] + closed[-1] = True + elif w not in blocked: + path.append(w) + closed.append(False) + stack.append(iter(G[w])) + blocked.add(w) + break + else: # no more nbrs + stack.pop() + v = path.pop() + if closed.pop(): + if closed: + closed[-1] = True + unblock_stack = {v} + while unblock_stack: + u = unblock_stack.pop() + if u in blocked: + blocked.remove(u) + unblock_stack.update(B[u]) + B[u].clear() + else: + for w in G[v]: + B[w].add(v) + + +def _bounded_cycle_search(G, path, length_bound): + """The main loop of the cycle-enumeration algorithm of Gupta and Suzumura. + + Parameters + ---------- + G : NetworkX Graph or DiGraph + A graph + + path : list + A cycle prefix. All cycles generated will begin with this prefix. + + length_bound: int + A length bound. All cycles generated will have length at most length_bound. + + Yields + ------ + list of nodes + Each cycle is represented by a list of nodes along the cycle. + + References + ---------- + .. [1] Finding All Bounded-Length Simple Cycles in a Directed Graph + A. Gupta and T. Suzumura https://arxiv.org/abs/2105.10094 + + """ + G = _NeighborhoodCache(G) + lock = {v: 0 for v in path} + B = defaultdict(set) + start = path[0] + stack = [iter(G[path[-1]])] + blen = [length_bound] + while stack: + nbrs = stack[-1] + for w in nbrs: + if w == start: + yield path[:] + blen[-1] = 1 + elif len(path) < lock.get(w, length_bound): + path.append(w) + blen.append(length_bound) + lock[w] = len(path) + stack.append(iter(G[w])) + break + else: + stack.pop() + v = path.pop() + bl = blen.pop() + if blen: + blen[-1] = min(blen[-1], bl) + if bl < length_bound: + relax_stack = [(bl, v)] + while relax_stack: + bl, u = relax_stack.pop() + if lock.get(u, length_bound) < length_bound - bl + 1: + lock[u] = length_bound - bl + 1 + relax_stack.extend((bl + 1, w) for w in B[u].difference(path)) + else: + for w in G[v]: + B[w].add(v) + + +@nx._dispatchable +def chordless_cycles(G, length_bound=None): + """Find simple chordless cycles of a graph. + + A `simple cycle` is a closed path where no node appears twice. In a simple + cycle, a `chord` is an additional edge between two nodes in the cycle. A + `chordless cycle` is a simple cycle without chords. Said differently, a + chordless cycle is a cycle C in a graph G where the number of edges in the + induced graph G[C] is equal to the length of `C`. + + Note that some care must be taken in the case that G is not a simple graph + nor a simple digraph. Some authors limit the definition of chordless cycles + to have a prescribed minimum length; we do not. + + 1. We interpret self-loops to be chordless cycles, except in multigraphs + with multiple loops in parallel. Likewise, in a chordless cycle of + length greater than 1, there can be no nodes with self-loops. + + 2. We interpret directed two-cycles to be chordless cycles, except in + multi-digraphs when any edge in a two-cycle has a parallel copy. + + 3. We interpret parallel pairs of undirected edges as two-cycles, except + when a third (or more) parallel edge exists between the two nodes. + + 4. Generalizing the above, edges with parallel clones may not occur in + chordless cycles. + + In a directed graph, two chordless cycles are distinct if they are not + cyclic permutations of each other. In an undirected graph, two chordless + cycles are distinct if they are not cyclic permutations of each other nor of + the other's reversal. + + Optionally, the cycles are bounded in length. + + We use an algorithm strongly inspired by that of Dias et al [1]_. It has + been modified in the following ways: + + 1. Recursion is avoided, per Python's limitations + + 2. The labeling function is not necessary, because the starting paths + are chosen (and deleted from the host graph) to prevent multiple + occurrences of the same path + + 3. The search is optionally bounded at a specified length + + 4. Support for directed graphs is provided by extending cycles along + forward edges, and blocking nodes along forward and reverse edges + + 5. Support for multigraphs is provided by omitting digons from the set + of forward edges + + Parameters + ---------- + G : NetworkX DiGraph + A directed graph + + length_bound : int or None, optional (default=None) + If length_bound is an int, generate all simple cycles of G with length at + most length_bound. Otherwise, generate all simple cycles of G. + + Yields + ------ + list of nodes + Each cycle is represented by a list of nodes along the cycle. + + Examples + -------- + >>> sorted(list(nx.chordless_cycles(nx.complete_graph(4)))) + [[1, 0, 2], [1, 0, 3], [2, 0, 3], [2, 1, 3]] + + Notes + ----- + When length_bound is None, and the graph is simple, the time complexity is + $O((n+e)(c+1))$ for $n$ nodes, $e$ edges and $c$ chordless cycles. + + Raises + ------ + ValueError + when length_bound < 0. + + References + ---------- + .. [1] Efficient enumeration of chordless cycles + E. Dias and D. Castonguay and H. Longo and W.A.R. Jradi + https://arxiv.org/abs/1309.1051 + + See Also + -------- + simple_cycles + """ + + if length_bound is not None: + if length_bound == 0: + return + elif length_bound < 0: + raise ValueError("length bound must be non-negative") + + directed = G.is_directed() + multigraph = G.is_multigraph() + + if multigraph: + yield from ([v] for v, Gv in G.adj.items() if len(Gv.get(v, ())) == 1) + else: + yield from ([v] for v, Gv in G.adj.items() if v in Gv) + + if length_bound is not None and length_bound == 1: + return + + # Nodes with loops cannot belong to longer cycles. Let's delete them here. + # also, we implicitly reduce the multiplicity of edges down to 1 in the case + # of multiedges. + if directed: + F = nx.DiGraph((u, v) for u, Gu in G.adj.items() if u not in Gu for v in Gu) + B = F.to_undirected(as_view=False) + else: + F = nx.Graph((u, v) for u, Gu in G.adj.items() if u not in Gu for v in Gu) + B = None + + # If we're given a multigraph, we have a few cases to consider with parallel + # edges. + # + # 1. If we have 2 or more edges in parallel between the nodes (u, v), we + # must not construct longer cycles along (u, v). + # 2. If G is not directed, then a pair of parallel edges between (u, v) is a + # chordless cycle unless there exists a third (or more) parallel edge. + # 3. If G is directed, then parallel edges do not form cycles, but do + # preclude back-edges from forming cycles (handled in the next section), + # Thus, if an edge (u, v) is duplicated and the reverse (v, u) is also + # present, then we remove both from F. + # + # In directed graphs, we need to consider both directions that edges can + # take, so iterate over all edges (u, v) and possibly (v, u). In undirected + # graphs, we need to be a little careful to only consider every edge once, + # so we use a "visited" set to emulate node-order comparisons. + + if multigraph: + if not directed: + B = F.copy() + visited = set() + for u, Gu in G.adj.items(): + if directed: + multiplicity = ((v, len(Guv)) for v, Guv in Gu.items()) + for v, m in multiplicity: + if m > 1: + F.remove_edges_from(((u, v), (v, u))) + else: + multiplicity = ((v, len(Guv)) for v, Guv in Gu.items() if v in visited) + for v, m in multiplicity: + if m == 2: + yield [u, v] + if m > 1: + F.remove_edge(u, v) + visited.add(u) + + # If we're given a directed graphs, we need to think about digons. If we + # have two edges (u, v) and (v, u), then that's a two-cycle. If either edge + # was duplicated above, then we removed both from F. So, any digons we find + # here are chordless. After finding digons, we remove their edges from F + # to avoid traversing them in the search for chordless cycles. + if directed: + for u, Fu in F.adj.items(): + digons = [[u, v] for v in Fu if F.has_edge(v, u)] + yield from digons + F.remove_edges_from(digons) + F.remove_edges_from(e[::-1] for e in digons) + + if length_bound is not None and length_bound == 2: + return + + # Now, we prepare to search for cycles. We have removed all cycles of + # lengths 1 and 2, so F is a simple graph or simple digraph. We repeatedly + # separate digraphs into their strongly connected components, and undirected + # graphs into their biconnected components. For each component, we pick a + # node v, search for chordless cycles based at each "stem" (u, v, w), and + # then remove v from that component before separating the graph again. + if directed: + separate = nx.strongly_connected_components + + # Directed stems look like (u -> v -> w), so we use the product of + # predecessors of v with successors of v. + def stems(C, v): + for u, w in product(C.pred[v], C.succ[v]): + if not G.has_edge(u, w): # omit stems with acyclic chords + yield [u, v, w], F.has_edge(w, u) + + else: + separate = nx.biconnected_components + + # Undirected stems look like (u ~ v ~ w), but we must not also search + # (w ~ v ~ u), so we use combinations of v's neighbors of length 2. + def stems(C, v): + yield from (([u, v, w], F.has_edge(w, u)) for u, w in combinations(C[v], 2)) + + components = [c for c in separate(F) if len(c) > 2] + while components: + c = components.pop() + v = next(iter(c)) + Fc = F.subgraph(c) + Fcc = Bcc = None + for S, is_triangle in stems(Fc, v): + if is_triangle: + yield S + else: + if Fcc is None: + Fcc = _NeighborhoodCache(Fc) + Bcc = Fcc if B is None else _NeighborhoodCache(B.subgraph(c)) + yield from _chordless_cycle_search(Fcc, Bcc, S, length_bound) + + components.extend(c for c in separate(F.subgraph(c - {v})) if len(c) > 2) + + +def _chordless_cycle_search(F, B, path, length_bound): + """The main loop for chordless cycle enumeration. + + This algorithm is strongly inspired by that of Dias et al [1]_. It has been + modified in the following ways: + + 1. Recursion is avoided, per Python's limitations + + 2. The labeling function is not necessary, because the starting paths + are chosen (and deleted from the host graph) to prevent multiple + occurrences of the same path + + 3. The search is optionally bounded at a specified length + + 4. Support for directed graphs is provided by extending cycles along + forward edges, and blocking nodes along forward and reverse edges + + 5. Support for multigraphs is provided by omitting digons from the set + of forward edges + + Parameters + ---------- + F : _NeighborhoodCache + A graph of forward edges to follow in constructing cycles + + B : _NeighborhoodCache + A graph of blocking edges to prevent the production of chordless cycles + + path : list + A cycle prefix. All cycles generated will begin with this prefix. + + length_bound : int + A length bound. All cycles generated will have length at most length_bound. + + + Yields + ------ + list of nodes + Each cycle is represented by a list of nodes along the cycle. + + References + ---------- + .. [1] Efficient enumeration of chordless cycles + E. Dias and D. Castonguay and H. Longo and W.A.R. Jradi + https://arxiv.org/abs/1309.1051 + + """ + blocked = defaultdict(int) + target = path[0] + blocked[path[1]] = 1 + for w in path[1:]: + for v in B[w]: + blocked[v] += 1 + + stack = [iter(F[path[2]])] + while stack: + nbrs = stack[-1] + for w in nbrs: + if blocked[w] == 1 and (length_bound is None or len(path) < length_bound): + Fw = F[w] + if target in Fw: + yield path + [w] + else: + Bw = B[w] + if target in Bw: + continue + for v in Bw: + blocked[v] += 1 + path.append(w) + stack.append(iter(Fw)) + break + else: + stack.pop() + for v in B[path.pop()]: + blocked[v] -= 1 + + +@not_implemented_for("undirected") +@nx._dispatchable(mutates_input=True) +def recursive_simple_cycles(G): + """Find simple cycles (elementary circuits) of a directed graph. + + A `simple cycle`, or `elementary circuit`, is a closed path where + no node appears twice. Two elementary circuits are distinct if they + are not cyclic permutations of each other. + + This version uses a recursive algorithm to build a list of cycles. + You should probably use the iterator version called simple_cycles(). + Warning: This recursive version uses lots of RAM! + It appears in NetworkX for pedagogical value. + + Parameters + ---------- + G : NetworkX DiGraph + A directed graph + + Returns + ------- + A list of cycles, where each cycle is represented by a list of nodes + along the cycle. + + Example: + + >>> edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)] + >>> G = nx.DiGraph(edges) + >>> nx.recursive_simple_cycles(G) + [[0], [2], [0, 1, 2], [0, 2], [1, 2]] + + Notes + ----- + The implementation follows pp. 79-80 in [1]_. + + The time complexity is $O((n+e)(c+1))$ for $n$ nodes, $e$ edges and $c$ + elementary circuits. + + References + ---------- + .. [1] Finding all the elementary circuits of a directed graph. + D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975. + https://doi.org/10.1137/0204007 + + See Also + -------- + simple_cycles, cycle_basis + """ + + # Jon Olav Vik, 2010-08-09 + def _unblock(thisnode): + """Recursively unblock and remove nodes from B[thisnode].""" + if blocked[thisnode]: + blocked[thisnode] = False + while B[thisnode]: + _unblock(B[thisnode].pop()) + + def circuit(thisnode, startnode, component): + closed = False # set to True if elementary path is closed + path.append(thisnode) + blocked[thisnode] = True + for nextnode in component[thisnode]: # direct successors of thisnode + if nextnode == startnode: + result.append(path[:]) + closed = True + elif not blocked[nextnode]: + if circuit(nextnode, startnode, component): + closed = True + if closed: + _unblock(thisnode) + else: + for nextnode in component[thisnode]: + if thisnode not in B[nextnode]: # TODO: use set for speedup? + B[nextnode].append(thisnode) + path.pop() # remove thisnode from path + return closed + + path = [] # stack of nodes in current path + blocked = defaultdict(bool) # vertex: blocked from search? + B = defaultdict(list) # graph portions that yield no elementary circuit + result = [] # list to accumulate the circuits found + + # Johnson's algorithm exclude self cycle edges like (v, v) + # To be backward compatible, we record those cycles in advance + # and then remove from subG + for v in G: + if G.has_edge(v, v): + result.append([v]) + G.remove_edge(v, v) + + # Johnson's algorithm requires some ordering of the nodes. + # They might not be sortable so we assign an arbitrary ordering. + ordering = dict(zip(G, range(len(G)))) + for s in ordering: + # Build the subgraph induced by s and following nodes in the ordering + subgraph = G.subgraph(node for node in G if ordering[node] >= ordering[s]) + # Find the strongly connected component in the subgraph + # that contains the least node according to the ordering + strongcomp = nx.strongly_connected_components(subgraph) + mincomp = min(strongcomp, key=lambda ns: min(ordering[n] for n in ns)) + component = G.subgraph(mincomp) + if len(component) > 1: + # smallest node in the component according to the ordering + startnode = min(component, key=ordering.__getitem__) + for node in component: + blocked[node] = False + B[node][:] = [] + dummy = circuit(startnode, startnode, component) + return result + + +@nx._dispatchable +def find_cycle(G, source=None, orientation=None): + """Returns a cycle found via depth-first traversal. + + The cycle is a list of edges indicating the cyclic path. + Orientation of directed edges is controlled by `orientation`. + + Parameters + ---------- + G : graph + A directed/undirected graph/multigraph. + + source : node, list of nodes + The node from which the traversal begins. If None, then a source + is chosen arbitrarily and repeatedly until all edges from each node in + the graph are searched. + + orientation : None | 'original' | 'reverse' | 'ignore' (default: None) + For directed graphs and directed multigraphs, edge traversals need not + respect the original orientation of the edges. + When set to 'reverse' every edge is traversed in the reverse direction. + When set to 'ignore', every edge is treated as undirected. + When set to 'original', every edge is treated as directed. + In all three cases, the yielded edge tuples add a last entry to + indicate the direction in which that edge was traversed. + If orientation is None, the yielded edge has no direction indicated. + The direction is respected, but not reported. + + Returns + ------- + edges : directed edges + A list of directed edges indicating the path taken for the loop. + If no cycle is found, then an exception is raised. + For graphs, an edge is of the form `(u, v)` where `u` and `v` + are the tail and head of the edge as determined by the traversal. + For multigraphs, an edge is of the form `(u, v, key)`, where `key` is + the key of the edge. When the graph is directed, then `u` and `v` + are always in the order of the actual directed edge. + If orientation is not None then the edge tuple is extended to include + the direction of traversal ('forward' or 'reverse') on that edge. + + Raises + ------ + NetworkXNoCycle + If no cycle was found. + + Examples + -------- + In this example, we construct a DAG and find, in the first call, that there + are no directed cycles, and so an exception is raised. In the second call, + we ignore edge orientations and find that there is an undirected cycle. + Note that the second call finds a directed cycle while effectively + traversing an undirected graph, and so, we found an "undirected cycle". + This means that this DAG structure does not form a directed tree (which + is also known as a polytree). + + >>> G = nx.DiGraph([(0, 1), (0, 2), (1, 2)]) + >>> nx.find_cycle(G, orientation="original") + Traceback (most recent call last): + ... + networkx.exception.NetworkXNoCycle: No cycle found. + >>> list(nx.find_cycle(G, orientation="ignore")) + [(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')] + + See Also + -------- + simple_cycles + """ + if not G.is_directed() or orientation in (None, "original"): + + def tailhead(edge): + return edge[:2] + + elif orientation == "reverse": + + def tailhead(edge): + return edge[1], edge[0] + + elif orientation == "ignore": + + def tailhead(edge): + if edge[-1] == "reverse": + return edge[1], edge[0] + return edge[:2] + + explored = set() + cycle = [] + final_node = None + for start_node in G.nbunch_iter(source): + if start_node in explored: + # No loop is possible. + continue + + edges = [] + # All nodes seen in this iteration of edge_dfs + seen = {start_node} + # Nodes in active path. + active_nodes = {start_node} + previous_head = None + + for edge in nx.edge_dfs(G, start_node, orientation): + # Determine if this edge is a continuation of the active path. + tail, head = tailhead(edge) + if head in explored: + # Then we've already explored it. No loop is possible. + continue + if previous_head is not None and tail != previous_head: + # This edge results from backtracking. + # Pop until we get a node whose head equals the current tail. + # So for example, we might have: + # (0, 1), (1, 2), (2, 3), (1, 4) + # which must become: + # (0, 1), (1, 4) + while True: + try: + popped_edge = edges.pop() + except IndexError: + edges = [] + active_nodes = {tail} + break + else: + popped_head = tailhead(popped_edge)[1] + active_nodes.remove(popped_head) + + if edges: + last_head = tailhead(edges[-1])[1] + if tail == last_head: + break + edges.append(edge) + + if head in active_nodes: + # We have a loop! + cycle.extend(edges) + final_node = head + break + else: + seen.add(head) + active_nodes.add(head) + previous_head = head + + if cycle: + break + else: + explored.update(seen) + + else: + assert len(cycle) == 0 + raise nx.exception.NetworkXNoCycle("No cycle found.") + + # We now have a list of edges which ends on a cycle. + # So we need to remove from the beginning edges that are not relevant. + + for i, edge in enumerate(cycle): + tail, head = tailhead(edge) + if tail == final_node: + break + + return cycle[i:] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable(edge_attrs="weight") +def minimum_cycle_basis(G, weight=None): + """Returns a minimum weight cycle basis for G + + Minimum weight means a cycle basis for which the total weight + (length for unweighted graphs) of all the cycles is minimum. + + Parameters + ---------- + G : NetworkX Graph + weight: string + name of the edge attribute to use for edge weights + + Returns + ------- + A list of cycle lists. Each cycle list is a list of nodes + which forms a cycle (loop) in G. Note that the nodes are not + necessarily returned in a order by which they appear in the cycle + + Examples + -------- + >>> G = nx.Graph() + >>> nx.add_cycle(G, [0, 1, 2, 3]) + >>> nx.add_cycle(G, [0, 3, 4, 5]) + >>> nx.minimum_cycle_basis(G) + [[5, 4, 3, 0], [3, 2, 1, 0]] + + References: + [1] Kavitha, Telikepalli, et al. "An O(m^2n) Algorithm for + Minimum Cycle Basis of Graphs." + http://link.springer.com/article/10.1007/s00453-007-9064-z + [2] de Pina, J. 1995. Applications of shortest path methods. + Ph.D. thesis, University of Amsterdam, Netherlands + + See Also + -------- + simple_cycles, cycle_basis + """ + # We first split the graph in connected subgraphs + return sum( + (_min_cycle_basis(G.subgraph(c), weight) for c in nx.connected_components(G)), + [], + ) + + +def _min_cycle_basis(G, weight): + cb = [] + # We extract the edges not in a spanning tree. We do not really need a + # *minimum* spanning tree. That is why we call the next function with + # weight=None. Depending on implementation, it may be faster as well + tree_edges = list(nx.minimum_spanning_edges(G, weight=None, data=False)) + chords = G.edges - tree_edges - {(v, u) for u, v in tree_edges} + + # We maintain a set of vectors orthogonal to sofar found cycles + set_orth = [{edge} for edge in chords] + while set_orth: + base = set_orth.pop() + # kth cycle is "parallel" to kth vector in set_orth + cycle_edges = _min_cycle(G, base, weight) + cb.append([v for u, v in cycle_edges]) + + # now update set_orth so that k+1,k+2... th elements are + # orthogonal to the newly found cycle, as per [p. 336, 1] + set_orth = [ + ( + {e for e in orth if e not in base if e[::-1] not in base} + | {e for e in base if e not in orth if e[::-1] not in orth} + ) + if sum((e in orth or e[::-1] in orth) for e in cycle_edges) % 2 + else orth + for orth in set_orth + ] + return cb + + +def _min_cycle(G, orth, weight): + """ + Computes the minimum weight cycle in G, + orthogonal to the vector orth as per [p. 338, 1] + Use (u, 1) to indicate the lifted copy of u (denoted u' in paper). + """ + Gi = nx.Graph() + + # Add 2 copies of each edge in G to Gi. + # If edge is in orth, add cross edge; otherwise in-plane edge + for u, v, wt in G.edges(data=weight, default=1): + if (u, v) in orth or (v, u) in orth: + Gi.add_edges_from([(u, (v, 1)), ((u, 1), v)], Gi_weight=wt) + else: + Gi.add_edges_from([(u, v), ((u, 1), (v, 1))], Gi_weight=wt) + + # find the shortest length in Gi between n and (n, 1) for each n + # Note: Use "Gi_weight" for name of weight attribute + spl = nx.shortest_path_length + lift = {n: spl(Gi, source=n, target=(n, 1), weight="Gi_weight") for n in G} + + # Now compute that short path in Gi, which translates to a cycle in G + start = min(lift, key=lift.get) + end = (start, 1) + min_path_i = nx.shortest_path(Gi, source=start, target=end, weight="Gi_weight") + + # Now we obtain the actual path, re-map nodes in Gi to those in G + min_path = [n if n in G else n[0] for n in min_path_i] + + # Now remove the edges that occur two times + # two passes: flag which edges get kept, then build it + edgelist = list(pairwise(min_path)) + edgeset = set() + for e in edgelist: + if e in edgeset: + edgeset.remove(e) + elif e[::-1] in edgeset: + edgeset.remove(e[::-1]) + else: + edgeset.add(e) + + min_edgelist = [] + for e in edgelist: + if e in edgeset: + min_edgelist.append(e) + edgeset.remove(e) + elif e[::-1] in edgeset: + min_edgelist.append(e[::-1]) + edgeset.remove(e[::-1]) + + return min_edgelist + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable +def girth(G): + """Returns the girth of the graph. + + The girth of a graph is the length of its shortest cycle, or infinity if + the graph is acyclic. The algorithm follows the description given on the + Wikipedia page [1]_, and runs in time O(mn) on a graph with m edges and n + nodes. + + Parameters + ---------- + G : NetworkX Graph + + Returns + ------- + int or math.inf + + Examples + -------- + All examples below (except P_5) can easily be checked using Wikipedia, + which has a page for each of these famous graphs. + + >>> nx.girth(nx.chvatal_graph()) + 4 + >>> nx.girth(nx.tutte_graph()) + 4 + >>> nx.girth(nx.petersen_graph()) + 5 + >>> nx.girth(nx.heawood_graph()) + 6 + >>> nx.girth(nx.pappus_graph()) + 6 + >>> nx.girth(nx.path_graph(5)) + inf + + References + ---------- + .. [1] `Wikipedia: Girth <https://en.wikipedia.org/wiki/Girth_(graph_theory)>`_ + + """ + girth = depth_limit = inf + tree_edge = nx.algorithms.traversal.breadth_first_search.TREE_EDGE + level_edge = nx.algorithms.traversal.breadth_first_search.LEVEL_EDGE + for n in G: + # run a BFS from source n, keeping track of distances; since we want + # the shortest cycle, no need to explore beyond the current minimum length + depth = {n: 0} + for u, v, label in nx.bfs_labeled_edges(G, n): + du = depth[u] + if du > depth_limit: + break + if label is tree_edge: + depth[v] = du + 1 + else: + # if (u, v) is a level edge, the length is du + du + 1 (odd) + # otherwise, it's a forward edge; length is du + (du + 1) + 1 (even) + delta = label is level_edge + length = du + du + 2 - delta + if length < girth: + girth = length + depth_limit = du - delta + + return girth |