aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/matrix.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/matrix.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/matrix.py168
1 files changed, 168 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/matrix.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/matrix.py
new file mode 100644
index 00000000..bbfa47c7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/matrix.py
@@ -0,0 +1,168 @@
+"""
+====================
+Biadjacency matrices
+====================
+"""
+
+import itertools
+
+import networkx as nx
+from networkx.convert_matrix import _generate_weighted_edges
+
+__all__ = ["biadjacency_matrix", "from_biadjacency_matrix"]
+
+
+@nx._dispatchable(edge_attrs="weight")
+def biadjacency_matrix(
+ G, row_order, column_order=None, dtype=None, weight="weight", format="csr"
+):
+ r"""Returns the biadjacency matrix of the bipartite graph G.
+
+ Let `G = (U, V, E)` be a bipartite graph with node sets
+ `U = u_{1},...,u_{r}` and `V = v_{1},...,v_{s}`. The biadjacency
+ matrix [1]_ is the `r` x `s` matrix `B` in which `b_{i,j} = 1`
+ if, and only if, `(u_i, v_j) \in E`. If the parameter `weight` is
+ not `None` and matches the name of an edge attribute, its value is
+ used instead of 1.
+
+ Parameters
+ ----------
+ G : graph
+ A NetworkX graph
+
+ row_order : list of nodes
+ The rows of the matrix are ordered according to the list of nodes.
+
+ column_order : list, optional
+ The columns of the matrix are ordered according to the list of nodes.
+ If column_order is None, then the ordering of columns is arbitrary.
+
+ dtype : NumPy data-type, optional
+ A valid NumPy dtype used to initialize the array. If None, then the
+ NumPy default is used.
+
+ weight : string or None, optional (default='weight')
+ The edge data key used to provide each value in the matrix.
+ If None, then each edge has weight 1.
+
+ format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}
+ The type of the matrix to be returned (default 'csr'). For
+ some algorithms different implementations of sparse matrices
+ can perform better. See [2]_ for details.
+
+ Returns
+ -------
+ M : SciPy sparse array
+ Biadjacency matrix representation of the bipartite graph G.
+
+ Notes
+ -----
+ No attempt is made to check that the input graph is bipartite.
+
+ For directed bipartite graphs only successors are considered as neighbors.
+ To obtain an adjacency matrix with ones (or weight values) for both
+ predecessors and successors you have to generate two biadjacency matrices
+ where the rows of one of them are the columns of the other, and then add
+ one to the transpose of the other.
+
+ See Also
+ --------
+ adjacency_matrix
+ from_biadjacency_matrix
+
+ References
+ ----------
+ .. [1] https://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
+ .. [2] Scipy Dev. References, "Sparse Matrices",
+ https://docs.scipy.org/doc/scipy/reference/sparse.html
+ """
+ import scipy as sp
+
+ nlen = len(row_order)
+ if nlen == 0:
+ raise nx.NetworkXError("row_order is empty list")
+ if len(row_order) != len(set(row_order)):
+ msg = "Ambiguous ordering: `row_order` contained duplicates."
+ raise nx.NetworkXError(msg)
+ if column_order is None:
+ column_order = list(set(G) - set(row_order))
+ mlen = len(column_order)
+ if len(column_order) != len(set(column_order)):
+ msg = "Ambiguous ordering: `column_order` contained duplicates."
+ raise nx.NetworkXError(msg)
+
+ row_index = dict(zip(row_order, itertools.count()))
+ col_index = dict(zip(column_order, itertools.count()))
+
+ if G.number_of_edges() == 0:
+ row, col, data = [], [], []
+ else:
+ row, col, data = zip(
+ *(
+ (row_index[u], col_index[v], d.get(weight, 1))
+ for u, v, d in G.edges(row_order, data=True)
+ if u in row_index and v in col_index
+ )
+ )
+ A = sp.sparse.coo_array((data, (row, col)), shape=(nlen, mlen), dtype=dtype)
+ try:
+ return A.asformat(format)
+ except ValueError as err:
+ raise nx.NetworkXError(f"Unknown sparse array format: {format}") from err
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def from_biadjacency_matrix(A, create_using=None, edge_attribute="weight"):
+ r"""Creates a new bipartite graph from a biadjacency matrix given as a
+ SciPy sparse array.
+
+ Parameters
+ ----------
+ A: scipy sparse array
+ A biadjacency matrix representation of a graph
+
+ create_using: NetworkX graph
+ Use specified graph for result. The default is Graph()
+
+ edge_attribute: string
+ Name of edge attribute to store matrix numeric value. The data will
+ have the same type as the matrix entry (int, float, (real,imag)).
+
+ Notes
+ -----
+ The nodes are labeled with the attribute `bipartite` set to an integer
+ 0 or 1 representing membership in part 0 or part 1 of the bipartite graph.
+
+ If `create_using` is an instance of :class:`networkx.MultiGraph` or
+ :class:`networkx.MultiDiGraph` and the entries of `A` are of
+ type :class:`int`, then this function returns a multigraph (of the same
+ type as `create_using`) with parallel edges. In this case, `edge_attribute`
+ will be ignored.
+
+ See Also
+ --------
+ biadjacency_matrix
+ from_numpy_array
+
+ References
+ ----------
+ [1] https://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
+ """
+ G = nx.empty_graph(0, create_using)
+ n, m = A.shape
+ # Make sure we get even the isolated nodes of the graph.
+ G.add_nodes_from(range(n), bipartite=0)
+ G.add_nodes_from(range(n, n + m), bipartite=1)
+ # Create an iterable over (u, v, w) triples and for each triple, add an
+ # edge from u to v with weight w.
+ triples = ((u, n + v, d) for (u, v, d) in _generate_weighted_edges(A))
+ # If the entries in the adjacency matrix are integers and the graph is a
+ # multigraph, then create parallel edges, each with weight 1, for each
+ # entry in the adjacency matrix. Otherwise, create one edge for each
+ # positive entry in the adjacency matrix and set the weight of that edge to
+ # be the entry in the matrix.
+ if A.dtype.kind in ("i", "u") and G.is_multigraph():
+ chain = itertools.chain.from_iterable
+ triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples)
+ G.add_weighted_edges_from(triples, weight=edge_attribute)
+ return G