aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/tests/test_cluster.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/tests/test_cluster.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/tests/test_cluster.py84
1 files changed, 84 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/tests/test_cluster.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/tests/test_cluster.py
new file mode 100644
index 00000000..72e2dbad
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/tests/test_cluster.py
@@ -0,0 +1,84 @@
+import pytest
+
+import networkx as nx
+from networkx.algorithms import bipartite
+from networkx.algorithms.bipartite.cluster import cc_dot, cc_max, cc_min
+
+
+def test_pairwise_bipartite_cc_functions():
+ # Test functions for different kinds of bipartite clustering coefficients
+ # between pairs of nodes using 3 example graphs from figure 5 p. 40
+ # Latapy et al (2008)
+ G1 = nx.Graph([(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7)])
+ G2 = nx.Graph([(0, 2), (0, 3), (0, 4), (1, 3), (1, 4), (1, 5)])
+ G3 = nx.Graph(
+ [(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9)]
+ )
+ result = {
+ 0: [1 / 3.0, 2 / 3.0, 2 / 5.0],
+ 1: [1 / 2.0, 2 / 3.0, 2 / 3.0],
+ 2: [2 / 8.0, 2 / 5.0, 2 / 5.0],
+ }
+ for i, G in enumerate([G1, G2, G3]):
+ assert bipartite.is_bipartite(G)
+ assert cc_dot(set(G[0]), set(G[1])) == result[i][0]
+ assert cc_min(set(G[0]), set(G[1])) == result[i][1]
+ assert cc_max(set(G[0]), set(G[1])) == result[i][2]
+
+
+def test_star_graph():
+ G = nx.star_graph(3)
+ # all modes are the same
+ answer = {0: 0, 1: 1, 2: 1, 3: 1}
+ assert bipartite.clustering(G, mode="dot") == answer
+ assert bipartite.clustering(G, mode="min") == answer
+ assert bipartite.clustering(G, mode="max") == answer
+
+
+def test_not_bipartite():
+ with pytest.raises(nx.NetworkXError):
+ bipartite.clustering(nx.complete_graph(4))
+
+
+def test_bad_mode():
+ with pytest.raises(nx.NetworkXError):
+ bipartite.clustering(nx.path_graph(4), mode="foo")
+
+
+def test_path_graph():
+ G = nx.path_graph(4)
+ answer = {0: 0.5, 1: 0.5, 2: 0.5, 3: 0.5}
+ assert bipartite.clustering(G, mode="dot") == answer
+ assert bipartite.clustering(G, mode="max") == answer
+ answer = {0: 1, 1: 1, 2: 1, 3: 1}
+ assert bipartite.clustering(G, mode="min") == answer
+
+
+def test_average_path_graph():
+ G = nx.path_graph(4)
+ assert bipartite.average_clustering(G, mode="dot") == 0.5
+ assert bipartite.average_clustering(G, mode="max") == 0.5
+ assert bipartite.average_clustering(G, mode="min") == 1
+
+
+def test_ra_clustering_davis():
+ G = nx.davis_southern_women_graph()
+ cc4 = round(bipartite.robins_alexander_clustering(G), 3)
+ assert cc4 == 0.468
+
+
+def test_ra_clustering_square():
+ G = nx.path_graph(4)
+ G.add_edge(0, 3)
+ assert bipartite.robins_alexander_clustering(G) == 1.0
+
+
+def test_ra_clustering_zero():
+ G = nx.Graph()
+ assert bipartite.robins_alexander_clustering(G) == 0
+ G.add_nodes_from(range(4))
+ assert bipartite.robins_alexander_clustering(G) == 0
+ G.add_edges_from([(0, 1), (2, 3), (3, 4)])
+ assert bipartite.robins_alexander_clustering(G) == 0
+ G.add_edge(1, 2)
+ assert bipartite.robins_alexander_clustering(G) == 0