diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/eigenvector.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/centrality/eigenvector.py | 357 |
1 files changed, 357 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/eigenvector.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/eigenvector.py new file mode 100644 index 00000000..b8cf63e8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/eigenvector.py @@ -0,0 +1,357 @@ +"""Functions for computing eigenvector centrality.""" + +import math + +import networkx as nx +from networkx.utils import not_implemented_for + +__all__ = ["eigenvector_centrality", "eigenvector_centrality_numpy"] + + +@not_implemented_for("multigraph") +@nx._dispatchable(edge_attrs="weight") +def eigenvector_centrality(G, max_iter=100, tol=1.0e-6, nstart=None, weight=None): + r"""Compute the eigenvector centrality for the graph G. + + Eigenvector centrality computes the centrality for a node by adding + the centrality of its predecessors. The centrality for node $i$ is the + $i$-th element of a left eigenvector associated with the eigenvalue $\lambda$ + of maximum modulus that is positive. Such an eigenvector $x$ is + defined up to a multiplicative constant by the equation + + .. math:: + + \lambda x^T = x^T A, + + where $A$ is the adjacency matrix of the graph G. By definition of + row-column product, the equation above is equivalent to + + .. math:: + + \lambda x_i = \sum_{j\to i}x_j. + + That is, adding the eigenvector centralities of the predecessors of + $i$ one obtains the eigenvector centrality of $i$ multiplied by + $\lambda$. In the case of undirected graphs, $x$ also solves the familiar + right-eigenvector equation $Ax = \lambda x$. + + By virtue of the Perron–Frobenius theorem [1]_, if G is strongly + connected there is a unique eigenvector $x$, and all its entries + are strictly positive. + + If G is not strongly connected there might be several left + eigenvectors associated with $\lambda$, and some of their elements + might be zero. + + Parameters + ---------- + G : graph + A networkx graph. + + max_iter : integer, optional (default=100) + Maximum number of power iterations. + + tol : float, optional (default=1.0e-6) + Error tolerance (in Euclidean norm) used to check convergence in + power iteration. + + nstart : dictionary, optional (default=None) + Starting value of power iteration for each node. Must have a nonzero + projection on the desired eigenvector for the power method to converge. + If None, this implementation uses an all-ones vector, which is a safe + choice. + + weight : None or string, optional (default=None) + If None, all edge weights are considered equal. Otherwise holds the + name of the edge attribute used as weight. In this measure the + weight is interpreted as the connection strength. + + Returns + ------- + nodes : dictionary + Dictionary of nodes with eigenvector centrality as the value. The + associated vector has unit Euclidean norm and the values are + nonegative. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> centrality = nx.eigenvector_centrality(G) + >>> sorted((v, f"{c:0.2f}") for v, c in centrality.items()) + [(0, '0.37'), (1, '0.60'), (2, '0.60'), (3, '0.37')] + + Raises + ------ + NetworkXPointlessConcept + If the graph G is the null graph. + + NetworkXError + If each value in `nstart` is zero. + + PowerIterationFailedConvergence + If the algorithm fails to converge to the specified tolerance + within the specified number of iterations of the power iteration + method. + + See Also + -------- + eigenvector_centrality_numpy + :func:`~networkx.algorithms.link_analysis.pagerank_alg.pagerank` + :func:`~networkx.algorithms.link_analysis.hits_alg.hits` + + Notes + ----- + Eigenvector centrality was introduced by Landau [2]_ for chess + tournaments. It was later rediscovered by Wei [3]_ and then + popularized by Kendall [4]_ in the context of sport ranking. Berge + introduced a general definition for graphs based on social connections + [5]_. Bonacich [6]_ reintroduced again eigenvector centrality and made + it popular in link analysis. + + This function computes the left dominant eigenvector, which corresponds + to adding the centrality of predecessors: this is the usual approach. + To add the centrality of successors first reverse the graph with + ``G.reverse()``. + + The implementation uses power iteration [7]_ to compute a dominant + eigenvector starting from the provided vector `nstart`. Convergence is + guaranteed as long as `nstart` has a nonzero projection on a dominant + eigenvector, which certainly happens using the default value. + + The method stops when the change in the computed vector between two + iterations is smaller than an error tolerance of ``G.number_of_nodes() + * tol`` or after ``max_iter`` iterations, but in the second case it + raises an exception. + + This implementation uses $(A + I)$ rather than the adjacency matrix + $A$ because the change preserves eigenvectors, but it shifts the + spectrum, thus guaranteeing convergence even for networks with + negative eigenvalues of maximum modulus. + + References + ---------- + .. [1] Abraham Berman and Robert J. Plemmons. + "Nonnegative Matrices in the Mathematical Sciences." + Classics in Applied Mathematics. SIAM, 1994. + + .. [2] Edmund Landau. + "Zur relativen Wertbemessung der Turnierresultate." + Deutsches Wochenschach, 11:366–369, 1895. + + .. [3] Teh-Hsing Wei. + "The Algebraic Foundations of Ranking Theory." + PhD thesis, University of Cambridge, 1952. + + .. [4] Maurice G. Kendall. + "Further contributions to the theory of paired comparisons." + Biometrics, 11(1):43–62, 1955. + https://www.jstor.org/stable/3001479 + + .. [5] Claude Berge + "Théorie des graphes et ses applications." + Dunod, Paris, France, 1958. + + .. [6] Phillip Bonacich. + "Technique for analyzing overlapping memberships." + Sociological Methodology, 4:176–185, 1972. + https://www.jstor.org/stable/270732 + + .. [7] Power iteration:: https://en.wikipedia.org/wiki/Power_iteration + + """ + if len(G) == 0: + raise nx.NetworkXPointlessConcept( + "cannot compute centrality for the null graph" + ) + # If no initial vector is provided, start with the all-ones vector. + if nstart is None: + nstart = {v: 1 for v in G} + if all(v == 0 for v in nstart.values()): + raise nx.NetworkXError("initial vector cannot have all zero values") + # Normalize the initial vector so that each entry is in [0, 1]. This is + # guaranteed to never have a divide-by-zero error by the previous line. + nstart_sum = sum(nstart.values()) + x = {k: v / nstart_sum for k, v in nstart.items()} + nnodes = G.number_of_nodes() + # make up to max_iter iterations + for _ in range(max_iter): + xlast = x + x = xlast.copy() # Start with xlast times I to iterate with (A+I) + # do the multiplication y^T = x^T A (left eigenvector) + for n in x: + for nbr in G[n]: + w = G[n][nbr].get(weight, 1) if weight else 1 + x[nbr] += xlast[n] * w + # Normalize the vector. The normalization denominator `norm` + # should never be zero by the Perron--Frobenius + # theorem. However, in case it is due to numerical error, we + # assume the norm to be one instead. + norm = math.hypot(*x.values()) or 1 + x = {k: v / norm for k, v in x.items()} + # Check for convergence (in the L_1 norm). + if sum(abs(x[n] - xlast[n]) for n in x) < nnodes * tol: + return x + raise nx.PowerIterationFailedConvergence(max_iter) + + +@nx._dispatchable(edge_attrs="weight") +def eigenvector_centrality_numpy(G, weight=None, max_iter=50, tol=0): + r"""Compute the eigenvector centrality for the graph `G`. + + Eigenvector centrality computes the centrality for a node by adding + the centrality of its predecessors. The centrality for node $i$ is the + $i$-th element of a left eigenvector associated with the eigenvalue $\lambda$ + of maximum modulus that is positive. Such an eigenvector $x$ is + defined up to a multiplicative constant by the equation + + .. math:: + + \lambda x^T = x^T A, + + where $A$ is the adjacency matrix of the graph `G`. By definition of + row-column product, the equation above is equivalent to + + .. math:: + + \lambda x_i = \sum_{j\to i}x_j. + + That is, adding the eigenvector centralities of the predecessors of + $i$ one obtains the eigenvector centrality of $i$ multiplied by + $\lambda$. In the case of undirected graphs, $x$ also solves the familiar + right-eigenvector equation $Ax = \lambda x$. + + By virtue of the Perron--Frobenius theorem [1]_, if `G` is (strongly) + connected, there is a unique eigenvector $x$, and all its entries + are strictly positive. + + However, if `G` is not (strongly) connected, there might be several left + eigenvectors associated with $\lambda$, and some of their elements + might be zero. + Depending on the method used to choose eigenvectors, round-off error can affect + which of the infinitely many eigenvectors is reported. + This can lead to inconsistent results for the same graph, + which the underlying implementation is not robust to. + For this reason, only (strongly) connected graphs are accepted. + + Parameters + ---------- + G : graph + A connected NetworkX graph. + + weight : None or string, optional (default=None) + If ``None``, all edge weights are considered equal. Otherwise holds the + name of the edge attribute used as weight. In this measure the + weight is interpreted as the connection strength. + + max_iter : integer, optional (default=50) + Maximum number of Arnoldi update iterations allowed. + + tol : float, optional (default=0) + Relative accuracy for eigenvalues (stopping criterion). + The default value of 0 implies machine precision. + + Returns + ------- + nodes : dict of nodes + Dictionary of nodes with eigenvector centrality as the value. The + associated vector has unit Euclidean norm and the values are + nonnegative. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> centrality = nx.eigenvector_centrality_numpy(G) + >>> print([f"{node} {centrality[node]:0.2f}" for node in centrality]) + ['0 0.37', '1 0.60', '2 0.60', '3 0.37'] + + Raises + ------ + NetworkXPointlessConcept + If the graph `G` is the null graph. + + ArpackNoConvergence + When the requested convergence is not obtained. The currently + converged eigenvalues and eigenvectors can be found as + eigenvalues and eigenvectors attributes of the exception object. + + AmbiguousSolution + If `G` is not connected. + + See Also + -------- + :func:`scipy.sparse.linalg.eigs` + eigenvector_centrality + :func:`~networkx.algorithms.link_analysis.pagerank_alg.pagerank` + :func:`~networkx.algorithms.link_analysis.hits_alg.hits` + + Notes + ----- + Eigenvector centrality was introduced by Landau [2]_ for chess + tournaments. It was later rediscovered by Wei [3]_ and then + popularized by Kendall [4]_ in the context of sport ranking. Berge + introduced a general definition for graphs based on social connections + [5]_. Bonacich [6]_ reintroduced again eigenvector centrality and made + it popular in link analysis. + + This function computes the left dominant eigenvector, which corresponds + to adding the centrality of predecessors: this is the usual approach. + To add the centrality of successors first reverse the graph with + ``G.reverse()``. + + This implementation uses the + :func:`SciPy sparse eigenvalue solver<scipy.sparse.linalg.eigs>` (ARPACK) + to find the largest eigenvalue/eigenvector pair using Arnoldi iterations + [7]_. + + References + ---------- + .. [1] Abraham Berman and Robert J. Plemmons. + "Nonnegative Matrices in the Mathematical Sciences". + Classics in Applied Mathematics. SIAM, 1994. + + .. [2] Edmund Landau. + "Zur relativen Wertbemessung der Turnierresultate". + Deutsches Wochenschach, 11:366--369, 1895. + + .. [3] Teh-Hsing Wei. + "The Algebraic Foundations of Ranking Theory". + PhD thesis, University of Cambridge, 1952. + + .. [4] Maurice G. Kendall. + "Further contributions to the theory of paired comparisons". + Biometrics, 11(1):43--62, 1955. + https://www.jstor.org/stable/3001479 + + .. [5] Claude Berge. + "Théorie des graphes et ses applications". + Dunod, Paris, France, 1958. + + .. [6] Phillip Bonacich. + "Technique for analyzing overlapping memberships". + Sociological Methodology, 4:176--185, 1972. + https://www.jstor.org/stable/270732 + + .. [7] Arnoldi, W. E. (1951). + "The principle of minimized iterations in the solution of the matrix eigenvalue problem". + Quarterly of Applied Mathematics. 9 (1): 17--29. + https://doi.org/10.1090/qam/42792 + """ + import numpy as np + import scipy as sp + + if len(G) == 0: + raise nx.NetworkXPointlessConcept( + "cannot compute centrality for the null graph" + ) + connected = nx.is_strongly_connected(G) if G.is_directed() else nx.is_connected(G) + if not connected: # See gh-6888. + raise nx.AmbiguousSolution( + "`eigenvector_centrality_numpy` does not give consistent results for disconnected graphs" + ) + M = nx.to_scipy_sparse_array(G, nodelist=list(G), weight=weight, dtype=float) + _, eigenvector = sp.sparse.linalg.eigs( + M.T, k=1, which="LR", maxiter=max_iter, tol=tol + ) + largest = eigenvector.flatten().real + norm = np.sign(largest.sum()) * sp.linalg.norm(largest) + return dict(zip(G, (largest / norm).tolist())) |