diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/community/tests/test_quality.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/community/tests/test_quality.py | 139 |
1 files changed, 139 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/community/tests/test_quality.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/community/tests/test_quality.py new file mode 100644 index 00000000..c502c7e3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/community/tests/test_quality.py @@ -0,0 +1,139 @@ +"""Unit tests for the :mod:`networkx.algorithms.community.quality` +module. + +""" + +import pytest + +import networkx as nx +from networkx import barbell_graph +from networkx.algorithms.community import modularity, partition_quality +from networkx.algorithms.community.quality import inter_community_edges + + +class TestPerformance: + """Unit tests for the :func:`performance` function.""" + + def test_bad_partition(self): + """Tests that a poor partition has a low performance measure.""" + G = barbell_graph(3, 0) + partition = [{0, 1, 4}, {2, 3, 5}] + assert 8 / 15 == pytest.approx(partition_quality(G, partition)[1], abs=1e-7) + + def test_good_partition(self): + """Tests that a good partition has a high performance measure.""" + G = barbell_graph(3, 0) + partition = [{0, 1, 2}, {3, 4, 5}] + assert 14 / 15 == pytest.approx(partition_quality(G, partition)[1], abs=1e-7) + + +class TestCoverage: + """Unit tests for the :func:`coverage` function.""" + + def test_bad_partition(self): + """Tests that a poor partition has a low coverage measure.""" + G = barbell_graph(3, 0) + partition = [{0, 1, 4}, {2, 3, 5}] + assert 3 / 7 == pytest.approx(partition_quality(G, partition)[0], abs=1e-7) + + def test_good_partition(self): + """Tests that a good partition has a high coverage measure.""" + G = barbell_graph(3, 0) + partition = [{0, 1, 2}, {3, 4, 5}] + assert 6 / 7 == pytest.approx(partition_quality(G, partition)[0], abs=1e-7) + + +def test_modularity(): + G = nx.barbell_graph(3, 0) + C = [{0, 1, 4}, {2, 3, 5}] + assert (-16 / (14**2)) == pytest.approx(modularity(G, C), abs=1e-7) + C = [{0, 1, 2}, {3, 4, 5}] + assert (35 * 2) / (14**2) == pytest.approx(modularity(G, C), abs=1e-7) + + n = 1000 + G = nx.erdos_renyi_graph(n, 0.09, seed=42, directed=True) + C = [set(range(n // 2)), set(range(n // 2, n))] + assert 0.00017154251389292754 == pytest.approx(modularity(G, C), abs=1e-7) + + G = nx.margulis_gabber_galil_graph(10) + mid_value = G.number_of_nodes() // 2 + nodes = list(G.nodes) + C = [set(nodes[:mid_value]), set(nodes[mid_value:])] + assert 0.13 == pytest.approx(modularity(G, C), abs=1e-7) + + G = nx.DiGraph() + G.add_edges_from([(2, 1), (2, 3), (3, 4)]) + C = [{1, 2}, {3, 4}] + assert 2 / 9 == pytest.approx(modularity(G, C), abs=1e-7) + + +def test_modularity_resolution(): + G = nx.barbell_graph(3, 0) + C = [{0, 1, 4}, {2, 3, 5}] + assert modularity(G, C) == pytest.approx(3 / 7 - 100 / 14**2) + gamma = 2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx(3 / 7 - gamma * 100 / 14**2) + gamma = 0.2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx(3 / 7 - gamma * 100 / 14**2) + + C = [{0, 1, 2}, {3, 4, 5}] + assert modularity(G, C) == pytest.approx(6 / 7 - 98 / 14**2) + gamma = 2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx(6 / 7 - gamma * 98 / 14**2) + gamma = 0.2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx(6 / 7 - gamma * 98 / 14**2) + + G = nx.barbell_graph(5, 3) + C = [frozenset(range(5)), frozenset(range(8, 13)), frozenset(range(5, 8))] + gamma = 1 + result = modularity(G, C, resolution=gamma) + # This C is maximal for gamma=1: modularity = 0.518229 + assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2))) + gamma = 2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2))) + gamma = 0.2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2))) + + C = [{0, 1, 2, 3}, {9, 10, 11, 12}, {5, 6, 7}, {4}, {8}] + gamma = 1 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2))) + gamma = 2.5 + result = modularity(G, C, resolution=gamma) + # This C is maximal for gamma=2.5: modularity = -0.06553819 + assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2))) + gamma = 0.2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2))) + + C = [frozenset(range(8)), frozenset(range(8, 13))] + gamma = 1 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2))) + gamma = 2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2))) + gamma = 0.3 + result = modularity(G, C, resolution=gamma) + # This C is maximal for gamma=0.3: modularity = 0.805990 + assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2))) + + +def test_inter_community_edges_with_digraphs(): + G = nx.complete_graph(2, create_using=nx.DiGraph()) + partition = [{0}, {1}] + assert inter_community_edges(G, partition) == 2 + + G = nx.complete_graph(10, create_using=nx.DiGraph()) + partition = [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}] + assert inter_community_edges(G, partition) == 70 + + G = nx.cycle_graph(4, create_using=nx.DiGraph()) + partition = [{0, 1}, {2, 3}] + assert inter_community_edges(G, partition) == 2 |