diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/centrality.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/centrality.py | 290 |
1 files changed, 290 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/centrality.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/centrality.py new file mode 100644 index 00000000..42d7270e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/bipartite/centrality.py @@ -0,0 +1,290 @@ +import networkx as nx + +__all__ = ["degree_centrality", "betweenness_centrality", "closeness_centrality"] + + +@nx._dispatchable(name="bipartite_degree_centrality") +def degree_centrality(G, nodes): + r"""Compute the degree centrality for nodes in a bipartite network. + + The degree centrality for a node `v` is the fraction of nodes + connected to it. + + Parameters + ---------- + G : graph + A bipartite network + + nodes : list or container + Container with all nodes in one bipartite node set. + + Returns + ------- + centrality : dictionary + Dictionary keyed by node with bipartite degree centrality as the value. + + Examples + -------- + >>> G = nx.wheel_graph(5) + >>> top_nodes = {0, 1, 2} + >>> nx.bipartite.degree_centrality(G, nodes=top_nodes) + {0: 2.0, 1: 1.5, 2: 1.5, 3: 1.0, 4: 1.0} + + See Also + -------- + betweenness_centrality + closeness_centrality + :func:`~networkx.algorithms.bipartite.basic.sets` + :func:`~networkx.algorithms.bipartite.basic.is_bipartite` + + Notes + ----- + The nodes input parameter must contain all nodes in one bipartite node set, + but the dictionary returned contains all nodes from both bipartite node + sets. See :mod:`bipartite documentation <networkx.algorithms.bipartite>` + for further details on how bipartite graphs are handled in NetworkX. + + For unipartite networks, the degree centrality values are + normalized by dividing by the maximum possible degree (which is + `n-1` where `n` is the number of nodes in G). + + In the bipartite case, the maximum possible degree of a node in a + bipartite node set is the number of nodes in the opposite node set + [1]_. The degree centrality for a node `v` in the bipartite + sets `U` with `n` nodes and `V` with `m` nodes is + + .. math:: + + d_{v} = \frac{deg(v)}{m}, \mbox{for} v \in U , + + d_{v} = \frac{deg(v)}{n}, \mbox{for} v \in V , + + + where `deg(v)` is the degree of node `v`. + + References + ---------- + .. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation + Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook + of Social Network Analysis. Sage Publications. + https://dx.doi.org/10.4135/9781446294413.n28 + """ + top = set(nodes) + bottom = set(G) - top + s = 1.0 / len(bottom) + centrality = {n: d * s for n, d in G.degree(top)} + s = 1.0 / len(top) + centrality.update({n: d * s for n, d in G.degree(bottom)}) + return centrality + + +@nx._dispatchable(name="bipartite_betweenness_centrality") +def betweenness_centrality(G, nodes): + r"""Compute betweenness centrality for nodes in a bipartite network. + + Betweenness centrality of a node `v` is the sum of the + fraction of all-pairs shortest paths that pass through `v`. + + Values of betweenness are normalized by the maximum possible + value which for bipartite graphs is limited by the relative size + of the two node sets [1]_. + + Let `n` be the number of nodes in the node set `U` and + `m` be the number of nodes in the node set `V`, then + nodes in `U` are normalized by dividing by + + .. math:: + + \frac{1}{2} [m^2 (s + 1)^2 + m (s + 1)(2t - s - 1) - t (2s - t + 3)] , + + where + + .. math:: + + s = (n - 1) \div m , t = (n - 1) \mod m , + + and nodes in `V` are normalized by dividing by + + .. math:: + + \frac{1}{2} [n^2 (p + 1)^2 + n (p + 1)(2r - p - 1) - r (2p - r + 3)] , + + where, + + .. math:: + + p = (m - 1) \div n , r = (m - 1) \mod n . + + Parameters + ---------- + G : graph + A bipartite graph + + nodes : list or container + Container with all nodes in one bipartite node set. + + Returns + ------- + betweenness : dictionary + Dictionary keyed by node with bipartite betweenness centrality + as the value. + + Examples + -------- + >>> G = nx.cycle_graph(4) + >>> top_nodes = {1, 2} + >>> nx.bipartite.betweenness_centrality(G, nodes=top_nodes) + {0: 0.25, 1: 0.25, 2: 0.25, 3: 0.25} + + See Also + -------- + degree_centrality + closeness_centrality + :func:`~networkx.algorithms.bipartite.basic.sets` + :func:`~networkx.algorithms.bipartite.basic.is_bipartite` + + Notes + ----- + The nodes input parameter must contain all nodes in one bipartite node set, + but the dictionary returned contains all nodes from both node sets. + See :mod:`bipartite documentation <networkx.algorithms.bipartite>` + for further details on how bipartite graphs are handled in NetworkX. + + + References + ---------- + .. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation + Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook + of Social Network Analysis. Sage Publications. + https://dx.doi.org/10.4135/9781446294413.n28 + """ + top = set(nodes) + bottom = set(G) - top + n = len(top) + m = len(bottom) + s, t = divmod(n - 1, m) + bet_max_top = ( + ((m**2) * ((s + 1) ** 2)) + + (m * (s + 1) * (2 * t - s - 1)) + - (t * ((2 * s) - t + 3)) + ) / 2.0 + p, r = divmod(m - 1, n) + bet_max_bot = ( + ((n**2) * ((p + 1) ** 2)) + + (n * (p + 1) * (2 * r - p - 1)) + - (r * ((2 * p) - r + 3)) + ) / 2.0 + betweenness = nx.betweenness_centrality(G, normalized=False, weight=None) + for node in top: + betweenness[node] /= bet_max_top + for node in bottom: + betweenness[node] /= bet_max_bot + return betweenness + + +@nx._dispatchable(name="bipartite_closeness_centrality") +def closeness_centrality(G, nodes, normalized=True): + r"""Compute the closeness centrality for nodes in a bipartite network. + + The closeness of a node is the distance to all other nodes in the + graph or in the case that the graph is not connected to all other nodes + in the connected component containing that node. + + Parameters + ---------- + G : graph + A bipartite network + + nodes : list or container + Container with all nodes in one bipartite node set. + + normalized : bool, optional + If True (default) normalize by connected component size. + + Returns + ------- + closeness : dictionary + Dictionary keyed by node with bipartite closeness centrality + as the value. + + Examples + -------- + >>> G = nx.wheel_graph(5) + >>> top_nodes = {0, 1, 2} + >>> nx.bipartite.closeness_centrality(G, nodes=top_nodes) + {0: 1.5, 1: 1.2, 2: 1.2, 3: 1.0, 4: 1.0} + + See Also + -------- + betweenness_centrality + degree_centrality + :func:`~networkx.algorithms.bipartite.basic.sets` + :func:`~networkx.algorithms.bipartite.basic.is_bipartite` + + Notes + ----- + The nodes input parameter must contain all nodes in one bipartite node set, + but the dictionary returned contains all nodes from both node sets. + See :mod:`bipartite documentation <networkx.algorithms.bipartite>` + for further details on how bipartite graphs are handled in NetworkX. + + + Closeness centrality is normalized by the minimum distance possible. + In the bipartite case the minimum distance for a node in one bipartite + node set is 1 from all nodes in the other node set and 2 from all + other nodes in its own set [1]_. Thus the closeness centrality + for node `v` in the two bipartite sets `U` with + `n` nodes and `V` with `m` nodes is + + .. math:: + + c_{v} = \frac{m + 2(n - 1)}{d}, \mbox{for} v \in U, + + c_{v} = \frac{n + 2(m - 1)}{d}, \mbox{for} v \in V, + + where `d` is the sum of the distances from `v` to all + other nodes. + + Higher values of closeness indicate higher centrality. + + As in the unipartite case, setting normalized=True causes the + values to normalized further to n-1 / size(G)-1 where n is the + number of nodes in the connected part of graph containing the + node. If the graph is not completely connected, this algorithm + computes the closeness centrality for each connected part + separately. + + References + ---------- + .. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation + Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook + of Social Network Analysis. Sage Publications. + https://dx.doi.org/10.4135/9781446294413.n28 + """ + closeness = {} + path_length = nx.single_source_shortest_path_length + top = set(nodes) + bottom = set(G) - top + n = len(top) + m = len(bottom) + for node in top: + sp = dict(path_length(G, node)) + totsp = sum(sp.values()) + if totsp > 0.0 and len(G) > 1: + closeness[node] = (m + 2 * (n - 1)) / totsp + if normalized: + s = (len(sp) - 1) / (len(G) - 1) + closeness[node] *= s + else: + closeness[node] = 0.0 + for node in bottom: + sp = dict(path_length(G, node)) + totsp = sum(sp.values()) + if totsp > 0.0 and len(G) > 1: + closeness[node] = (n + 2 * (m - 1)) / totsp + if normalized: + s = (len(sp) - 1) / (len(G) - 1) + closeness[node] *= s + else: + closeness[node] = 0.0 + return closeness |