diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity')
13 files changed, 1689 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/__init__.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/__init__.py new file mode 100644 index 00000000..4d988860 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/__init__.py @@ -0,0 +1,5 @@ +from networkx.algorithms.assortativity.connectivity import * +from networkx.algorithms.assortativity.correlation import * +from networkx.algorithms.assortativity.mixing import * +from networkx.algorithms.assortativity.neighbor_degree import * +from networkx.algorithms.assortativity.pairs import * diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/connectivity.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/connectivity.py new file mode 100644 index 00000000..c3fde0da --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/connectivity.py @@ -0,0 +1,122 @@ +from collections import defaultdict + +import networkx as nx + +__all__ = ["average_degree_connectivity"] + + +@nx._dispatchable(edge_attrs="weight") +def average_degree_connectivity( + G, source="in+out", target="in+out", nodes=None, weight=None +): + r"""Compute the average degree connectivity of graph. + + The average degree connectivity is the average nearest neighbor degree of + nodes with degree k. For weighted graphs, an analogous measure can + be computed using the weighted average neighbors degree defined in + [1]_, for a node `i`, as + + .. math:: + + k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j + + where `s_i` is the weighted degree of node `i`, + `w_{ij}` is the weight of the edge that links `i` and `j`, + and `N(i)` are the neighbors of node `i`. + + Parameters + ---------- + G : NetworkX graph + + source : "in"|"out"|"in+out" (default:"in+out") + Directed graphs only. Use "in"- or "out"-degree for source node. + + target : "in"|"out"|"in+out" (default:"in+out" + Directed graphs only. Use "in"- or "out"-degree for target node. + + nodes : list or iterable (optional) + Compute neighbor connectivity for these nodes. The default is all + nodes. + + weight : string or None, optional (default=None) + The edge attribute that holds the numerical value used as a weight. + If None, then each edge has weight 1. + + Returns + ------- + d : dict + A dictionary keyed by degree k with the value of average connectivity. + + Raises + ------ + NetworkXError + If either `source` or `target` are not one of 'in', + 'out', or 'in+out'. + If either `source` or `target` is passed for an undirected graph. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> G.edges[1, 2]["weight"] = 3 + >>> nx.average_degree_connectivity(G) + {1: 2.0, 2: 1.5} + >>> nx.average_degree_connectivity(G, weight="weight") + {1: 2.0, 2: 1.75} + + See Also + -------- + average_neighbor_degree + + References + ---------- + .. [1] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, + "The architecture of complex weighted networks". + PNAS 101 (11): 3747–3752 (2004). + """ + # First, determine the type of neighbors and the type of degree to use. + if G.is_directed(): + if source not in ("in", "out", "in+out"): + raise nx.NetworkXError('source must be one of "in", "out", or "in+out"') + if target not in ("in", "out", "in+out"): + raise nx.NetworkXError('target must be one of "in", "out", or "in+out"') + direction = {"out": G.out_degree, "in": G.in_degree, "in+out": G.degree} + neighbor_funcs = { + "out": G.successors, + "in": G.predecessors, + "in+out": G.neighbors, + } + source_degree = direction[source] + target_degree = direction[target] + neighbors = neighbor_funcs[source] + # `reverse` indicates whether to look at the in-edge when + # computing the weight of an edge. + reverse = source == "in" + else: + if source != "in+out" or target != "in+out": + raise nx.NetworkXError( + f"source and target arguments are only supported for directed graphs" + ) + source_degree = G.degree + target_degree = G.degree + neighbors = G.neighbors + reverse = False + dsum = defaultdict(int) + dnorm = defaultdict(int) + # Check if `source_nodes` is actually a single node in the graph. + source_nodes = source_degree(nodes) + if nodes in G: + source_nodes = [(nodes, source_degree(nodes))] + for n, k in source_nodes: + nbrdeg = target_degree(neighbors(n)) + if weight is None: + s = sum(d for n, d in nbrdeg) + else: # weight nbr degree by weight of (n,nbr) edge + if reverse: + s = sum(G[nbr][n].get(weight, 1) * d for nbr, d in nbrdeg) + else: + s = sum(G[n][nbr].get(weight, 1) * d for nbr, d in nbrdeg) + dnorm[k] += source_degree(n, weight=weight) + dsum[k] += s + + # normalize + return {k: avg if dnorm[k] == 0 else avg / dnorm[k] for k, avg in dsum.items()} diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/correlation.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/correlation.py new file mode 100644 index 00000000..52ae7a12 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/correlation.py @@ -0,0 +1,302 @@ +"""Node assortativity coefficients and correlation measures.""" + +import networkx as nx +from networkx.algorithms.assortativity.mixing import ( + attribute_mixing_matrix, + degree_mixing_matrix, +) +from networkx.algorithms.assortativity.pairs import node_degree_xy + +__all__ = [ + "degree_pearson_correlation_coefficient", + "degree_assortativity_coefficient", + "attribute_assortativity_coefficient", + "numeric_assortativity_coefficient", +] + + +@nx._dispatchable(edge_attrs="weight") +def degree_assortativity_coefficient(G, x="out", y="in", weight=None, nodes=None): + """Compute degree assortativity of graph. + + Assortativity measures the similarity of connections + in the graph with respect to the node degree. + + Parameters + ---------- + G : NetworkX graph + + x: string ('in','out') + The degree type for source node (directed graphs only). + + y: string ('in','out') + The degree type for target node (directed graphs only). + + weight: string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + nodes: list or iterable (optional) + Compute degree assortativity only for nodes in container. + The default is all nodes. + + Returns + ------- + r : float + Assortativity of graph by degree. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> r = nx.degree_assortativity_coefficient(G) + >>> print(f"{r:3.1f}") + -0.5 + + See Also + -------- + attribute_assortativity_coefficient + numeric_assortativity_coefficient + degree_mixing_dict + degree_mixing_matrix + + Notes + ----- + This computes Eq. (21) in Ref. [1]_ , where e is the joint + probability distribution (mixing matrix) of the degrees. If G is + directed than the matrix e is the joint probability of the + user-specified degree type for the source and target. + + References + ---------- + .. [1] M. E. J. Newman, Mixing patterns in networks, + Physical Review E, 67 026126, 2003 + .. [2] Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M. + Edge direction and the structure of networks, PNAS 107, 10815-20 (2010). + """ + if nodes is None: + nodes = G.nodes + + degrees = None + + if G.is_directed(): + indeg = ( + {d for _, d in G.in_degree(nodes, weight=weight)} + if "in" in (x, y) + else set() + ) + outdeg = ( + {d for _, d in G.out_degree(nodes, weight=weight)} + if "out" in (x, y) + else set() + ) + degrees = set.union(indeg, outdeg) + else: + degrees = {d for _, d in G.degree(nodes, weight=weight)} + + mapping = {d: i for i, d in enumerate(degrees)} + M = degree_mixing_matrix(G, x=x, y=y, nodes=nodes, weight=weight, mapping=mapping) + + return _numeric_ac(M, mapping=mapping) + + +@nx._dispatchable(edge_attrs="weight") +def degree_pearson_correlation_coefficient(G, x="out", y="in", weight=None, nodes=None): + """Compute degree assortativity of graph. + + Assortativity measures the similarity of connections + in the graph with respect to the node degree. + + This is the same as degree_assortativity_coefficient but uses the + potentially faster scipy.stats.pearsonr function. + + Parameters + ---------- + G : NetworkX graph + + x: string ('in','out') + The degree type for source node (directed graphs only). + + y: string ('in','out') + The degree type for target node (directed graphs only). + + weight: string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + nodes: list or iterable (optional) + Compute pearson correlation of degrees only for specified nodes. + The default is all nodes. + + Returns + ------- + r : float + Assortativity of graph by degree. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> r = nx.degree_pearson_correlation_coefficient(G) + >>> print(f"{r:3.1f}") + -0.5 + + Notes + ----- + This calls scipy.stats.pearsonr. + + References + ---------- + .. [1] M. E. J. Newman, Mixing patterns in networks + Physical Review E, 67 026126, 2003 + .. [2] Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M. + Edge direction and the structure of networks, PNAS 107, 10815-20 (2010). + """ + import scipy as sp + + xy = node_degree_xy(G, x=x, y=y, nodes=nodes, weight=weight) + x, y = zip(*xy) + return float(sp.stats.pearsonr(x, y)[0]) + + +@nx._dispatchable(node_attrs="attribute") +def attribute_assortativity_coefficient(G, attribute, nodes=None): + """Compute assortativity for node attributes. + + Assortativity measures the similarity of connections + in the graph with respect to the given attribute. + + Parameters + ---------- + G : NetworkX graph + + attribute : string + Node attribute key + + nodes: list or iterable (optional) + Compute attribute assortativity for nodes in container. + The default is all nodes. + + Returns + ------- + r: float + Assortativity of graph for given attribute + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_nodes_from([0, 1], color="red") + >>> G.add_nodes_from([2, 3], color="blue") + >>> G.add_edges_from([(0, 1), (2, 3)]) + >>> print(nx.attribute_assortativity_coefficient(G, "color")) + 1.0 + + Notes + ----- + This computes Eq. (2) in Ref. [1]_ , (trace(M)-sum(M^2))/(1-sum(M^2)), + where M is the joint probability distribution (mixing matrix) + of the specified attribute. + + References + ---------- + .. [1] M. E. J. Newman, Mixing patterns in networks, + Physical Review E, 67 026126, 2003 + """ + M = attribute_mixing_matrix(G, attribute, nodes) + return attribute_ac(M) + + +@nx._dispatchable(node_attrs="attribute") +def numeric_assortativity_coefficient(G, attribute, nodes=None): + """Compute assortativity for numerical node attributes. + + Assortativity measures the similarity of connections + in the graph with respect to the given numeric attribute. + + Parameters + ---------- + G : NetworkX graph + + attribute : string + Node attribute key. + + nodes: list or iterable (optional) + Compute numeric assortativity only for attributes of nodes in + container. The default is all nodes. + + Returns + ------- + r: float + Assortativity of graph for given attribute + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_nodes_from([0, 1], size=2) + >>> G.add_nodes_from([2, 3], size=3) + >>> G.add_edges_from([(0, 1), (2, 3)]) + >>> print(nx.numeric_assortativity_coefficient(G, "size")) + 1.0 + + Notes + ----- + This computes Eq. (21) in Ref. [1]_ , which is the Pearson correlation + coefficient of the specified (scalar valued) attribute across edges. + + References + ---------- + .. [1] M. E. J. Newman, Mixing patterns in networks + Physical Review E, 67 026126, 2003 + """ + if nodes is None: + nodes = G.nodes + vals = {G.nodes[n][attribute] for n in nodes} + mapping = {d: i for i, d in enumerate(vals)} + M = attribute_mixing_matrix(G, attribute, nodes, mapping) + return _numeric_ac(M, mapping) + + +def attribute_ac(M): + """Compute assortativity for attribute matrix M. + + Parameters + ---------- + M : numpy.ndarray + 2D ndarray representing the attribute mixing matrix. + + Notes + ----- + This computes Eq. (2) in Ref. [1]_ , (trace(e)-sum(e^2))/(1-sum(e^2)), + where e is the joint probability distribution (mixing matrix) + of the specified attribute. + + References + ---------- + .. [1] M. E. J. Newman, Mixing patterns in networks, + Physical Review E, 67 026126, 2003 + """ + if M.sum() != 1.0: + M = M / M.sum() + s = (M @ M).sum() + t = M.trace() + r = (t - s) / (1 - s) + return float(r) + + +def _numeric_ac(M, mapping): + # M is a 2D numpy array + # numeric assortativity coefficient, pearsonr + import numpy as np + + if M.sum() != 1.0: + M = M / M.sum() + x = np.array(list(mapping.keys())) + y = x # x and y have the same support + idx = list(mapping.values()) + a = M.sum(axis=0) + b = M.sum(axis=1) + vara = (a[idx] * x**2).sum() - ((a[idx] * x).sum()) ** 2 + varb = (b[idx] * y**2).sum() - ((b[idx] * y).sum()) ** 2 + xy = np.outer(x, y) + ab = np.outer(a[idx], b[idx]) + return float((xy * (M - ab)).sum() / np.sqrt(vara * varb)) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/mixing.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/mixing.py new file mode 100644 index 00000000..1762d4e5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/mixing.py @@ -0,0 +1,255 @@ +""" +Mixing matrices for node attributes and degree. +""" + +import networkx as nx +from networkx.algorithms.assortativity.pairs import node_attribute_xy, node_degree_xy +from networkx.utils import dict_to_numpy_array + +__all__ = [ + "attribute_mixing_matrix", + "attribute_mixing_dict", + "degree_mixing_matrix", + "degree_mixing_dict", + "mixing_dict", +] + + +@nx._dispatchable(node_attrs="attribute") +def attribute_mixing_dict(G, attribute, nodes=None, normalized=False): + """Returns dictionary representation of mixing matrix for attribute. + + Parameters + ---------- + G : graph + NetworkX graph object. + + attribute : string + Node attribute key. + + nodes: list or iterable (optional) + Unse nodes in container to build the dict. The default is all nodes. + + normalized : bool (default=False) + Return counts if False or probabilities if True. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_nodes_from([0, 1], color="red") + >>> G.add_nodes_from([2, 3], color="blue") + >>> G.add_edge(1, 3) + >>> d = nx.attribute_mixing_dict(G, "color") + >>> print(d["red"]["blue"]) + 1 + >>> print(d["blue"]["red"]) # d symmetric for undirected graphs + 1 + + Returns + ------- + d : dictionary + Counts or joint probability of occurrence of attribute pairs. + """ + xy_iter = node_attribute_xy(G, attribute, nodes) + return mixing_dict(xy_iter, normalized=normalized) + + +@nx._dispatchable(node_attrs="attribute") +def attribute_mixing_matrix(G, attribute, nodes=None, mapping=None, normalized=True): + """Returns mixing matrix for attribute. + + Parameters + ---------- + G : graph + NetworkX graph object. + + attribute : string + Node attribute key. + + nodes: list or iterable (optional) + Use only nodes in container to build the matrix. The default is + all nodes. + + mapping : dictionary, optional + Mapping from node attribute to integer index in matrix. + If not specified, an arbitrary ordering will be used. + + normalized : bool (default=True) + Return counts if False or probabilities if True. + + Returns + ------- + m: numpy array + Counts or joint probability of occurrence of attribute pairs. + + Notes + ----- + If each node has a unique attribute value, the unnormalized mixing matrix + will be equal to the adjacency matrix. To get a denser mixing matrix, + the rounding can be performed to form groups of nodes with equal values. + For example, the exact height of persons in cm (180.79155222, 163.9080892, + 163.30095355, 167.99016217, 168.21590163, ...) can be rounded to (180, 163, + 163, 168, 168, ...). + + Definitions of attribute mixing matrix vary on whether the matrix + should include rows for attribute values that don't arise. Here we + do not include such empty-rows. But you can force them to appear + by inputting a `mapping` that includes those values. + + Examples + -------- + >>> G = nx.path_graph(3) + >>> gender = {0: "male", 1: "female", 2: "female"} + >>> nx.set_node_attributes(G, gender, "gender") + >>> mapping = {"male": 0, "female": 1} + >>> mix_mat = nx.attribute_mixing_matrix(G, "gender", mapping=mapping) + >>> mix_mat + array([[0. , 0.25], + [0.25, 0.5 ]]) + """ + d = attribute_mixing_dict(G, attribute, nodes) + a = dict_to_numpy_array(d, mapping=mapping) + if normalized: + a = a / a.sum() + return a + + +@nx._dispatchable(edge_attrs="weight") +def degree_mixing_dict(G, x="out", y="in", weight=None, nodes=None, normalized=False): + """Returns dictionary representation of mixing matrix for degree. + + Parameters + ---------- + G : graph + NetworkX graph object. + + x: string ('in','out') + The degree type for source node (directed graphs only). + + y: string ('in','out') + The degree type for target node (directed graphs only). + + weight: string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + normalized : bool (default=False) + Return counts if False or probabilities if True. + + Returns + ------- + d: dictionary + Counts or joint probability of occurrence of degree pairs. + """ + xy_iter = node_degree_xy(G, x=x, y=y, nodes=nodes, weight=weight) + return mixing_dict(xy_iter, normalized=normalized) + + +@nx._dispatchable(edge_attrs="weight") +def degree_mixing_matrix( + G, x="out", y="in", weight=None, nodes=None, normalized=True, mapping=None +): + """Returns mixing matrix for attribute. + + Parameters + ---------- + G : graph + NetworkX graph object. + + x: string ('in','out') + The degree type for source node (directed graphs only). + + y: string ('in','out') + The degree type for target node (directed graphs only). + + nodes: list or iterable (optional) + Build the matrix using only nodes in container. + The default is all nodes. + + weight: string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + normalized : bool (default=True) + Return counts if False or probabilities if True. + + mapping : dictionary, optional + Mapping from node degree to integer index in matrix. + If not specified, an arbitrary ordering will be used. + + Returns + ------- + m: numpy array + Counts, or joint probability, of occurrence of node degree. + + Notes + ----- + Definitions of degree mixing matrix vary on whether the matrix + should include rows for degree values that don't arise. Here we + do not include such empty-rows. But you can force them to appear + by inputting a `mapping` that includes those values. See examples. + + Examples + -------- + >>> G = nx.star_graph(3) + >>> mix_mat = nx.degree_mixing_matrix(G) + >>> mix_mat + array([[0. , 0.5], + [0.5, 0. ]]) + + If you want every possible degree to appear as a row, even if no nodes + have that degree, use `mapping` as follows, + + >>> max_degree = max(deg for n, deg in G.degree) + >>> mapping = {x: x for x in range(max_degree + 1)} # identity mapping + >>> mix_mat = nx.degree_mixing_matrix(G, mapping=mapping) + >>> mix_mat + array([[0. , 0. , 0. , 0. ], + [0. , 0. , 0. , 0.5], + [0. , 0. , 0. , 0. ], + [0. , 0.5, 0. , 0. ]]) + """ + d = degree_mixing_dict(G, x=x, y=y, nodes=nodes, weight=weight) + a = dict_to_numpy_array(d, mapping=mapping) + if normalized: + a = a / a.sum() + return a + + +def mixing_dict(xy, normalized=False): + """Returns a dictionary representation of mixing matrix. + + Parameters + ---------- + xy : list or container of two-tuples + Pairs of (x,y) items. + + attribute : string + Node attribute key + + normalized : bool (default=False) + Return counts if False or probabilities if True. + + Returns + ------- + d: dictionary + Counts or Joint probability of occurrence of values in xy. + """ + d = {} + psum = 0.0 + for x, y in xy: + if x not in d: + d[x] = {} + if y not in d: + d[y] = {} + v = d[x].get(y, 0) + d[x][y] = v + 1 + psum += 1 + + if normalized: + for _, jdict in d.items(): + for j in jdict: + jdict[j] /= psum + return d diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/neighbor_degree.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/neighbor_degree.py new file mode 100644 index 00000000..6488d041 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/neighbor_degree.py @@ -0,0 +1,160 @@ +import networkx as nx + +__all__ = ["average_neighbor_degree"] + + +@nx._dispatchable(edge_attrs="weight") +def average_neighbor_degree(G, source="out", target="out", nodes=None, weight=None): + r"""Returns the average degree of the neighborhood of each node. + + In an undirected graph, the neighborhood `N(i)` of node `i` contains the + nodes that are connected to `i` by an edge. + + For directed graphs, `N(i)` is defined according to the parameter `source`: + + - if source is 'in', then `N(i)` consists of predecessors of node `i`. + - if source is 'out', then `N(i)` consists of successors of node `i`. + - if source is 'in+out', then `N(i)` is both predecessors and successors. + + The average neighborhood degree of a node `i` is + + .. math:: + + k_{nn,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j + + where `N(i)` are the neighbors of node `i` and `k_j` is + the degree of node `j` which belongs to `N(i)`. For weighted + graphs, an analogous measure can be defined [1]_, + + .. math:: + + k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j + + where `s_i` is the weighted degree of node `i`, `w_{ij}` + is the weight of the edge that links `i` and `j` and + `N(i)` are the neighbors of node `i`. + + + Parameters + ---------- + G : NetworkX graph + + source : string ("in"|"out"|"in+out"), optional (default="out") + Directed graphs only. + Use "in"- or "out"-neighbors of source node. + + target : string ("in"|"out"|"in+out"), optional (default="out") + Directed graphs only. + Use "in"- or "out"-degree for target node. + + nodes : list or iterable, optional (default=G.nodes) + Compute neighbor degree only for specified nodes. + + weight : string or None, optional (default=None) + The edge attribute that holds the numerical value used as a weight. + If None, then each edge has weight 1. + + Returns + ------- + d: dict + A dictionary keyed by node to the average degree of its neighbors. + + Raises + ------ + NetworkXError + If either `source` or `target` are not one of 'in', 'out', or 'in+out'. + If either `source` or `target` is passed for an undirected graph. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> G.edges[0, 1]["weight"] = 5 + >>> G.edges[2, 3]["weight"] = 3 + + >>> nx.average_neighbor_degree(G) + {0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0} + >>> nx.average_neighbor_degree(G, weight="weight") + {0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0} + + >>> G = nx.DiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> nx.average_neighbor_degree(G, source="in", target="in") + {0: 0.0, 1: 0.0, 2: 1.0, 3: 1.0} + + >>> nx.average_neighbor_degree(G, source="out", target="out") + {0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0} + + See Also + -------- + average_degree_connectivity + + References + ---------- + .. [1] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, + "The architecture of complex weighted networks". + PNAS 101 (11): 3747–3752 (2004). + """ + if G.is_directed(): + if source == "in": + source_degree = G.in_degree + elif source == "out": + source_degree = G.out_degree + elif source == "in+out": + source_degree = G.degree + else: + raise nx.NetworkXError( + f"source argument {source} must be 'in', 'out' or 'in+out'" + ) + + if target == "in": + target_degree = G.in_degree + elif target == "out": + target_degree = G.out_degree + elif target == "in+out": + target_degree = G.degree + else: + raise nx.NetworkXError( + f"target argument {target} must be 'in', 'out' or 'in+out'" + ) + else: + if source != "out" or target != "out": + raise nx.NetworkXError( + f"source and target arguments are only supported for directed graphs" + ) + source_degree = target_degree = G.degree + + # precompute target degrees -- should *not* be weighted degree + t_deg = dict(target_degree()) + + # Set up both predecessor and successor neighbor dicts leaving empty if not needed + G_P = G_S = {n: {} for n in G} + if G.is_directed(): + # "in" or "in+out" cases: G_P contains predecessors + if "in" in source: + G_P = G.pred + # "out" or "in+out" cases: G_S contains successors + if "out" in source: + G_S = G.succ + else: + # undirected leave G_P empty but G_S is the adjacency + G_S = G.adj + + # Main loop: Compute average degree of neighbors + avg = {} + for n, deg in source_degree(nodes, weight=weight): + # handle degree zero average + if deg == 0: + avg[n] = 0.0 + continue + + # we sum over both G_P and G_S, but one of the two is usually empty. + if weight is None: + avg[n] = ( + sum(t_deg[nbr] for nbr in G_S[n]) + sum(t_deg[nbr] for nbr in G_P[n]) + ) / deg + else: + avg[n] = ( + sum(dd.get(weight, 1) * t_deg[nbr] for nbr, dd in G_S[n].items()) + + sum(dd.get(weight, 1) * t_deg[nbr] for nbr, dd in G_P[n].items()) + ) / deg + return avg diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/pairs.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/pairs.py new file mode 100644 index 00000000..ea5fd287 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/pairs.py @@ -0,0 +1,127 @@ +"""Generators of x-y pairs of node data.""" + +import networkx as nx + +__all__ = ["node_attribute_xy", "node_degree_xy"] + + +@nx._dispatchable(node_attrs="attribute") +def node_attribute_xy(G, attribute, nodes=None): + """Yields 2-tuples of node attribute values for all edges in `G`. + + This generator yields, for each edge in `G` incident to a node in `nodes`, + a 2-tuple of form ``(attribute value, attribute value)`` for the parameter + specified node-attribute. + + Parameters + ---------- + G: NetworkX graph + + attribute: key + The node attribute key. + + nodes: list or iterable (optional) + Use only edges that are incident to specified nodes. + The default is all nodes. + + Yields + ------ + (x, y): 2-tuple + Generates 2-tuple of (attribute, attribute) values. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_node(1, color="red") + >>> G.add_node(2, color="blue") + >>> G.add_node(3, color="green") + >>> G.add_edge(1, 2) + >>> list(nx.node_attribute_xy(G, "color")) + [('red', 'blue')] + + Notes + ----- + For undirected graphs, each edge is produced twice, once for each edge + representation (u, v) and (v, u), with the exception of self-loop edges + which only appear once. + """ + if nodes is None: + nodes = set(G) + else: + nodes = set(nodes) + Gnodes = G.nodes + for u, nbrsdict in G.adjacency(): + if u not in nodes: + continue + uattr = Gnodes[u].get(attribute, None) + if G.is_multigraph(): + for v, keys in nbrsdict.items(): + vattr = Gnodes[v].get(attribute, None) + for _ in keys: + yield (uattr, vattr) + else: + for v in nbrsdict: + vattr = Gnodes[v].get(attribute, None) + yield (uattr, vattr) + + +@nx._dispatchable(edge_attrs="weight") +def node_degree_xy(G, x="out", y="in", weight=None, nodes=None): + """Yields 2-tuples of ``(degree, degree)`` values for edges in `G`. + + This generator yields, for each edge in `G` incident to a node in `nodes`, + a 2-tuple of form ``(degree, degree)``. The node degrees are weighted + when a `weight` attribute is specified. + + Parameters + ---------- + G: NetworkX graph + + x: string ('in','out') + The degree type for source node (directed graphs only). + + y: string ('in','out') + The degree type for target node (directed graphs only). + + weight: string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + nodes: list or iterable (optional) + Use only edges that are adjacency to specified nodes. + The default is all nodes. + + Yields + ------ + (x, y): 2-tuple + Generates 2-tuple of (degree, degree) values. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_edge(1, 2) + >>> list(nx.node_degree_xy(G, x="out", y="in")) + [(1, 1)] + >>> list(nx.node_degree_xy(G, x="in", y="out")) + [(0, 0)] + + Notes + ----- + For undirected graphs, each edge is produced twice, once for each edge + representation (u, v) and (v, u), with the exception of self-loop edges + which only appear once. + """ + nodes = set(G) if nodes is None else set(nodes) + if G.is_directed(): + direction = {"out": G.out_degree, "in": G.in_degree} + xdeg = direction[x] + ydeg = direction[y] + else: + xdeg = ydeg = G.degree + + for u, degu in xdeg(nodes, weight=weight): + # use G.edges to treat multigraphs correctly + neighbors = (nbr for _, nbr in G.edges(u) if nbr in nodes) + for _, degv in ydeg(neighbors, weight=weight): + yield degu, degv diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/__init__.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/__init__.py new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/__init__.py diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/base_test.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/base_test.py new file mode 100644 index 00000000..46d63006 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/base_test.py @@ -0,0 +1,81 @@ +import networkx as nx + + +class BaseTestAttributeMixing: + @classmethod + def setup_class(cls): + G = nx.Graph() + G.add_nodes_from([0, 1], fish="one") + G.add_nodes_from([2, 3], fish="two") + G.add_nodes_from([4], fish="red") + G.add_nodes_from([5], fish="blue") + G.add_edges_from([(0, 1), (2, 3), (0, 4), (2, 5)]) + cls.G = G + + D = nx.DiGraph() + D.add_nodes_from([0, 1], fish="one") + D.add_nodes_from([2, 3], fish="two") + D.add_nodes_from([4], fish="red") + D.add_nodes_from([5], fish="blue") + D.add_edges_from([(0, 1), (2, 3), (0, 4), (2, 5)]) + cls.D = D + + M = nx.MultiGraph() + M.add_nodes_from([0, 1], fish="one") + M.add_nodes_from([2, 3], fish="two") + M.add_nodes_from([4], fish="red") + M.add_nodes_from([5], fish="blue") + M.add_edges_from([(0, 1), (0, 1), (2, 3)]) + cls.M = M + + S = nx.Graph() + S.add_nodes_from([0, 1], fish="one") + S.add_nodes_from([2, 3], fish="two") + S.add_nodes_from([4], fish="red") + S.add_nodes_from([5], fish="blue") + S.add_edge(0, 0) + S.add_edge(2, 2) + cls.S = S + + N = nx.Graph() + N.add_nodes_from([0, 1], margin=-2) + N.add_nodes_from([2, 3], margin=-2) + N.add_nodes_from([4], margin=-3) + N.add_nodes_from([5], margin=-4) + N.add_edges_from([(0, 1), (2, 3), (0, 4), (2, 5)]) + cls.N = N + + F = nx.Graph() + F.add_edges_from([(0, 3), (1, 3), (2, 3)], weight=0.5) + F.add_edge(0, 2, weight=1) + nx.set_node_attributes(F, dict(F.degree(weight="weight")), "margin") + cls.F = F + + K = nx.Graph() + K.add_nodes_from([1, 2], margin=-1) + K.add_nodes_from([3], margin=1) + K.add_nodes_from([4], margin=2) + K.add_edges_from([(3, 4), (1, 2), (1, 3)]) + cls.K = K + + +class BaseTestDegreeMixing: + @classmethod + def setup_class(cls): + cls.P4 = nx.path_graph(4) + cls.D = nx.DiGraph() + cls.D.add_edges_from([(0, 2), (0, 3), (1, 3), (2, 3)]) + cls.D2 = nx.DiGraph() + cls.D2.add_edges_from([(0, 3), (1, 0), (1, 2), (2, 4), (4, 1), (4, 3), (4, 2)]) + cls.M = nx.MultiGraph() + nx.add_path(cls.M, range(4)) + cls.M.add_edge(0, 1) + cls.S = nx.Graph() + cls.S.add_edges_from([(0, 0), (1, 1)]) + cls.W = nx.Graph() + cls.W.add_edges_from([(0, 3), (1, 3), (2, 3)], weight=0.5) + cls.W.add_edge(0, 2, weight=1) + S1 = nx.star_graph(4) + S2 = nx.star_graph(4) + cls.DS = nx.disjoint_union(S1, S2) + cls.DS.add_edge(4, 5) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_connectivity.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_connectivity.py new file mode 100644 index 00000000..21c6287b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_connectivity.py @@ -0,0 +1,143 @@ +from itertools import permutations + +import pytest + +import networkx as nx + + +class TestNeighborConnectivity: + def test_degree_p4(self): + G = nx.path_graph(4) + answer = {1: 2.0, 2: 1.5} + nd = nx.average_degree_connectivity(G) + assert nd == answer + + D = G.to_directed() + answer = {2: 2.0, 4: 1.5} + nd = nx.average_degree_connectivity(D) + assert nd == answer + + answer = {1: 2.0, 2: 1.5} + D = G.to_directed() + nd = nx.average_degree_connectivity(D, source="in", target="in") + assert nd == answer + + D = G.to_directed() + nd = nx.average_degree_connectivity(D, source="in", target="in") + assert nd == answer + + def test_degree_p4_weighted(self): + G = nx.path_graph(4) + G[1][2]["weight"] = 4 + answer = {1: 2.0, 2: 1.8} + nd = nx.average_degree_connectivity(G, weight="weight") + assert nd == answer + answer = {1: 2.0, 2: 1.5} + nd = nx.average_degree_connectivity(G) + assert nd == answer + + D = G.to_directed() + answer = {2: 2.0, 4: 1.8} + nd = nx.average_degree_connectivity(D, weight="weight") + assert nd == answer + + answer = {1: 2.0, 2: 1.8} + D = G.to_directed() + nd = nx.average_degree_connectivity( + D, weight="weight", source="in", target="in" + ) + assert nd == answer + + D = G.to_directed() + nd = nx.average_degree_connectivity( + D, source="in", target="out", weight="weight" + ) + assert nd == answer + + def test_weight_keyword(self): + G = nx.path_graph(4) + G[1][2]["other"] = 4 + answer = {1: 2.0, 2: 1.8} + nd = nx.average_degree_connectivity(G, weight="other") + assert nd == answer + answer = {1: 2.0, 2: 1.5} + nd = nx.average_degree_connectivity(G, weight=None) + assert nd == answer + + D = G.to_directed() + answer = {2: 2.0, 4: 1.8} + nd = nx.average_degree_connectivity(D, weight="other") + assert nd == answer + + answer = {1: 2.0, 2: 1.8} + D = G.to_directed() + nd = nx.average_degree_connectivity(D, weight="other", source="in", target="in") + assert nd == answer + + D = G.to_directed() + nd = nx.average_degree_connectivity(D, weight="other", source="in", target="in") + assert nd == answer + + def test_degree_barrat(self): + G = nx.star_graph(5) + G.add_edges_from([(5, 6), (5, 7), (5, 8), (5, 9)]) + G[0][5]["weight"] = 5 + nd = nx.average_degree_connectivity(G)[5] + assert nd == 1.8 + nd = nx.average_degree_connectivity(G, weight="weight")[5] + assert nd == pytest.approx(3.222222, abs=1e-5) + + def test_zero_deg(self): + G = nx.DiGraph() + G.add_edge(1, 2) + G.add_edge(1, 3) + G.add_edge(1, 4) + c = nx.average_degree_connectivity(G) + assert c == {1: 0, 3: 1} + c = nx.average_degree_connectivity(G, source="in", target="in") + assert c == {0: 0, 1: 0} + c = nx.average_degree_connectivity(G, source="in", target="out") + assert c == {0: 0, 1: 3} + c = nx.average_degree_connectivity(G, source="in", target="in+out") + assert c == {0: 0, 1: 3} + c = nx.average_degree_connectivity(G, source="out", target="out") + assert c == {0: 0, 3: 0} + c = nx.average_degree_connectivity(G, source="out", target="in") + assert c == {0: 0, 3: 1} + c = nx.average_degree_connectivity(G, source="out", target="in+out") + assert c == {0: 0, 3: 1} + + def test_in_out_weight(self): + G = nx.DiGraph() + G.add_edge(1, 2, weight=1) + G.add_edge(1, 3, weight=1) + G.add_edge(3, 1, weight=1) + for s, t in permutations(["in", "out", "in+out"], 2): + c = nx.average_degree_connectivity(G, source=s, target=t) + cw = nx.average_degree_connectivity(G, source=s, target=t, weight="weight") + assert c == cw + + def test_invalid_source(self): + with pytest.raises(nx.NetworkXError): + G = nx.DiGraph() + nx.average_degree_connectivity(G, source="bogus") + + def test_invalid_target(self): + with pytest.raises(nx.NetworkXError): + G = nx.DiGraph() + nx.average_degree_connectivity(G, target="bogus") + + def test_invalid_undirected_graph(self): + G = nx.Graph() + with pytest.raises(nx.NetworkXError): + nx.average_degree_connectivity(G, target="bogus") + with pytest.raises(nx.NetworkXError): + nx.average_degree_connectivity(G, source="bogus") + + def test_single_node(self): + # TODO Is this really the intended behavior for providing a + # single node as the argument `nodes`? Shouldn't the function + # just return the connectivity value itself? + G = nx.trivial_graph() + conn = nx.average_degree_connectivity(G, nodes=0) + assert conn == {0: 0} diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_correlation.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_correlation.py new file mode 100644 index 00000000..5203f944 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_correlation.py @@ -0,0 +1,123 @@ +import pytest + +np = pytest.importorskip("numpy") +pytest.importorskip("scipy") + + +import networkx as nx +from networkx.algorithms.assortativity.correlation import attribute_ac + +from .base_test import BaseTestAttributeMixing, BaseTestDegreeMixing + + +class TestDegreeMixingCorrelation(BaseTestDegreeMixing): + def test_degree_assortativity_undirected(self): + r = nx.degree_assortativity_coefficient(self.P4) + np.testing.assert_almost_equal(r, -1.0 / 2, decimal=4) + + def test_degree_assortativity_node_kwargs(self): + G = nx.Graph() + edges = [(0, 1), (0, 3), (1, 2), (1, 3), (1, 4), (5, 9), (9, 0)] + G.add_edges_from(edges) + r = nx.degree_assortativity_coefficient(G, nodes=[1, 2, 4]) + np.testing.assert_almost_equal(r, -1.0, decimal=4) + + def test_degree_assortativity_directed(self): + r = nx.degree_assortativity_coefficient(self.D) + np.testing.assert_almost_equal(r, -0.57735, decimal=4) + + def test_degree_assortativity_directed2(self): + """Test degree assortativity for a directed graph where the set of + in/out degree does not equal the total degree.""" + r = nx.degree_assortativity_coefficient(self.D2) + np.testing.assert_almost_equal(r, 0.14852, decimal=4) + + def test_degree_assortativity_multigraph(self): + r = nx.degree_assortativity_coefficient(self.M) + np.testing.assert_almost_equal(r, -1.0 / 7.0, decimal=4) + + def test_degree_pearson_assortativity_undirected(self): + r = nx.degree_pearson_correlation_coefficient(self.P4) + np.testing.assert_almost_equal(r, -1.0 / 2, decimal=4) + + def test_degree_pearson_assortativity_directed(self): + r = nx.degree_pearson_correlation_coefficient(self.D) + np.testing.assert_almost_equal(r, -0.57735, decimal=4) + + def test_degree_pearson_assortativity_directed2(self): + """Test degree assortativity with Pearson for a directed graph where + the set of in/out degree does not equal the total degree.""" + r = nx.degree_pearson_correlation_coefficient(self.D2) + np.testing.assert_almost_equal(r, 0.14852, decimal=4) + + def test_degree_pearson_assortativity_multigraph(self): + r = nx.degree_pearson_correlation_coefficient(self.M) + np.testing.assert_almost_equal(r, -1.0 / 7.0, decimal=4) + + def test_degree_assortativity_weighted(self): + r = nx.degree_assortativity_coefficient(self.W, weight="weight") + np.testing.assert_almost_equal(r, -0.1429, decimal=4) + + def test_degree_assortativity_double_star(self): + r = nx.degree_assortativity_coefficient(self.DS) + np.testing.assert_almost_equal(r, -0.9339, decimal=4) + + +class TestAttributeMixingCorrelation(BaseTestAttributeMixing): + def test_attribute_assortativity_undirected(self): + r = nx.attribute_assortativity_coefficient(self.G, "fish") + assert r == 6.0 / 22.0 + + def test_attribute_assortativity_directed(self): + r = nx.attribute_assortativity_coefficient(self.D, "fish") + assert r == 1.0 / 3.0 + + def test_attribute_assortativity_multigraph(self): + r = nx.attribute_assortativity_coefficient(self.M, "fish") + assert r == 1.0 + + def test_attribute_assortativity_coefficient(self): + # from "Mixing patterns in networks" + # fmt: off + a = np.array([[0.258, 0.016, 0.035, 0.013], + [0.012, 0.157, 0.058, 0.019], + [0.013, 0.023, 0.306, 0.035], + [0.005, 0.007, 0.024, 0.016]]) + # fmt: on + r = attribute_ac(a) + np.testing.assert_almost_equal(r, 0.623, decimal=3) + + def test_attribute_assortativity_coefficient2(self): + # fmt: off + a = np.array([[0.18, 0.02, 0.01, 0.03], + [0.02, 0.20, 0.03, 0.02], + [0.01, 0.03, 0.16, 0.01], + [0.03, 0.02, 0.01, 0.22]]) + # fmt: on + r = attribute_ac(a) + np.testing.assert_almost_equal(r, 0.68, decimal=2) + + def test_attribute_assortativity(self): + a = np.array([[50, 50, 0], [50, 50, 0], [0, 0, 2]]) + r = attribute_ac(a) + np.testing.assert_almost_equal(r, 0.029, decimal=3) + + def test_attribute_assortativity_negative(self): + r = nx.numeric_assortativity_coefficient(self.N, "margin") + np.testing.assert_almost_equal(r, -0.2903, decimal=4) + + def test_assortativity_node_kwargs(self): + G = nx.Graph() + G.add_nodes_from([0, 1], size=2) + G.add_nodes_from([2, 3], size=3) + G.add_edges_from([(0, 1), (2, 3)]) + r = nx.numeric_assortativity_coefficient(G, "size", nodes=[0, 3]) + np.testing.assert_almost_equal(r, 1.0, decimal=4) + + def test_attribute_assortativity_float(self): + r = nx.numeric_assortativity_coefficient(self.F, "margin") + np.testing.assert_almost_equal(r, -0.1429, decimal=4) + + def test_attribute_assortativity_mixed(self): + r = nx.numeric_assortativity_coefficient(self.K, "margin") + np.testing.assert_almost_equal(r, 0.4340, decimal=4) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_mixing.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_mixing.py new file mode 100644 index 00000000..9af09867 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_mixing.py @@ -0,0 +1,176 @@ +import pytest + +np = pytest.importorskip("numpy") + + +import networkx as nx + +from .base_test import BaseTestAttributeMixing, BaseTestDegreeMixing + + +class TestDegreeMixingDict(BaseTestDegreeMixing): + def test_degree_mixing_dict_undirected(self): + d = nx.degree_mixing_dict(self.P4) + d_result = {1: {2: 2}, 2: {1: 2, 2: 2}} + assert d == d_result + + def test_degree_mixing_dict_undirected_normalized(self): + d = nx.degree_mixing_dict(self.P4, normalized=True) + d_result = {1: {2: 1.0 / 3}, 2: {1: 1.0 / 3, 2: 1.0 / 3}} + assert d == d_result + + def test_degree_mixing_dict_directed(self): + d = nx.degree_mixing_dict(self.D) + print(d) + d_result = {1: {3: 2}, 2: {1: 1, 3: 1}, 3: {}} + assert d == d_result + + def test_degree_mixing_dict_multigraph(self): + d = nx.degree_mixing_dict(self.M) + d_result = {1: {2: 1}, 2: {1: 1, 3: 3}, 3: {2: 3}} + assert d == d_result + + def test_degree_mixing_dict_weighted(self): + d = nx.degree_mixing_dict(self.W, weight="weight") + d_result = {0.5: {1.5: 1}, 1.5: {1.5: 6, 0.5: 1}} + assert d == d_result + + +class TestDegreeMixingMatrix(BaseTestDegreeMixing): + def test_degree_mixing_matrix_undirected(self): + # fmt: off + a_result = np.array([[0, 2], + [2, 2]] + ) + # fmt: on + a = nx.degree_mixing_matrix(self.P4, normalized=False) + np.testing.assert_equal(a, a_result) + a = nx.degree_mixing_matrix(self.P4) + np.testing.assert_equal(a, a_result / a_result.sum()) + + def test_degree_mixing_matrix_directed(self): + # fmt: off + a_result = np.array([[0, 0, 2], + [1, 0, 1], + [0, 0, 0]] + ) + # fmt: on + a = nx.degree_mixing_matrix(self.D, normalized=False) + np.testing.assert_equal(a, a_result) + a = nx.degree_mixing_matrix(self.D) + np.testing.assert_equal(a, a_result / a_result.sum()) + + def test_degree_mixing_matrix_multigraph(self): + # fmt: off + a_result = np.array([[0, 1, 0], + [1, 0, 3], + [0, 3, 0]] + ) + # fmt: on + a = nx.degree_mixing_matrix(self.M, normalized=False) + np.testing.assert_equal(a, a_result) + a = nx.degree_mixing_matrix(self.M) + np.testing.assert_equal(a, a_result / a_result.sum()) + + def test_degree_mixing_matrix_selfloop(self): + # fmt: off + a_result = np.array([[2]]) + # fmt: on + a = nx.degree_mixing_matrix(self.S, normalized=False) + np.testing.assert_equal(a, a_result) + a = nx.degree_mixing_matrix(self.S) + np.testing.assert_equal(a, a_result / a_result.sum()) + + def test_degree_mixing_matrix_weighted(self): + a_result = np.array([[0.0, 1.0], [1.0, 6.0]]) + a = nx.degree_mixing_matrix(self.W, weight="weight", normalized=False) + np.testing.assert_equal(a, a_result) + a = nx.degree_mixing_matrix(self.W, weight="weight") + np.testing.assert_equal(a, a_result / float(a_result.sum())) + + def test_degree_mixing_matrix_mapping(self): + a_result = np.array([[6.0, 1.0], [1.0, 0.0]]) + mapping = {0.5: 1, 1.5: 0} + a = nx.degree_mixing_matrix( + self.W, weight="weight", normalized=False, mapping=mapping + ) + np.testing.assert_equal(a, a_result) + + +class TestAttributeMixingDict(BaseTestAttributeMixing): + def test_attribute_mixing_dict_undirected(self): + d = nx.attribute_mixing_dict(self.G, "fish") + d_result = { + "one": {"one": 2, "red": 1}, + "two": {"two": 2, "blue": 1}, + "red": {"one": 1}, + "blue": {"two": 1}, + } + assert d == d_result + + def test_attribute_mixing_dict_directed(self): + d = nx.attribute_mixing_dict(self.D, "fish") + d_result = { + "one": {"one": 1, "red": 1}, + "two": {"two": 1, "blue": 1}, + "red": {}, + "blue": {}, + } + assert d == d_result + + def test_attribute_mixing_dict_multigraph(self): + d = nx.attribute_mixing_dict(self.M, "fish") + d_result = {"one": {"one": 4}, "two": {"two": 2}} + assert d == d_result + + +class TestAttributeMixingMatrix(BaseTestAttributeMixing): + def test_attribute_mixing_matrix_undirected(self): + mapping = {"one": 0, "two": 1, "red": 2, "blue": 3} + a_result = np.array([[2, 0, 1, 0], [0, 2, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0]]) + a = nx.attribute_mixing_matrix( + self.G, "fish", mapping=mapping, normalized=False + ) + np.testing.assert_equal(a, a_result) + a = nx.attribute_mixing_matrix(self.G, "fish", mapping=mapping) + np.testing.assert_equal(a, a_result / a_result.sum()) + + def test_attribute_mixing_matrix_directed(self): + mapping = {"one": 0, "two": 1, "red": 2, "blue": 3} + a_result = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]]) + a = nx.attribute_mixing_matrix( + self.D, "fish", mapping=mapping, normalized=False + ) + np.testing.assert_equal(a, a_result) + a = nx.attribute_mixing_matrix(self.D, "fish", mapping=mapping) + np.testing.assert_equal(a, a_result / a_result.sum()) + + def test_attribute_mixing_matrix_multigraph(self): + mapping = {"one": 0, "two": 1, "red": 2, "blue": 3} + a_result = np.array([[4, 0, 0, 0], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) + a = nx.attribute_mixing_matrix( + self.M, "fish", mapping=mapping, normalized=False + ) + np.testing.assert_equal(a, a_result) + a = nx.attribute_mixing_matrix(self.M, "fish", mapping=mapping) + np.testing.assert_equal(a, a_result / a_result.sum()) + + def test_attribute_mixing_matrix_negative(self): + mapping = {-2: 0, -3: 1, -4: 2} + a_result = np.array([[4.0, 1.0, 1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]]) + a = nx.attribute_mixing_matrix( + self.N, "margin", mapping=mapping, normalized=False + ) + np.testing.assert_equal(a, a_result) + a = nx.attribute_mixing_matrix(self.N, "margin", mapping=mapping) + np.testing.assert_equal(a, a_result / float(a_result.sum())) + + def test_attribute_mixing_matrix_float(self): + mapping = {0.5: 1, 1.5: 0} + a_result = np.array([[6.0, 1.0], [1.0, 0.0]]) + a = nx.attribute_mixing_matrix( + self.F, "margin", mapping=mapping, normalized=False + ) + np.testing.assert_equal(a, a_result) + a = nx.attribute_mixing_matrix(self.F, "margin", mapping=mapping) + np.testing.assert_equal(a, a_result / a_result.sum()) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_neighbor_degree.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_neighbor_degree.py new file mode 100644 index 00000000..bf1252d5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_neighbor_degree.py @@ -0,0 +1,108 @@ +import pytest + +import networkx as nx + + +class TestAverageNeighbor: + def test_degree_p4(self): + G = nx.path_graph(4) + answer = {0: 2, 1: 1.5, 2: 1.5, 3: 2} + nd = nx.average_neighbor_degree(G) + assert nd == answer + + D = G.to_directed() + nd = nx.average_neighbor_degree(D) + assert nd == answer + + D = nx.DiGraph(G.edges(data=True)) + nd = nx.average_neighbor_degree(D) + assert nd == {0: 1, 1: 1, 2: 0, 3: 0} + nd = nx.average_neighbor_degree(D, "in", "out") + assert nd == {0: 0, 1: 1, 2: 1, 3: 1} + nd = nx.average_neighbor_degree(D, "out", "in") + assert nd == {0: 1, 1: 1, 2: 1, 3: 0} + nd = nx.average_neighbor_degree(D, "in", "in") + assert nd == {0: 0, 1: 0, 2: 1, 3: 1} + + def test_degree_p4_weighted(self): + G = nx.path_graph(4) + G[1][2]["weight"] = 4 + answer = {0: 2, 1: 1.8, 2: 1.8, 3: 2} + nd = nx.average_neighbor_degree(G, weight="weight") + assert nd == answer + + D = G.to_directed() + nd = nx.average_neighbor_degree(D, weight="weight") + assert nd == answer + + D = nx.DiGraph(G.edges(data=True)) + print(D.edges(data=True)) + nd = nx.average_neighbor_degree(D, weight="weight") + assert nd == {0: 1, 1: 1, 2: 0, 3: 0} + nd = nx.average_neighbor_degree(D, "out", "out", weight="weight") + assert nd == {0: 1, 1: 1, 2: 0, 3: 0} + nd = nx.average_neighbor_degree(D, "in", "in", weight="weight") + assert nd == {0: 0, 1: 0, 2: 1, 3: 1} + nd = nx.average_neighbor_degree(D, "in", "out", weight="weight") + assert nd == {0: 0, 1: 1, 2: 1, 3: 1} + nd = nx.average_neighbor_degree(D, "out", "in", weight="weight") + assert nd == {0: 1, 1: 1, 2: 1, 3: 0} + nd = nx.average_neighbor_degree(D, source="in+out", weight="weight") + assert nd == {0: 1.0, 1: 1.0, 2: 0.8, 3: 1.0} + nd = nx.average_neighbor_degree(D, target="in+out", weight="weight") + assert nd == {0: 2.0, 1: 2.0, 2: 1.0, 3: 0.0} + + D = G.to_directed() + nd = nx.average_neighbor_degree(D, weight="weight") + assert nd == answer + nd = nx.average_neighbor_degree(D, source="out", target="out", weight="weight") + assert nd == answer + + D = G.to_directed() + nd = nx.average_neighbor_degree(D, source="in", target="in", weight="weight") + assert nd == answer + + def test_degree_k4(self): + G = nx.complete_graph(4) + answer = {0: 3, 1: 3, 2: 3, 3: 3} + nd = nx.average_neighbor_degree(G) + assert nd == answer + + D = G.to_directed() + nd = nx.average_neighbor_degree(D) + assert nd == answer + + D = G.to_directed() + nd = nx.average_neighbor_degree(D) + assert nd == answer + + D = G.to_directed() + nd = nx.average_neighbor_degree(D, source="in", target="in") + assert nd == answer + + def test_degree_k4_nodes(self): + G = nx.complete_graph(4) + answer = {1: 3.0, 2: 3.0} + nd = nx.average_neighbor_degree(G, nodes=[1, 2]) + assert nd == answer + + def test_degree_barrat(self): + G = nx.star_graph(5) + G.add_edges_from([(5, 6), (5, 7), (5, 8), (5, 9)]) + G[0][5]["weight"] = 5 + nd = nx.average_neighbor_degree(G)[5] + assert nd == 1.8 + nd = nx.average_neighbor_degree(G, weight="weight")[5] + assert nd == pytest.approx(3.222222, abs=1e-5) + + def test_error_invalid_source_target(self): + G = nx.path_graph(4) + with pytest.raises(nx.NetworkXError): + nx.average_neighbor_degree(G, "error") + with pytest.raises(nx.NetworkXError): + nx.average_neighbor_degree(G, "in", "error") + G = G.to_directed() + with pytest.raises(nx.NetworkXError): + nx.average_neighbor_degree(G, "error") + with pytest.raises(nx.NetworkXError): + nx.average_neighbor_degree(G, "in", "error") diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_pairs.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_pairs.py new file mode 100644 index 00000000..3984292b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/assortativity/tests/test_pairs.py @@ -0,0 +1,87 @@ +import networkx as nx + +from .base_test import BaseTestAttributeMixing, BaseTestDegreeMixing + + +class TestAttributeMixingXY(BaseTestAttributeMixing): + def test_node_attribute_xy_undirected(self): + attrxy = sorted(nx.node_attribute_xy(self.G, "fish")) + attrxy_result = sorted( + [ + ("one", "one"), + ("one", "one"), + ("two", "two"), + ("two", "two"), + ("one", "red"), + ("red", "one"), + ("blue", "two"), + ("two", "blue"), + ] + ) + assert attrxy == attrxy_result + + def test_node_attribute_xy_undirected_nodes(self): + attrxy = sorted(nx.node_attribute_xy(self.G, "fish", nodes=["one", "yellow"])) + attrxy_result = sorted([]) + assert attrxy == attrxy_result + + def test_node_attribute_xy_directed(self): + attrxy = sorted(nx.node_attribute_xy(self.D, "fish")) + attrxy_result = sorted( + [("one", "one"), ("two", "two"), ("one", "red"), ("two", "blue")] + ) + assert attrxy == attrxy_result + + def test_node_attribute_xy_multigraph(self): + attrxy = sorted(nx.node_attribute_xy(self.M, "fish")) + attrxy_result = [ + ("one", "one"), + ("one", "one"), + ("one", "one"), + ("one", "one"), + ("two", "two"), + ("two", "two"), + ] + assert attrxy == attrxy_result + + def test_node_attribute_xy_selfloop(self): + attrxy = sorted(nx.node_attribute_xy(self.S, "fish")) + attrxy_result = [("one", "one"), ("two", "two")] + assert attrxy == attrxy_result + + +class TestDegreeMixingXY(BaseTestDegreeMixing): + def test_node_degree_xy_undirected(self): + xy = sorted(nx.node_degree_xy(self.P4)) + xy_result = sorted([(1, 2), (2, 1), (2, 2), (2, 2), (1, 2), (2, 1)]) + assert xy == xy_result + + def test_node_degree_xy_undirected_nodes(self): + xy = sorted(nx.node_degree_xy(self.P4, nodes=[0, 1, -1])) + xy_result = sorted([(1, 2), (2, 1)]) + assert xy == xy_result + + def test_node_degree_xy_directed(self): + xy = sorted(nx.node_degree_xy(self.D)) + xy_result = sorted([(2, 1), (2, 3), (1, 3), (1, 3)]) + assert xy == xy_result + + def test_node_degree_xy_multigraph(self): + xy = sorted(nx.node_degree_xy(self.M)) + xy_result = sorted( + [(2, 3), (2, 3), (3, 2), (3, 2), (2, 3), (3, 2), (1, 2), (2, 1)] + ) + assert xy == xy_result + + def test_node_degree_xy_selfloop(self): + xy = sorted(nx.node_degree_xy(self.S)) + xy_result = sorted([(2, 2), (2, 2)]) + assert xy == xy_result + + def test_node_degree_xy_weighted(self): + G = nx.Graph() + G.add_edge(1, 2, weight=7) + G.add_edge(2, 3, weight=10) + xy = sorted(nx.node_degree_xy(G, weight="weight")) + xy_result = sorted([(7, 17), (17, 10), (17, 7), (10, 17)]) + assert xy == xy_result |