diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/approximation')
28 files changed, 6257 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/__init__.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/__init__.py new file mode 100644 index 00000000..d12a8f8b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/__init__.py @@ -0,0 +1,25 @@ +"""Approximations of graph properties and Heuristic methods for optimization. + +The functions in this class are not imported into the top-level ``networkx`` +namespace so the easiest way to use them is with:: + + >>> from networkx.algorithms import approximation + +Another option is to import the specific function with +``from networkx.algorithms.approximation import function_name``. + +""" + +from networkx.algorithms.approximation.clustering_coefficient import * +from networkx.algorithms.approximation.clique import * +from networkx.algorithms.approximation.connectivity import * +from networkx.algorithms.approximation.distance_measures import * +from networkx.algorithms.approximation.dominating_set import * +from networkx.algorithms.approximation.kcomponents import * +from networkx.algorithms.approximation.matching import * +from networkx.algorithms.approximation.ramsey import * +from networkx.algorithms.approximation.steinertree import * +from networkx.algorithms.approximation.traveling_salesman import * +from networkx.algorithms.approximation.treewidth import * +from networkx.algorithms.approximation.vertex_cover import * +from networkx.algorithms.approximation.maxcut import * diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/clique.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/clique.py new file mode 100644 index 00000000..ed0f3506 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/clique.py @@ -0,0 +1,259 @@ +"""Functions for computing large cliques and maximum independent sets.""" + +import networkx as nx +from networkx.algorithms.approximation import ramsey +from networkx.utils import not_implemented_for + +__all__ = [ + "clique_removal", + "max_clique", + "large_clique_size", + "maximum_independent_set", +] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable +def maximum_independent_set(G): + """Returns an approximate maximum independent set. + + Independent set or stable set is a set of vertices in a graph, no two of + which are adjacent. That is, it is a set I of vertices such that for every + two vertices in I, there is no edge connecting the two. Equivalently, each + edge in the graph has at most one endpoint in I. The size of an independent + set is the number of vertices it contains [1]_. + + A maximum independent set is a largest independent set for a given graph G + and its size is denoted $\\alpha(G)$. The problem of finding such a set is called + the maximum independent set problem and is an NP-hard optimization problem. + As such, it is unlikely that there exists an efficient algorithm for finding + a maximum independent set of a graph. + + The Independent Set algorithm is based on [2]_. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + Returns + ------- + iset : Set + The apx-maximum independent set + + Examples + -------- + >>> G = nx.path_graph(10) + >>> nx.approximation.maximum_independent_set(G) + {0, 2, 4, 6, 9} + + Raises + ------ + NetworkXNotImplemented + If the graph is directed or is a multigraph. + + Notes + ----- + Finds the $O(|V|/(log|V|)^2)$ apx of independent set in the worst case. + + References + ---------- + .. [1] `Wikipedia: Independent set + <https://en.wikipedia.org/wiki/Independent_set_(graph_theory)>`_ + .. [2] Boppana, R., & Halldórsson, M. M. (1992). + Approximating maximum independent sets by excluding subgraphs. + BIT Numerical Mathematics, 32(2), 180–196. Springer. + """ + iset, _ = clique_removal(G) + return iset + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable +def max_clique(G): + r"""Find the Maximum Clique + + Finds the $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set + in the worst case. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + Returns + ------- + clique : set + The apx-maximum clique of the graph + + Examples + -------- + >>> G = nx.path_graph(10) + >>> nx.approximation.max_clique(G) + {8, 9} + + Raises + ------ + NetworkXNotImplemented + If the graph is directed or is a multigraph. + + Notes + ----- + A clique in an undirected graph G = (V, E) is a subset of the vertex set + `C \subseteq V` such that for every two vertices in C there exists an edge + connecting the two. This is equivalent to saying that the subgraph + induced by C is complete (in some cases, the term clique may also refer + to the subgraph). + + A maximum clique is a clique of the largest possible size in a given graph. + The clique number `\omega(G)` of a graph G is the number of + vertices in a maximum clique in G. The intersection number of + G is the smallest number of cliques that together cover all edges of G. + + https://en.wikipedia.org/wiki/Maximum_clique + + References + ---------- + .. [1] Boppana, R., & Halldórsson, M. M. (1992). + Approximating maximum independent sets by excluding subgraphs. + BIT Numerical Mathematics, 32(2), 180–196. Springer. + doi:10.1007/BF01994876 + """ + # finding the maximum clique in a graph is equivalent to finding + # the independent set in the complementary graph + cgraph = nx.complement(G) + iset, _ = clique_removal(cgraph) + return iset + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable +def clique_removal(G): + r"""Repeatedly remove cliques from the graph. + + Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique + and independent set. Returns the largest independent set found, along + with found maximal cliques. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + Returns + ------- + max_ind_cliques : (set, list) tuple + 2-tuple of Maximal Independent Set and list of maximal cliques (sets). + + Examples + -------- + >>> G = nx.path_graph(10) + >>> nx.approximation.clique_removal(G) + ({0, 2, 4, 6, 9}, [{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}]) + + Raises + ------ + NetworkXNotImplemented + If the graph is directed or is a multigraph. + + References + ---------- + .. [1] Boppana, R., & Halldórsson, M. M. (1992). + Approximating maximum independent sets by excluding subgraphs. + BIT Numerical Mathematics, 32(2), 180–196. Springer. + """ + graph = G.copy() + c_i, i_i = ramsey.ramsey_R2(graph) + cliques = [c_i] + isets = [i_i] + while graph: + graph.remove_nodes_from(c_i) + c_i, i_i = ramsey.ramsey_R2(graph) + if c_i: + cliques.append(c_i) + if i_i: + isets.append(i_i) + # Determine the largest independent set as measured by cardinality. + maxiset = max(isets, key=len) + return maxiset, cliques + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable +def large_clique_size(G): + """Find the size of a large clique in a graph. + + A *clique* is a subset of nodes in which each pair of nodes is + adjacent. This function is a heuristic for finding the size of a + large clique in the graph. + + Parameters + ---------- + G : NetworkX graph + + Returns + ------- + k: integer + The size of a large clique in the graph. + + Examples + -------- + >>> G = nx.path_graph(10) + >>> nx.approximation.large_clique_size(G) + 2 + + Raises + ------ + NetworkXNotImplemented + If the graph is directed or is a multigraph. + + Notes + ----- + This implementation is from [1]_. Its worst case time complexity is + :math:`O(n d^2)`, where *n* is the number of nodes in the graph and + *d* is the maximum degree. + + This function is a heuristic, which means it may work well in + practice, but there is no rigorous mathematical guarantee on the + ratio between the returned number and the actual largest clique size + in the graph. + + References + ---------- + .. [1] Pattabiraman, Bharath, et al. + "Fast Algorithms for the Maximum Clique Problem on Massive Graphs + with Applications to Overlapping Community Detection." + *Internet Mathematics* 11.4-5 (2015): 421--448. + <https://doi.org/10.1080/15427951.2014.986778> + + See also + -------- + + :func:`networkx.algorithms.approximation.clique.max_clique` + A function that returns an approximate maximum clique with a + guarantee on the approximation ratio. + + :mod:`networkx.algorithms.clique` + Functions for finding the exact maximum clique in a graph. + + """ + degrees = G.degree + + def _clique_heuristic(G, U, size, best_size): + if not U: + return max(best_size, size) + u = max(U, key=degrees) + U.remove(u) + N_prime = {v for v in G[u] if degrees[v] >= best_size} + return _clique_heuristic(G, U & N_prime, size + 1, best_size) + + best_size = 0 + nodes = (u for u in G if degrees[u] >= best_size) + for u in nodes: + neighbors = {v for v in G[u] if degrees[v] >= best_size} + best_size = _clique_heuristic(G, neighbors, 1, best_size) + return best_size diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/clustering_coefficient.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/clustering_coefficient.py new file mode 100644 index 00000000..545fc655 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/clustering_coefficient.py @@ -0,0 +1,71 @@ +import networkx as nx +from networkx.utils import not_implemented_for, py_random_state + +__all__ = ["average_clustering"] + + +@not_implemented_for("directed") +@py_random_state(2) +@nx._dispatchable(name="approximate_average_clustering") +def average_clustering(G, trials=1000, seed=None): + r"""Estimates the average clustering coefficient of G. + + The local clustering of each node in `G` is the fraction of triangles + that actually exist over all possible triangles in its neighborhood. + The average clustering coefficient of a graph `G` is the mean of + local clusterings. + + This function finds an approximate average clustering coefficient + for G by repeating `n` times (defined in `trials`) the following + experiment: choose a node at random, choose two of its neighbors + at random, and check if they are connected. The approximate + coefficient is the fraction of triangles found over the number + of trials [1]_. + + Parameters + ---------- + G : NetworkX graph + + trials : integer + Number of trials to perform (default 1000). + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + c : float + Approximated average clustering coefficient. + + Examples + -------- + >>> from networkx.algorithms import approximation + >>> G = nx.erdos_renyi_graph(10, 0.2, seed=10) + >>> approximation.average_clustering(G, trials=1000, seed=10) + 0.214 + + Raises + ------ + NetworkXNotImplemented + If G is directed. + + References + ---------- + .. [1] Schank, Thomas, and Dorothea Wagner. Approximating clustering + coefficient and transitivity. Universität Karlsruhe, Fakultät für + Informatik, 2004. + https://doi.org/10.5445/IR/1000001239 + + """ + n = len(G) + triangles = 0 + nodes = list(G) + for i in [int(seed.random() * n) for i in range(trials)]: + nbrs = list(G[nodes[i]]) + if len(nbrs) < 2: + continue + u, v = seed.sample(nbrs, 2) + if u in G[v]: + triangles += 1 + return triangles / trials diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/connectivity.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/connectivity.py new file mode 100644 index 00000000..0b596fdf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/connectivity.py @@ -0,0 +1,412 @@ +"""Fast approximation for node connectivity""" + +import itertools +from operator import itemgetter + +import networkx as nx + +__all__ = [ + "local_node_connectivity", + "node_connectivity", + "all_pairs_node_connectivity", +] + + +@nx._dispatchable(name="approximate_local_node_connectivity") +def local_node_connectivity(G, source, target, cutoff=None): + """Compute node connectivity between source and target. + + Pairwise or local node connectivity between two distinct and nonadjacent + nodes is the minimum number of nodes that must be removed (minimum + separating cutset) to disconnect them. By Menger's theorem, this is equal + to the number of node independent paths (paths that share no nodes other + than source and target). Which is what we compute in this function. + + This algorithm is a fast approximation that gives an strict lower + bound on the actual number of node independent paths between two nodes [1]_. + It works for both directed and undirected graphs. + + Parameters + ---------- + + G : NetworkX graph + + source : node + Starting node for node connectivity + + target : node + Ending node for node connectivity + + cutoff : integer + Maximum node connectivity to consider. If None, the minimum degree + of source or target is used as a cutoff. Default value None. + + Returns + ------- + k: integer + pairwise node connectivity + + Examples + -------- + >>> # Platonic octahedral graph has node connectivity 4 + >>> # for each non adjacent node pair + >>> from networkx.algorithms import approximation as approx + >>> G = nx.octahedral_graph() + >>> approx.local_node_connectivity(G, 0, 5) + 4 + + Notes + ----- + This algorithm [1]_ finds node independents paths between two nodes by + computing their shortest path using BFS, marking the nodes of the path + found as 'used' and then searching other shortest paths excluding the + nodes marked as used until no more paths exist. It is not exact because + a shortest path could use nodes that, if the path were longer, may belong + to two different node independent paths. Thus it only guarantees an + strict lower bound on node connectivity. + + Note that the authors propose a further refinement, losing accuracy and + gaining speed, which is not implemented yet. + + See also + -------- + all_pairs_node_connectivity + node_connectivity + + References + ---------- + .. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for + Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 + http://eclectic.ss.uci.edu/~drwhite/working.pdf + + """ + if target == source: + raise nx.NetworkXError("source and target have to be different nodes.") + + # Maximum possible node independent paths + if G.is_directed(): + possible = min(G.out_degree(source), G.in_degree(target)) + else: + possible = min(G.degree(source), G.degree(target)) + + K = 0 + if not possible: + return K + + if cutoff is None: + cutoff = float("inf") + + exclude = set() + for i in range(min(possible, cutoff)): + try: + path = _bidirectional_shortest_path(G, source, target, exclude) + exclude.update(set(path)) + K += 1 + except nx.NetworkXNoPath: + break + + return K + + +@nx._dispatchable(name="approximate_node_connectivity") +def node_connectivity(G, s=None, t=None): + r"""Returns an approximation for node connectivity for a graph or digraph G. + + Node connectivity is equal to the minimum number of nodes that + must be removed to disconnect G or render it trivial. By Menger's theorem, + this is equal to the number of node independent paths (paths that + share no nodes other than source and target). + + If source and target nodes are provided, this function returns the + local node connectivity: the minimum number of nodes that must be + removed to break all paths from source to target in G. + + This algorithm is based on a fast approximation that gives an strict lower + bound on the actual number of node independent paths between two nodes [1]_. + It works for both directed and undirected graphs. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + s : node + Source node. Optional. Default value: None. + + t : node + Target node. Optional. Default value: None. + + Returns + ------- + K : integer + Node connectivity of G, or local node connectivity if source + and target are provided. + + Examples + -------- + >>> # Platonic octahedral graph is 4-node-connected + >>> from networkx.algorithms import approximation as approx + >>> G = nx.octahedral_graph() + >>> approx.node_connectivity(G) + 4 + + Notes + ----- + This algorithm [1]_ finds node independents paths between two nodes by + computing their shortest path using BFS, marking the nodes of the path + found as 'used' and then searching other shortest paths excluding the + nodes marked as used until no more paths exist. It is not exact because + a shortest path could use nodes that, if the path were longer, may belong + to two different node independent paths. Thus it only guarantees an + strict lower bound on node connectivity. + + See also + -------- + all_pairs_node_connectivity + local_node_connectivity + + References + ---------- + .. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for + Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 + http://eclectic.ss.uci.edu/~drwhite/working.pdf + + """ + if (s is not None and t is None) or (s is None and t is not None): + raise nx.NetworkXError("Both source and target must be specified.") + + # Local node connectivity + if s is not None and t is not None: + if s not in G: + raise nx.NetworkXError(f"node {s} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {t} not in graph") + return local_node_connectivity(G, s, t) + + # Global node connectivity + if G.is_directed(): + connected_func = nx.is_weakly_connected + iter_func = itertools.permutations + + def neighbors(v): + return itertools.chain(G.predecessors(v), G.successors(v)) + + else: + connected_func = nx.is_connected + iter_func = itertools.combinations + neighbors = G.neighbors + + if not connected_func(G): + return 0 + + # Choose a node with minimum degree + v, minimum_degree = min(G.degree(), key=itemgetter(1)) + # Node connectivity is bounded by minimum degree + K = minimum_degree + # compute local node connectivity with all non-neighbors nodes + # and store the minimum + for w in set(G) - set(neighbors(v)) - {v}: + K = min(K, local_node_connectivity(G, v, w, cutoff=K)) + # Same for non adjacent pairs of neighbors of v + for x, y in iter_func(neighbors(v), 2): + if y not in G[x] and x != y: + K = min(K, local_node_connectivity(G, x, y, cutoff=K)) + return K + + +@nx._dispatchable(name="approximate_all_pairs_node_connectivity") +def all_pairs_node_connectivity(G, nbunch=None, cutoff=None): + """Compute node connectivity between all pairs of nodes. + + Pairwise or local node connectivity between two distinct and nonadjacent + nodes is the minimum number of nodes that must be removed (minimum + separating cutset) to disconnect them. By Menger's theorem, this is equal + to the number of node independent paths (paths that share no nodes other + than source and target). Which is what we compute in this function. + + This algorithm is a fast approximation that gives an strict lower + bound on the actual number of node independent paths between two nodes [1]_. + It works for both directed and undirected graphs. + + + Parameters + ---------- + G : NetworkX graph + + nbunch: container + Container of nodes. If provided node connectivity will be computed + only over pairs of nodes in nbunch. + + cutoff : integer + Maximum node connectivity to consider. If None, the minimum degree + of source or target is used as a cutoff in each pair of nodes. + Default value None. + + Returns + ------- + K : dictionary + Dictionary, keyed by source and target, of pairwise node connectivity + + Examples + -------- + A 3 node cycle with one extra node attached has connectivity 2 between all + nodes in the cycle and connectivity 1 between the extra node and the rest: + + >>> G = nx.cycle_graph(3) + >>> G.add_edge(2, 3) + >>> import pprint # for nice dictionary formatting + >>> pprint.pprint(nx.all_pairs_node_connectivity(G)) + {0: {1: 2, 2: 2, 3: 1}, + 1: {0: 2, 2: 2, 3: 1}, + 2: {0: 2, 1: 2, 3: 1}, + 3: {0: 1, 1: 1, 2: 1}} + + See Also + -------- + local_node_connectivity + node_connectivity + + References + ---------- + .. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for + Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 + http://eclectic.ss.uci.edu/~drwhite/working.pdf + """ + if nbunch is None: + nbunch = G + else: + nbunch = set(nbunch) + + directed = G.is_directed() + if directed: + iter_func = itertools.permutations + else: + iter_func = itertools.combinations + + all_pairs = {n: {} for n in nbunch} + + for u, v in iter_func(nbunch, 2): + k = local_node_connectivity(G, u, v, cutoff=cutoff) + all_pairs[u][v] = k + if not directed: + all_pairs[v][u] = k + + return all_pairs + + +def _bidirectional_shortest_path(G, source, target, exclude): + """Returns shortest path between source and target ignoring nodes in the + container 'exclude'. + + Parameters + ---------- + + G : NetworkX graph + + source : node + Starting node for path + + target : node + Ending node for path + + exclude: container + Container for nodes to exclude from the search for shortest paths + + Returns + ------- + path: list + Shortest path between source and target ignoring nodes in 'exclude' + + Raises + ------ + NetworkXNoPath + If there is no path or if nodes are adjacent and have only one path + between them + + Notes + ----- + This function and its helper are originally from + networkx.algorithms.shortest_paths.unweighted and are modified to + accept the extra parameter 'exclude', which is a container for nodes + already used in other paths that should be ignored. + + References + ---------- + .. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for + Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 + http://eclectic.ss.uci.edu/~drwhite/working.pdf + + """ + # call helper to do the real work + results = _bidirectional_pred_succ(G, source, target, exclude) + pred, succ, w = results + + # build path from pred+w+succ + path = [] + # from source to w + while w is not None: + path.append(w) + w = pred[w] + path.reverse() + # from w to target + w = succ[path[-1]] + while w is not None: + path.append(w) + w = succ[w] + + return path + + +def _bidirectional_pred_succ(G, source, target, exclude): + # does BFS from both source and target and meets in the middle + # excludes nodes in the container "exclude" from the search + + # handle either directed or undirected + if G.is_directed(): + Gpred = G.predecessors + Gsucc = G.successors + else: + Gpred = G.neighbors + Gsucc = G.neighbors + + # predecessor and successors in search + pred = {source: None} + succ = {target: None} + + # initialize fringes, start with forward + forward_fringe = [source] + reverse_fringe = [target] + + level = 0 + + while forward_fringe and reverse_fringe: + # Make sure that we iterate one step forward and one step backwards + # thus source and target will only trigger "found path" when they are + # adjacent and then they can be safely included in the container 'exclude' + level += 1 + if level % 2 != 0: + this_level = forward_fringe + forward_fringe = [] + for v in this_level: + for w in Gsucc(v): + if w in exclude: + continue + if w not in pred: + forward_fringe.append(w) + pred[w] = v + if w in succ: + return pred, succ, w # found path + else: + this_level = reverse_fringe + reverse_fringe = [] + for v in this_level: + for w in Gpred(v): + if w in exclude: + continue + if w not in succ: + succ[w] = v + reverse_fringe.append(w) + if w in pred: + return pred, succ, w # found path + + raise nx.NetworkXNoPath(f"No path between {source} and {target}.") diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/distance_measures.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/distance_measures.py new file mode 100644 index 00000000..d5847e65 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/distance_measures.py @@ -0,0 +1,150 @@ +"""Distance measures approximated metrics.""" + +import networkx as nx +from networkx.utils.decorators import py_random_state + +__all__ = ["diameter"] + + +@py_random_state(1) +@nx._dispatchable(name="approximate_diameter") +def diameter(G, seed=None): + """Returns a lower bound on the diameter of the graph G. + + The function computes a lower bound on the diameter (i.e., the maximum eccentricity) + of a directed or undirected graph G. The procedure used varies depending on the graph + being directed or not. + + If G is an `undirected` graph, then the function uses the `2-sweep` algorithm [1]_. + The main idea is to pick the farthest node from a random node and return its eccentricity. + + Otherwise, if G is a `directed` graph, the function uses the `2-dSweep` algorithm [2]_, + The procedure starts by selecting a random source node $s$ from which it performs a + forward and a backward BFS. Let $a_1$ and $a_2$ be the farthest nodes in the forward and + backward cases, respectively. Then, it computes the backward eccentricity of $a_1$ using + a backward BFS and the forward eccentricity of $a_2$ using a forward BFS. + Finally, it returns the best lower bound between the two. + + In both cases, the time complexity is linear with respect to the size of G. + + Parameters + ---------- + G : NetworkX graph + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + d : integer + Lower Bound on the Diameter of G + + Examples + -------- + >>> G = nx.path_graph(10) # undirected graph + >>> nx.diameter(G) + 9 + >>> G = nx.cycle_graph(3, create_using=nx.DiGraph) # directed graph + >>> nx.diameter(G) + 2 + + Raises + ------ + NetworkXError + If the graph is empty or + If the graph is undirected and not connected or + If the graph is directed and not strongly connected. + + See Also + -------- + networkx.algorithms.distance_measures.diameter + + References + ---------- + .. [1] Magnien, Clémence, Matthieu Latapy, and Michel Habib. + *Fast computation of empirically tight bounds for the diameter of massive graphs.* + Journal of Experimental Algorithmics (JEA), 2009. + https://arxiv.org/pdf/0904.2728.pdf + .. [2] Crescenzi, Pierluigi, Roberto Grossi, Leonardo Lanzi, and Andrea Marino. + *On computing the diameter of real-world directed (weighted) graphs.* + International Symposium on Experimental Algorithms. Springer, Berlin, Heidelberg, 2012. + https://courses.cs.ut.ee/MTAT.03.238/2014_fall/uploads/Main/diameter.pdf + """ + # if G is empty + if not G: + raise nx.NetworkXError("Expected non-empty NetworkX graph!") + # if there's only a node + if G.number_of_nodes() == 1: + return 0 + # if G is directed + if G.is_directed(): + return _two_sweep_directed(G, seed) + # else if G is undirected + return _two_sweep_undirected(G, seed) + + +def _two_sweep_undirected(G, seed): + """Helper function for finding a lower bound on the diameter + for undirected Graphs. + + The idea is to pick the farthest node from a random node + and return its eccentricity. + + ``G`` is a NetworkX undirected graph. + + .. note:: + + ``seed`` is a random.Random or numpy.random.RandomState instance + """ + # select a random source node + source = seed.choice(list(G)) + # get the distances to the other nodes + distances = nx.shortest_path_length(G, source) + # if some nodes have not been visited, then the graph is not connected + if len(distances) != len(G): + raise nx.NetworkXError("Graph not connected.") + # take a node that is (one of) the farthest nodes from the source + *_, node = distances + # return the eccentricity of the node + return nx.eccentricity(G, node) + + +def _two_sweep_directed(G, seed): + """Helper function for finding a lower bound on the diameter + for directed Graphs. + + It implements 2-dSweep, the directed version of the 2-sweep algorithm. + The algorithm follows the following steps. + 1. Select a source node $s$ at random. + 2. Perform a forward BFS from $s$ to select a node $a_1$ at the maximum + distance from the source, and compute $LB_1$, the backward eccentricity of $a_1$. + 3. Perform a backward BFS from $s$ to select a node $a_2$ at the maximum + distance from the source, and compute $LB_2$, the forward eccentricity of $a_2$. + 4. Return the maximum between $LB_1$ and $LB_2$. + + ``G`` is a NetworkX directed graph. + + .. note:: + + ``seed`` is a random.Random or numpy.random.RandomState instance + """ + # get a new digraph G' with the edges reversed in the opposite direction + G_reversed = G.reverse() + # select a random source node + source = seed.choice(list(G)) + # compute forward distances from source + forward_distances = nx.shortest_path_length(G, source) + # compute backward distances from source + backward_distances = nx.shortest_path_length(G_reversed, source) + # if either the source can't reach every node or not every node + # can reach the source, then the graph is not strongly connected + n = len(G) + if len(forward_distances) != n or len(backward_distances) != n: + raise nx.NetworkXError("DiGraph not strongly connected.") + # take a node a_1 at the maximum distance from the source in G + *_, a_1 = forward_distances + # take a node a_2 at the maximum distance from the source in G_reversed + *_, a_2 = backward_distances + # return the max between the backward eccentricity of a_1 and the forward eccentricity of a_2 + return max(nx.eccentricity(G_reversed, a_1), nx.eccentricity(G, a_2)) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/dominating_set.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/dominating_set.py new file mode 100644 index 00000000..e568a827 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/dominating_set.py @@ -0,0 +1,149 @@ +"""Functions for finding node and edge dominating sets. + +A `dominating set`_ for an undirected graph *G* with vertex set *V* +and edge set *E* is a subset *D* of *V* such that every vertex not in +*D* is adjacent to at least one member of *D*. An `edge dominating set`_ +is a subset *F* of *E* such that every edge not in *F* is +incident to an endpoint of at least one edge in *F*. + +.. _dominating set: https://en.wikipedia.org/wiki/Dominating_set +.. _edge dominating set: https://en.wikipedia.org/wiki/Edge_dominating_set + +""" + +import networkx as nx + +from ...utils import not_implemented_for +from ..matching import maximal_matching + +__all__ = ["min_weighted_dominating_set", "min_edge_dominating_set"] + + +# TODO Why doesn't this algorithm work for directed graphs? +@not_implemented_for("directed") +@nx._dispatchable(node_attrs="weight") +def min_weighted_dominating_set(G, weight=None): + r"""Returns a dominating set that approximates the minimum weight node + dominating set. + + Parameters + ---------- + G : NetworkX graph + Undirected graph. + + weight : string + The node attribute storing the weight of an node. If provided, + the node attribute with this key must be a number for each + node. If not provided, each node is assumed to have weight one. + + Returns + ------- + min_weight_dominating_set : set + A set of nodes, the sum of whose weights is no more than `(\log + w(V)) w(V^*)`, where `w(V)` denotes the sum of the weights of + each node in the graph and `w(V^*)` denotes the sum of the + weights of each node in the minimum weight dominating set. + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 4), (1, 4), (1, 2), (2, 3), (3, 4), (2, 5)]) + >>> nx.approximation.min_weighted_dominating_set(G) + {1, 2, 4} + + Raises + ------ + NetworkXNotImplemented + If G is directed. + + Notes + ----- + This algorithm computes an approximate minimum weighted dominating + set for the graph `G`. The returned solution has weight `(\log + w(V)) w(V^*)`, where `w(V)` denotes the sum of the weights of each + node in the graph and `w(V^*)` denotes the sum of the weights of + each node in the minimum weight dominating set for the graph. + + This implementation of the algorithm runs in $O(m)$ time, where $m$ + is the number of edges in the graph. + + References + ---------- + .. [1] Vazirani, Vijay V. + *Approximation Algorithms*. + Springer Science & Business Media, 2001. + + """ + # The unique dominating set for the null graph is the empty set. + if len(G) == 0: + return set() + + # This is the dominating set that will eventually be returned. + dom_set = set() + + def _cost(node_and_neighborhood): + """Returns the cost-effectiveness of greedily choosing the given + node. + + `node_and_neighborhood` is a two-tuple comprising a node and its + closed neighborhood. + + """ + v, neighborhood = node_and_neighborhood + return G.nodes[v].get(weight, 1) / len(neighborhood - dom_set) + + # This is a set of all vertices not already covered by the + # dominating set. + vertices = set(G) + # This is a dictionary mapping each node to the closed neighborhood + # of that node. + neighborhoods = {v: {v} | set(G[v]) for v in G} + + # Continue until all vertices are adjacent to some node in the + # dominating set. + while vertices: + # Find the most cost-effective node to add, along with its + # closed neighborhood. + dom_node, min_set = min(neighborhoods.items(), key=_cost) + # Add the node to the dominating set and reduce the remaining + # set of nodes to cover. + dom_set.add(dom_node) + del neighborhoods[dom_node] + vertices -= min_set + + return dom_set + + +@nx._dispatchable +def min_edge_dominating_set(G): + r"""Returns minimum cardinality edge dominating set. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + Returns + ------- + min_edge_dominating_set : set + Returns a set of dominating edges whose size is no more than 2 * OPT. + + Examples + -------- + >>> G = nx.petersen_graph() + >>> nx.approximation.min_edge_dominating_set(G) + {(0, 1), (4, 9), (6, 8), (5, 7), (2, 3)} + + Raises + ------ + ValueError + If the input graph `G` is empty. + + Notes + ----- + The algorithm computes an approximate solution to the edge dominating set + problem. The result is no more than 2 * OPT in terms of size of the set. + Runtime of the algorithm is $O(|E|)$. + """ + if not G: + raise ValueError("Expected non-empty NetworkX graph!") + return maximal_matching(G) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/kcomponents.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/kcomponents.py new file mode 100644 index 00000000..f726a4e6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/kcomponents.py @@ -0,0 +1,369 @@ +"""Fast approximation for k-component structure""" + +import itertools +from collections import defaultdict +from collections.abc import Mapping +from functools import cached_property + +import networkx as nx +from networkx.algorithms.approximation import local_node_connectivity +from networkx.exception import NetworkXError +from networkx.utils import not_implemented_for + +__all__ = ["k_components"] + + +@not_implemented_for("directed") +@nx._dispatchable(name="approximate_k_components") +def k_components(G, min_density=0.95): + r"""Returns the approximate k-component structure of a graph G. + + A `k`-component is a maximal subgraph of a graph G that has, at least, + node connectivity `k`: we need to remove at least `k` nodes to break it + into more components. `k`-components have an inherent hierarchical + structure because they are nested in terms of connectivity: a connected + graph can contain several 2-components, each of which can contain + one or more 3-components, and so forth. + + This implementation is based on the fast heuristics to approximate + the `k`-component structure of a graph [1]_. Which, in turn, it is based on + a fast approximation algorithm for finding good lower bounds of the number + of node independent paths between two nodes [2]_. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + min_density : Float + Density relaxation threshold. Default value 0.95 + + Returns + ------- + k_components : dict + Dictionary with connectivity level `k` as key and a list of + sets of nodes that form a k-component of level `k` as values. + + Raises + ------ + NetworkXNotImplemented + If G is directed. + + Examples + -------- + >>> # Petersen graph has 10 nodes and it is triconnected, thus all + >>> # nodes are in a single component on all three connectivity levels + >>> from networkx.algorithms import approximation as apxa + >>> G = nx.petersen_graph() + >>> k_components = apxa.k_components(G) + + Notes + ----- + The logic of the approximation algorithm for computing the `k`-component + structure [1]_ is based on repeatedly applying simple and fast algorithms + for `k`-cores and biconnected components in order to narrow down the + number of pairs of nodes over which we have to compute White and Newman's + approximation algorithm for finding node independent paths [2]_. More + formally, this algorithm is based on Whitney's theorem, which states + an inclusion relation among node connectivity, edge connectivity, and + minimum degree for any graph G. This theorem implies that every + `k`-component is nested inside a `k`-edge-component, which in turn, + is contained in a `k`-core. Thus, this algorithm computes node independent + paths among pairs of nodes in each biconnected part of each `k`-core, + and repeats this procedure for each `k` from 3 to the maximal core number + of a node in the input graph. + + Because, in practice, many nodes of the core of level `k` inside a + bicomponent actually are part of a component of level k, the auxiliary + graph needed for the algorithm is likely to be very dense. Thus, we use + a complement graph data structure (see `AntiGraph`) to save memory. + AntiGraph only stores information of the edges that are *not* present + in the actual auxiliary graph. When applying algorithms to this + complement graph data structure, it behaves as if it were the dense + version. + + See also + -------- + k_components + + References + ---------- + .. [1] Torrents, J. and F. Ferraro (2015) Structural Cohesion: + Visualization and Heuristics for Fast Computation. + https://arxiv.org/pdf/1503.04476v1 + + .. [2] White, Douglas R., and Mark Newman (2001) A Fast Algorithm for + Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 + https://www.santafe.edu/research/results/working-papers/fast-approximation-algorithms-for-finding-node-ind + + .. [3] Moody, J. and D. White (2003). Social cohesion and embeddedness: + A hierarchical conception of social groups. + American Sociological Review 68(1), 103--28. + https://doi.org/10.2307/3088904 + + """ + # Dictionary with connectivity level (k) as keys and a list of + # sets of nodes that form a k-component as values + k_components = defaultdict(list) + # make a few functions local for speed + node_connectivity = local_node_connectivity + k_core = nx.k_core + core_number = nx.core_number + biconnected_components = nx.biconnected_components + combinations = itertools.combinations + # Exact solution for k = {1,2} + # There is a linear time algorithm for triconnectivity, if we had an + # implementation available we could start from k = 4. + for component in nx.connected_components(G): + # isolated nodes have connectivity 0 + comp = set(component) + if len(comp) > 1: + k_components[1].append(comp) + for bicomponent in nx.biconnected_components(G): + # avoid considering dyads as bicomponents + bicomp = set(bicomponent) + if len(bicomp) > 2: + k_components[2].append(bicomp) + # There is no k-component of k > maximum core number + # \kappa(G) <= \lambda(G) <= \delta(G) + g_cnumber = core_number(G) + max_core = max(g_cnumber.values()) + for k in range(3, max_core + 1): + C = k_core(G, k, core_number=g_cnumber) + for nodes in biconnected_components(C): + # Build a subgraph SG induced by the nodes that are part of + # each biconnected component of the k-core subgraph C. + if len(nodes) < k: + continue + SG = G.subgraph(nodes) + # Build auxiliary graph + H = _AntiGraph() + H.add_nodes_from(SG.nodes()) + for u, v in combinations(SG, 2): + K = node_connectivity(SG, u, v, cutoff=k) + if k > K: + H.add_edge(u, v) + for h_nodes in biconnected_components(H): + if len(h_nodes) <= k: + continue + SH = H.subgraph(h_nodes) + for Gc in _cliques_heuristic(SG, SH, k, min_density): + for k_nodes in biconnected_components(Gc): + Gk = nx.k_core(SG.subgraph(k_nodes), k) + if len(Gk) <= k: + continue + k_components[k].append(set(Gk)) + return k_components + + +def _cliques_heuristic(G, H, k, min_density): + h_cnumber = nx.core_number(H) + for i, c_value in enumerate(sorted(set(h_cnumber.values()), reverse=True)): + cands = {n for n, c in h_cnumber.items() if c == c_value} + # Skip checking for overlap for the highest core value + if i == 0: + overlap = False + else: + overlap = set.intersection( + *[{x for x in H[n] if x not in cands} for n in cands] + ) + if overlap and len(overlap) < k: + SH = H.subgraph(cands | overlap) + else: + SH = H.subgraph(cands) + sh_cnumber = nx.core_number(SH) + SG = nx.k_core(G.subgraph(SH), k) + while not (_same(sh_cnumber) and nx.density(SH) >= min_density): + # This subgraph must be writable => .copy() + SH = H.subgraph(SG).copy() + if len(SH) <= k: + break + sh_cnumber = nx.core_number(SH) + sh_deg = dict(SH.degree()) + min_deg = min(sh_deg.values()) + SH.remove_nodes_from(n for n, d in sh_deg.items() if d == min_deg) + SG = nx.k_core(G.subgraph(SH), k) + else: + yield SG + + +def _same(measure, tol=0): + vals = set(measure.values()) + if (max(vals) - min(vals)) <= tol: + return True + return False + + +class _AntiGraph(nx.Graph): + """ + Class for complement graphs. + + The main goal is to be able to work with big and dense graphs with + a low memory footprint. + + In this class you add the edges that *do not exist* in the dense graph, + the report methods of the class return the neighbors, the edges and + the degree as if it was the dense graph. Thus it's possible to use + an instance of this class with some of NetworkX functions. In this + case we only use k-core, connected_components, and biconnected_components. + """ + + all_edge_dict = {"weight": 1} + + def single_edge_dict(self): + return self.all_edge_dict + + edge_attr_dict_factory = single_edge_dict # type: ignore[assignment] + + def __getitem__(self, n): + """Returns a dict of neighbors of node n in the dense graph. + + Parameters + ---------- + n : node + A node in the graph. + + Returns + ------- + adj_dict : dictionary + The adjacency dictionary for nodes connected to n. + + """ + all_edge_dict = self.all_edge_dict + return { + node: all_edge_dict for node in set(self._adj) - set(self._adj[n]) - {n} + } + + def neighbors(self, n): + """Returns an iterator over all neighbors of node n in the + dense graph. + """ + try: + return iter(set(self._adj) - set(self._adj[n]) - {n}) + except KeyError as err: + raise NetworkXError(f"The node {n} is not in the graph.") from err + + class AntiAtlasView(Mapping): + """An adjacency inner dict for AntiGraph""" + + def __init__(self, graph, node): + self._graph = graph + self._atlas = graph._adj[node] + self._node = node + + def __len__(self): + return len(self._graph) - len(self._atlas) - 1 + + def __iter__(self): + return (n for n in self._graph if n not in self._atlas and n != self._node) + + def __getitem__(self, nbr): + nbrs = set(self._graph._adj) - set(self._atlas) - {self._node} + if nbr in nbrs: + return self._graph.all_edge_dict + raise KeyError(nbr) + + class AntiAdjacencyView(AntiAtlasView): + """An adjacency outer dict for AntiGraph""" + + def __init__(self, graph): + self._graph = graph + self._atlas = graph._adj + + def __len__(self): + return len(self._atlas) + + def __iter__(self): + return iter(self._graph) + + def __getitem__(self, node): + if node not in self._graph: + raise KeyError(node) + return self._graph.AntiAtlasView(self._graph, node) + + @cached_property + def adj(self): + return self.AntiAdjacencyView(self) + + def subgraph(self, nodes): + """This subgraph method returns a full AntiGraph. Not a View""" + nodes = set(nodes) + G = _AntiGraph() + G.add_nodes_from(nodes) + for n in G: + Gnbrs = G.adjlist_inner_dict_factory() + G._adj[n] = Gnbrs + for nbr, d in self._adj[n].items(): + if nbr in G._adj: + Gnbrs[nbr] = d + G._adj[nbr][n] = d + G.graph = self.graph + return G + + class AntiDegreeView(nx.reportviews.DegreeView): + def __iter__(self): + all_nodes = set(self._succ) + for n in self._nodes: + nbrs = all_nodes - set(self._succ[n]) - {n} + yield (n, len(nbrs)) + + def __getitem__(self, n): + nbrs = set(self._succ) - set(self._succ[n]) - {n} + # AntiGraph is a ThinGraph so all edges have weight 1 + return len(nbrs) + (n in nbrs) + + @cached_property + def degree(self): + """Returns an iterator for (node, degree) and degree for single node. + + The node degree is the number of edges adjacent to the node. + + Parameters + ---------- + nbunch : iterable container, optional (default=all nodes) + A container of nodes. The container will be iterated + through once. + + weight : string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + deg: + Degree of the node, if a single node is passed as argument. + nd_iter : an iterator + The iterator returns two-tuples of (node, degree). + + See Also + -------- + degree + + Examples + -------- + >>> G = nx.path_graph(4) + >>> G.degree(0) # node 0 with degree 1 + 1 + >>> list(G.degree([0, 1])) + [(0, 1), (1, 2)] + + """ + return self.AntiDegreeView(self) + + def adjacency(self): + """Returns an iterator of (node, adjacency set) tuples for all nodes + in the dense graph. + + This is the fastest way to look at every edge. + For directed graphs, only outgoing adjacencies are included. + + Returns + ------- + adj_iter : iterator + An iterator of (node, adjacency set) for all nodes in + the graph. + + """ + for n in self._adj: + yield (n, set(self._adj) - set(self._adj[n]) - {n}) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/matching.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/matching.py new file mode 100644 index 00000000..dc089194 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/matching.py @@ -0,0 +1,44 @@ +""" +************** +Graph Matching +************** + +Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent +edges; that is, no two edges share a common vertex. + +`Wikipedia: Matching <https://en.wikipedia.org/wiki/Matching_(graph_theory)>`_ +""" + +import networkx as nx + +__all__ = ["min_maximal_matching"] + + +@nx._dispatchable +def min_maximal_matching(G): + r"""Returns the minimum maximal matching of G. That is, out of all maximal + matchings of the graph G, the smallest is returned. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + Returns + ------- + min_maximal_matching : set + Returns a set of edges such that no two edges share a common endpoint + and every edge not in the set shares some common endpoint in the set. + Cardinality will be 2*OPT in the worst case. + + Notes + ----- + The algorithm computes an approximate solution for the minimum maximal + cardinality matching problem. The solution is no more than 2 * OPT in size. + Runtime is $O(|E|)$. + + References + ---------- + .. [1] Vazirani, Vijay Approximation Algorithms (2001) + """ + return nx.maximal_matching(G) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/maxcut.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/maxcut.py new file mode 100644 index 00000000..f4e1da87 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/maxcut.py @@ -0,0 +1,143 @@ +import networkx as nx +from networkx.utils.decorators import not_implemented_for, py_random_state + +__all__ = ["randomized_partitioning", "one_exchange"] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@py_random_state(1) +@nx._dispatchable(edge_attrs="weight") +def randomized_partitioning(G, seed=None, p=0.5, weight=None): + """Compute a random partitioning of the graph nodes and its cut value. + + A partitioning is calculated by observing each node + and deciding to add it to the partition with probability `p`, + returning a random cut and its corresponding value (the + sum of weights of edges connecting different partitions). + + Parameters + ---------- + G : NetworkX graph + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + p : scalar + Probability for each node to be part of the first partition. + Should be in [0,1] + + weight : object + Edge attribute key to use as weight. If not specified, edges + have weight one. + + Returns + ------- + cut_size : scalar + Value of the minimum cut. + + partition : pair of node sets + A partitioning of the nodes that defines a minimum cut. + + Examples + -------- + >>> G = nx.complete_graph(5) + >>> cut_size, partition = nx.approximation.randomized_partitioning(G, seed=1) + >>> cut_size + 6 + >>> partition + ({0, 3, 4}, {1, 2}) + + Raises + ------ + NetworkXNotImplemented + If the graph is directed or is a multigraph. + """ + cut = {node for node in G.nodes() if seed.random() < p} + cut_size = nx.algorithms.cut_size(G, cut, weight=weight) + partition = (cut, G.nodes - cut) + return cut_size, partition + + +def _swap_node_partition(cut, node): + return cut - {node} if node in cut else cut.union({node}) + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@py_random_state(2) +@nx._dispatchable(edge_attrs="weight") +def one_exchange(G, initial_cut=None, seed=None, weight=None): + """Compute a partitioning of the graphs nodes and the corresponding cut value. + + Use a greedy one exchange strategy to find a locally maximal cut + and its value, it works by finding the best node (one that gives + the highest gain to the cut value) to add to the current cut + and repeats this process until no improvement can be made. + + Parameters + ---------- + G : networkx Graph + Graph to find a maximum cut for. + + initial_cut : set + Cut to use as a starting point. If not supplied the algorithm + starts with an empty cut. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + weight : object + Edge attribute key to use as weight. If not specified, edges + have weight one. + + Returns + ------- + cut_value : scalar + Value of the maximum cut. + + partition : pair of node sets + A partitioning of the nodes that defines a maximum cut. + + Examples + -------- + >>> G = nx.complete_graph(5) + >>> curr_cut_size, partition = nx.approximation.one_exchange(G, seed=1) + >>> curr_cut_size + 6 + >>> partition + ({0, 2}, {1, 3, 4}) + + Raises + ------ + NetworkXNotImplemented + If the graph is directed or is a multigraph. + """ + if initial_cut is None: + initial_cut = set() + cut = set(initial_cut) + current_cut_size = nx.algorithms.cut_size(G, cut, weight=weight) + while True: + nodes = list(G.nodes()) + # Shuffling the nodes ensures random tie-breaks in the following call to max + seed.shuffle(nodes) + best_node_to_swap = max( + nodes, + key=lambda v: nx.algorithms.cut_size( + G, _swap_node_partition(cut, v), weight=weight + ), + default=None, + ) + potential_cut = _swap_node_partition(cut, best_node_to_swap) + potential_cut_size = nx.algorithms.cut_size(G, potential_cut, weight=weight) + + if potential_cut_size > current_cut_size: + cut = potential_cut + current_cut_size = potential_cut_size + else: + break + + partition = (cut, G.nodes - cut) + return current_cut_size, partition diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/ramsey.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/ramsey.py new file mode 100644 index 00000000..0552e4a9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/ramsey.py @@ -0,0 +1,53 @@ +""" +Ramsey numbers. +""" + +import networkx as nx +from networkx.utils import not_implemented_for + +from ...utils import arbitrary_element + +__all__ = ["ramsey_R2"] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable +def ramsey_R2(G): + r"""Compute the largest clique and largest independent set in `G`. + + This can be used to estimate bounds for the 2-color + Ramsey number `R(2;s,t)` for `G`. + + This is a recursive implementation which could run into trouble + for large recursions. Note that self-loop edges are ignored. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + Returns + ------- + max_pair : (set, set) tuple + Maximum clique, Maximum independent set. + + Raises + ------ + NetworkXNotImplemented + If the graph is directed or is a multigraph. + """ + if not G: + return set(), set() + + node = arbitrary_element(G) + nbrs = (nbr for nbr in nx.all_neighbors(G, node) if nbr != node) + nnbrs = nx.non_neighbors(G, node) + c_1, i_1 = ramsey_R2(G.subgraph(nbrs).copy()) + c_2, i_2 = ramsey_R2(G.subgraph(nnbrs).copy()) + + c_1.add(node) + i_2.add(node) + # Choose the larger of the two cliques and the larger of the two + # independent sets, according to cardinality. + return max(c_1, c_2, key=len), max(i_1, i_2, key=len) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/steinertree.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/steinertree.py new file mode 100644 index 00000000..f4840eff --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/steinertree.py @@ -0,0 +1,231 @@ +from itertools import chain + +import networkx as nx +from networkx.utils import not_implemented_for, pairwise + +__all__ = ["metric_closure", "steiner_tree"] + + +@not_implemented_for("directed") +@nx._dispatchable(edge_attrs="weight", returns_graph=True) +def metric_closure(G, weight="weight"): + """Return the metric closure of a graph. + + The metric closure of a graph *G* is the complete graph in which each edge + is weighted by the shortest path distance between the nodes in *G* . + + Parameters + ---------- + G : NetworkX graph + + Returns + ------- + NetworkX graph + Metric closure of the graph `G`. + + """ + M = nx.Graph() + + Gnodes = set(G) + + # check for connected graph while processing first node + all_paths_iter = nx.all_pairs_dijkstra(G, weight=weight) + u, (distance, path) = next(all_paths_iter) + if Gnodes - set(distance): + msg = "G is not a connected graph. metric_closure is not defined." + raise nx.NetworkXError(msg) + Gnodes.remove(u) + for v in Gnodes: + M.add_edge(u, v, distance=distance[v], path=path[v]) + + # first node done -- now process the rest + for u, (distance, path) in all_paths_iter: + Gnodes.remove(u) + for v in Gnodes: + M.add_edge(u, v, distance=distance[v], path=path[v]) + + return M + + +def _mehlhorn_steiner_tree(G, terminal_nodes, weight): + paths = nx.multi_source_dijkstra_path(G, terminal_nodes) + + d_1 = {} + s = {} + for v in G.nodes(): + s[v] = paths[v][0] + d_1[(v, s[v])] = len(paths[v]) - 1 + + # G1-G4 names match those from the Mehlhorn 1988 paper. + G_1_prime = nx.Graph() + for u, v, data in G.edges(data=True): + su, sv = s[u], s[v] + weight_here = d_1[(u, su)] + data.get(weight, 1) + d_1[(v, sv)] + if not G_1_prime.has_edge(su, sv): + G_1_prime.add_edge(su, sv, weight=weight_here) + else: + new_weight = min(weight_here, G_1_prime[su][sv]["weight"]) + G_1_prime.add_edge(su, sv, weight=new_weight) + + G_2 = nx.minimum_spanning_edges(G_1_prime, data=True) + + G_3 = nx.Graph() + for u, v, d in G_2: + path = nx.shortest_path(G, u, v, weight) + for n1, n2 in pairwise(path): + G_3.add_edge(n1, n2) + + G_3_mst = list(nx.minimum_spanning_edges(G_3, data=False)) + if G.is_multigraph(): + G_3_mst = ( + (u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in G_3_mst + ) + G_4 = G.edge_subgraph(G_3_mst).copy() + _remove_nonterminal_leaves(G_4, terminal_nodes) + return G_4.edges() + + +def _kou_steiner_tree(G, terminal_nodes, weight): + # H is the subgraph induced by terminal_nodes in the metric closure M of G. + M = metric_closure(G, weight=weight) + H = M.subgraph(terminal_nodes) + + # Use the 'distance' attribute of each edge provided by M. + mst_edges = nx.minimum_spanning_edges(H, weight="distance", data=True) + + # Create an iterator over each edge in each shortest path; repeats are okay + mst_all_edges = chain.from_iterable(pairwise(d["path"]) for u, v, d in mst_edges) + if G.is_multigraph(): + mst_all_edges = ( + (u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) + for u, v in mst_all_edges + ) + + # Find the MST again, over this new set of edges + G_S = G.edge_subgraph(mst_all_edges) + T_S = nx.minimum_spanning_edges(G_S, weight="weight", data=False) + + # Leaf nodes that are not terminal might still remain; remove them here + T_H = G.edge_subgraph(T_S).copy() + _remove_nonterminal_leaves(T_H, terminal_nodes) + + return T_H.edges() + + +def _remove_nonterminal_leaves(G, terminals): + terminal_set = set(terminals) + leaves = {n for n in G if len(set(G[n]) - {n}) == 1} + nonterminal_leaves = leaves - terminal_set + + while nonterminal_leaves: + # Removing a node may create new non-terminal leaves, so we limit + # search for candidate non-terminal nodes to neighbors of current + # non-terminal nodes + candidate_leaves = set.union(*(set(G[n]) for n in nonterminal_leaves)) + candidate_leaves -= nonterminal_leaves | terminal_set + # Remove current set of non-terminal nodes + G.remove_nodes_from(nonterminal_leaves) + # Find any new non-terminal nodes from the set of candidates + leaves = {n for n in candidate_leaves if len(set(G[n]) - {n}) == 1} + nonterminal_leaves = leaves - terminal_set + + +ALGORITHMS = { + "kou": _kou_steiner_tree, + "mehlhorn": _mehlhorn_steiner_tree, +} + + +@not_implemented_for("directed") +@nx._dispatchable(preserve_all_attrs=True, returns_graph=True) +def steiner_tree(G, terminal_nodes, weight="weight", method=None): + r"""Return an approximation to the minimum Steiner tree of a graph. + + The minimum Steiner tree of `G` w.r.t a set of `terminal_nodes` (also *S*) + is a tree within `G` that spans those nodes and has minimum size (sum of + edge weights) among all such trees. + + The approximation algorithm is specified with the `method` keyword + argument. All three available algorithms produce a tree whose weight is + within a ``(2 - (2 / l))`` factor of the weight of the optimal Steiner tree, + where ``l`` is the minimum number of leaf nodes across all possible Steiner + trees. + + * ``"kou"`` [2]_ (runtime $O(|S| |V|^2)$) computes the minimum spanning tree of + the subgraph of the metric closure of *G* induced by the terminal nodes, + where the metric closure of *G* is the complete graph in which each edge is + weighted by the shortest path distance between the nodes in *G*. + + * ``"mehlhorn"`` [3]_ (runtime $O(|E|+|V|\log|V|)$) modifies Kou et al.'s + algorithm, beginning by finding the closest terminal node for each + non-terminal. This data is used to create a complete graph containing only + the terminal nodes, in which edge is weighted with the shortest path + distance between them. The algorithm then proceeds in the same way as Kou + et al.. + + Parameters + ---------- + G : NetworkX graph + + terminal_nodes : list + A list of terminal nodes for which minimum steiner tree is + to be found. + + weight : string (default = 'weight') + Use the edge attribute specified by this string as the edge weight. + Any edge attribute not present defaults to 1. + + method : string, optional (default = 'mehlhorn') + The algorithm to use to approximate the Steiner tree. + Supported options: 'kou', 'mehlhorn'. + Other inputs produce a ValueError. + + Returns + ------- + NetworkX graph + Approximation to the minimum steiner tree of `G` induced by + `terminal_nodes` . + + Raises + ------ + NetworkXNotImplemented + If `G` is directed. + + ValueError + If the specified `method` is not supported. + + Notes + ----- + For multigraphs, the edge between two nodes with minimum weight is the + edge put into the Steiner tree. + + + References + ---------- + .. [1] Steiner_tree_problem on Wikipedia. + https://en.wikipedia.org/wiki/Steiner_tree_problem + .. [2] Kou, L., G. Markowsky, and L. Berman. 1981. + ‘A Fast Algorithm for Steiner Trees’. + Acta Informatica 15 (2): 141–45. + https://doi.org/10.1007/BF00288961. + .. [3] Mehlhorn, Kurt. 1988. + ‘A Faster Approximation Algorithm for the Steiner Problem in Graphs’. + Information Processing Letters 27 (3): 125–28. + https://doi.org/10.1016/0020-0190(88)90066-X. + """ + if method is None: + method = "mehlhorn" + + try: + algo = ALGORITHMS[method] + except KeyError as e: + raise ValueError(f"{method} is not a valid choice for an algorithm.") from e + + edges = algo(G, terminal_nodes, weight) + # For multigraph we should add the minimal weight edge keys + if G.is_multigraph(): + edges = ( + (u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in edges + ) + T = G.edge_subgraph(edges) + return T diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/__init__.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/__init__.py new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/__init__.py diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_approx_clust_coeff.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_approx_clust_coeff.py new file mode 100644 index 00000000..5eab5c1e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_approx_clust_coeff.py @@ -0,0 +1,41 @@ +import networkx as nx +from networkx.algorithms.approximation import average_clustering + +# This approximation has to be exact in regular graphs +# with no triangles or with all possible triangles. + + +def test_petersen(): + # Actual coefficient is 0 + G = nx.petersen_graph() + assert average_clustering(G, trials=len(G) // 2) == nx.average_clustering(G) + + +def test_petersen_seed(): + # Actual coefficient is 0 + G = nx.petersen_graph() + assert average_clustering(G, trials=len(G) // 2, seed=1) == nx.average_clustering(G) + + +def test_tetrahedral(): + # Actual coefficient is 1 + G = nx.tetrahedral_graph() + assert average_clustering(G, trials=len(G) // 2) == nx.average_clustering(G) + + +def test_dodecahedral(): + # Actual coefficient is 0 + G = nx.dodecahedral_graph() + assert average_clustering(G, trials=len(G) // 2) == nx.average_clustering(G) + + +def test_empty(): + G = nx.empty_graph(5) + assert average_clustering(G, trials=len(G) // 2) == 0 + + +def test_complete(): + G = nx.complete_graph(5) + assert average_clustering(G, trials=len(G) // 2) == 1 + G = nx.complete_graph(7) + assert average_clustering(G, trials=len(G) // 2) == 1 diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_clique.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_clique.py new file mode 100644 index 00000000..b40dcb90 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_clique.py @@ -0,0 +1,112 @@ +"""Unit tests for the :mod:`networkx.algorithms.approximation.clique` module.""" + +import networkx as nx +from networkx.algorithms.approximation import ( + clique_removal, + large_clique_size, + max_clique, + maximum_independent_set, +) + + +def is_independent_set(G, nodes): + """Returns True if and only if `nodes` is a clique in `G`. + + `G` is a NetworkX graph. `nodes` is an iterable of nodes in + `G`. + + """ + return G.subgraph(nodes).number_of_edges() == 0 + + +def is_clique(G, nodes): + """Returns True if and only if `nodes` is an independent set + in `G`. + + `G` is an undirected simple graph. `nodes` is an iterable of + nodes in `G`. + + """ + H = G.subgraph(nodes) + n = len(H) + return H.number_of_edges() == n * (n - 1) // 2 + + +class TestCliqueRemoval: + """Unit tests for the + :func:`~networkx.algorithms.approximation.clique_removal` function. + + """ + + def test_trivial_graph(self): + G = nx.trivial_graph() + independent_set, cliques = clique_removal(G) + assert is_independent_set(G, independent_set) + assert all(is_clique(G, clique) for clique in cliques) + # In fact, we should only have 1-cliques, that is, singleton nodes. + assert all(len(clique) == 1 for clique in cliques) + + def test_complete_graph(self): + G = nx.complete_graph(10) + independent_set, cliques = clique_removal(G) + assert is_independent_set(G, independent_set) + assert all(is_clique(G, clique) for clique in cliques) + + def test_barbell_graph(self): + G = nx.barbell_graph(10, 5) + independent_set, cliques = clique_removal(G) + assert is_independent_set(G, independent_set) + assert all(is_clique(G, clique) for clique in cliques) + + +class TestMaxClique: + """Unit tests for the :func:`networkx.algorithms.approximation.max_clique` + function. + + """ + + def test_null_graph(self): + G = nx.null_graph() + assert len(max_clique(G)) == 0 + + def test_complete_graph(self): + graph = nx.complete_graph(30) + # this should return the entire graph + mc = max_clique(graph) + assert 30 == len(mc) + + def test_maximal_by_cardinality(self): + """Tests that the maximal clique is computed according to maximum + cardinality of the sets. + + For more information, see pull request #1531. + + """ + G = nx.complete_graph(5) + G.add_edge(4, 5) + clique = max_clique(G) + assert len(clique) > 1 + + G = nx.lollipop_graph(30, 2) + clique = max_clique(G) + assert len(clique) > 2 + + +def test_large_clique_size(): + G = nx.complete_graph(9) + nx.add_cycle(G, [9, 10, 11]) + G.add_edge(8, 9) + G.add_edge(1, 12) + G.add_node(13) + + assert large_clique_size(G) == 9 + G.remove_node(5) + assert large_clique_size(G) == 8 + G.remove_edge(2, 3) + assert large_clique_size(G) == 7 + + +def test_independent_set(): + # smoke test + G = nx.Graph() + assert len(maximum_independent_set(G)) == 0 diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_connectivity.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_connectivity.py new file mode 100644 index 00000000..887db20b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_connectivity.py @@ -0,0 +1,199 @@ +import pytest + +import networkx as nx +from networkx.algorithms import approximation as approx + + +def test_global_node_connectivity(): + # Figure 1 chapter on Connectivity + G = nx.Graph() + G.add_edges_from( + [ + (1, 2), + (1, 3), + (1, 4), + (1, 5), + (2, 3), + (2, 6), + (3, 4), + (3, 6), + (4, 6), + (4, 7), + (5, 7), + (6, 8), + (6, 9), + (7, 8), + (7, 10), + (8, 11), + (9, 10), + (9, 11), + (10, 11), + ] + ) + assert 2 == approx.local_node_connectivity(G, 1, 11) + assert 2 == approx.node_connectivity(G) + assert 2 == approx.node_connectivity(G, 1, 11) + + +def test_white_harary1(): + # Figure 1b white and harary (2001) + # A graph with high adhesion (edge connectivity) and low cohesion + # (node connectivity) + G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) + G.remove_node(7) + for i in range(4, 7): + G.add_edge(0, i) + G = nx.disjoint_union(G, nx.complete_graph(4)) + G.remove_node(G.order() - 1) + for i in range(7, 10): + G.add_edge(0, i) + assert 1 == approx.node_connectivity(G) + + +def test_complete_graphs(): + for n in range(5, 25, 5): + G = nx.complete_graph(n) + assert n - 1 == approx.node_connectivity(G) + assert n - 1 == approx.node_connectivity(G, 0, 3) + + +def test_empty_graphs(): + for k in range(5, 25, 5): + G = nx.empty_graph(k) + assert 0 == approx.node_connectivity(G) + assert 0 == approx.node_connectivity(G, 0, 3) + + +def test_petersen(): + G = nx.petersen_graph() + assert 3 == approx.node_connectivity(G) + assert 3 == approx.node_connectivity(G, 0, 5) + + +# Approximation fails with tutte graph +# def test_tutte(): +# G = nx.tutte_graph() +# assert_equal(3, approx.node_connectivity(G)) + + +def test_dodecahedral(): + G = nx.dodecahedral_graph() + assert 3 == approx.node_connectivity(G) + assert 3 == approx.node_connectivity(G, 0, 5) + + +def test_octahedral(): + G = nx.octahedral_graph() + assert 4 == approx.node_connectivity(G) + assert 4 == approx.node_connectivity(G, 0, 5) + + +# Approximation can fail with icosahedral graph depending +# on iteration order. +# def test_icosahedral(): +# G=nx.icosahedral_graph() +# assert_equal(5, approx.node_connectivity(G)) +# assert_equal(5, approx.node_connectivity(G, 0, 5)) + + +def test_only_source(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, approx.node_connectivity, G, s=0) + + +def test_only_target(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, approx.node_connectivity, G, t=0) + + +def test_missing_source(): + G = nx.path_graph(4) + pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 10, 1) + + +def test_missing_target(): + G = nx.path_graph(4) + pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 1, 10) + + +def test_source_equals_target(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, approx.local_node_connectivity, G, 0, 0) + + +def test_directed_node_connectivity(): + G = nx.cycle_graph(10, create_using=nx.DiGraph()) # only one direction + D = nx.cycle_graph(10).to_directed() # 2 reciprocal edges + assert 1 == approx.node_connectivity(G) + assert 1 == approx.node_connectivity(G, 1, 4) + assert 2 == approx.node_connectivity(D) + assert 2 == approx.node_connectivity(D, 1, 4) + + +class TestAllPairsNodeConnectivityApprox: + @classmethod + def setup_class(cls): + cls.path = nx.path_graph(7) + cls.directed_path = nx.path_graph(7, create_using=nx.DiGraph()) + cls.cycle = nx.cycle_graph(7) + cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph()) + cls.gnp = nx.gnp_random_graph(30, 0.1) + cls.directed_gnp = nx.gnp_random_graph(30, 0.1, directed=True) + cls.K20 = nx.complete_graph(20) + cls.K10 = nx.complete_graph(10) + cls.K5 = nx.complete_graph(5) + cls.G_list = [ + cls.path, + cls.directed_path, + cls.cycle, + cls.directed_cycle, + cls.gnp, + cls.directed_gnp, + cls.K10, + cls.K5, + cls.K20, + ] + + def test_cycles(self): + K_undir = approx.all_pairs_node_connectivity(self.cycle) + for source in K_undir: + for target, k in K_undir[source].items(): + assert k == 2 + K_dir = approx.all_pairs_node_connectivity(self.directed_cycle) + for source in K_dir: + for target, k in K_dir[source].items(): + assert k == 1 + + def test_complete(self): + for G in [self.K10, self.K5, self.K20]: + K = approx.all_pairs_node_connectivity(G) + for source in K: + for target, k in K[source].items(): + assert k == len(G) - 1 + + def test_paths(self): + K_undir = approx.all_pairs_node_connectivity(self.path) + for source in K_undir: + for target, k in K_undir[source].items(): + assert k == 1 + K_dir = approx.all_pairs_node_connectivity(self.directed_path) + for source in K_dir: + for target, k in K_dir[source].items(): + if source < target: + assert k == 1 + else: + assert k == 0 + + def test_cutoff(self): + for G in [self.K10, self.K5, self.K20]: + for mp in [2, 3, 4]: + paths = approx.all_pairs_node_connectivity(G, cutoff=mp) + for source in paths: + for target, K in paths[source].items(): + assert K == mp + + def test_all_pairs_connectivity_nbunch(self): + G = nx.complete_graph(5) + nbunch = [0, 2, 3] + C = approx.all_pairs_node_connectivity(G, nbunch=nbunch) + assert len(C) == len(nbunch) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_distance_measures.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_distance_measures.py new file mode 100644 index 00000000..3809a8fc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_distance_measures.py @@ -0,0 +1,59 @@ +"""Unit tests for the :mod:`networkx.algorithms.approximation.distance_measures` module.""" + +import pytest + +import networkx as nx +from networkx.algorithms.approximation import diameter + + +class TestDiameter: + """Unit tests for the approximate diameter function + :func:`~networkx.algorithms.approximation.distance_measures.diameter`. + """ + + def test_null_graph(self): + """Test empty graph.""" + G = nx.null_graph() + with pytest.raises( + nx.NetworkXError, match="Expected non-empty NetworkX graph!" + ): + diameter(G) + + def test_undirected_non_connected(self): + """Test an undirected disconnected graph.""" + graph = nx.path_graph(10) + graph.remove_edge(3, 4) + with pytest.raises(nx.NetworkXError, match="Graph not connected."): + diameter(graph) + + def test_directed_non_strongly_connected(self): + """Test a directed non strongly connected graph.""" + graph = nx.path_graph(10, create_using=nx.DiGraph()) + with pytest.raises(nx.NetworkXError, match="DiGraph not strongly connected."): + diameter(graph) + + def test_complete_undirected_graph(self): + """Test a complete undirected graph.""" + graph = nx.complete_graph(10) + assert diameter(graph) == 1 + + def test_complete_directed_graph(self): + """Test a complete directed graph.""" + graph = nx.complete_graph(10, create_using=nx.DiGraph()) + assert diameter(graph) == 1 + + def test_undirected_path_graph(self): + """Test an undirected path graph with 10 nodes.""" + graph = nx.path_graph(10) + assert diameter(graph) == 9 + + def test_directed_path_graph(self): + """Test a directed path graph with 10 nodes.""" + graph = nx.path_graph(10).to_directed() + assert diameter(graph) == 9 + + def test_single_node(self): + """Test a graph which contains just a node.""" + graph = nx.Graph() + graph.add_node(1) + assert diameter(graph) == 0 diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_dominating_set.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_dominating_set.py new file mode 100644 index 00000000..6b90d85e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_dominating_set.py @@ -0,0 +1,78 @@ +import pytest + +import networkx as nx +from networkx.algorithms.approximation import ( + min_edge_dominating_set, + min_weighted_dominating_set, +) + + +class TestMinWeightDominatingSet: + def test_min_weighted_dominating_set(self): + graph = nx.Graph() + graph.add_edge(1, 2) + graph.add_edge(1, 5) + graph.add_edge(2, 3) + graph.add_edge(2, 5) + graph.add_edge(3, 4) + graph.add_edge(3, 6) + graph.add_edge(5, 6) + + vertices = {1, 2, 3, 4, 5, 6} + # due to ties, this might be hard to test tight bounds + dom_set = min_weighted_dominating_set(graph) + for vertex in vertices - dom_set: + neighbors = set(graph.neighbors(vertex)) + assert len(neighbors & dom_set) > 0, "Non dominating set found!" + + def test_star_graph(self): + """Tests that an approximate dominating set for the star graph, + even when the center node does not have the smallest integer + label, gives just the center node. + + For more information, see #1527. + + """ + # Create a star graph in which the center node has the highest + # label instead of the lowest. + G = nx.star_graph(10) + G = nx.relabel_nodes(G, {0: 9, 9: 0}) + assert min_weighted_dominating_set(G) == {9} + + def test_null_graph(self): + """Tests that the unique dominating set for the null graph is an empty set""" + G = nx.Graph() + assert min_weighted_dominating_set(G) == set() + + def test_min_edge_dominating_set(self): + graph = nx.path_graph(5) + dom_set = min_edge_dominating_set(graph) + + # this is a crappy way to test, but good enough for now. + for edge in graph.edges(): + if edge in dom_set: + continue + else: + u, v = edge + found = False + for dom_edge in dom_set: + found |= u == dom_edge[0] or u == dom_edge[1] + assert found, "Non adjacent edge found!" + + graph = nx.complete_graph(10) + dom_set = min_edge_dominating_set(graph) + + # this is a crappy way to test, but good enough for now. + for edge in graph.edges(): + if edge in dom_set: + continue + else: + u, v = edge + found = False + for dom_edge in dom_set: + found |= u == dom_edge[0] or u == dom_edge[1] + assert found, "Non adjacent edge found!" + + graph = nx.Graph() # empty Networkx graph + with pytest.raises(ValueError, match="Expected non-empty NetworkX graph!"): + min_edge_dominating_set(graph) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_kcomponents.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_kcomponents.py new file mode 100644 index 00000000..65ba8021 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_kcomponents.py @@ -0,0 +1,303 @@ +# Test for approximation to k-components algorithm +import pytest + +import networkx as nx +from networkx.algorithms.approximation import k_components +from networkx.algorithms.approximation.kcomponents import _AntiGraph, _same + + +def build_k_number_dict(k_components): + k_num = {} + for k, comps in sorted(k_components.items()): + for comp in comps: + for node in comp: + k_num[node] = k + return k_num + + +## +# Some nice synthetic graphs +## + + +def graph_example_1(): + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [ + (labels[(0, 0)], labels[(1, 0)]), + (labels[(0, 4)], labels[(1, 4)]), + (labels[(3, 0)], labels[(4, 0)]), + (labels[(3, 4)], labels[(4, 4)]), + ]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + G.add_edge(new_node + 16, new_node + 5) + return G + + +def torrents_and_ferraro_graph(): + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + # Commenting this makes the graph not biconnected !! + # This stupid mistake make one reviewer very angry :P + G.add_edge(new_node + 16, new_node + 8) + + for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing two nodes + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + nbrs2 = G[new_node + 9] + G.remove_node(new_node + 9) + for nbr in nbrs2: + G.add_edge(new_node + 18, nbr) + return G + + +# Helper function + + +def _check_connectivity(G): + result = k_components(G) + for k, components in result.items(): + if k < 3: + continue + for component in components: + C = G.subgraph(component) + K = nx.node_connectivity(C) + assert K >= k + + +def test_torrents_and_ferraro_graph(): + G = torrents_and_ferraro_graph() + _check_connectivity(G) + + +def test_example_1(): + G = graph_example_1() + _check_connectivity(G) + + +def test_karate_0(): + G = nx.karate_club_graph() + _check_connectivity(G) + + +def test_karate_1(): + karate_k_num = { + 0: 4, + 1: 4, + 2: 4, + 3: 4, + 4: 3, + 5: 3, + 6: 3, + 7: 4, + 8: 4, + 9: 2, + 10: 3, + 11: 1, + 12: 2, + 13: 4, + 14: 2, + 15: 2, + 16: 2, + 17: 2, + 18: 2, + 19: 3, + 20: 2, + 21: 2, + 22: 2, + 23: 3, + 24: 3, + 25: 3, + 26: 2, + 27: 3, + 28: 3, + 29: 3, + 30: 4, + 31: 3, + 32: 4, + 33: 4, + } + approx_karate_k_num = karate_k_num.copy() + approx_karate_k_num[24] = 2 + approx_karate_k_num[25] = 2 + G = nx.karate_club_graph() + k_comps = k_components(G) + k_num = build_k_number_dict(k_comps) + assert k_num in (karate_k_num, approx_karate_k_num) + + +def test_example_1_detail_3_and_4(): + G = graph_example_1() + result = k_components(G) + # In this example graph there are 8 3-components, 4 with 15 nodes + # and 4 with 5 nodes. + assert len(result[3]) == 8 + assert len([c for c in result[3] if len(c) == 15]) == 4 + assert len([c for c in result[3] if len(c) == 5]) == 4 + # There are also 8 4-components all with 5 nodes. + assert len(result[4]) == 8 + assert all(len(c) == 5 for c in result[4]) + # Finally check that the k-components detected have actually node + # connectivity >= k. + for k, components in result.items(): + if k < 3: + continue + for component in components: + K = nx.node_connectivity(G.subgraph(component)) + assert K >= k + + +def test_directed(): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.gnp_random_graph(10, 0.4, directed=True) + kc = k_components(G) + + +def test_same(): + equal = {"A": 2, "B": 2, "C": 2} + slightly_different = {"A": 2, "B": 1, "C": 2} + different = {"A": 2, "B": 8, "C": 18} + assert _same(equal) + assert not _same(slightly_different) + assert _same(slightly_different, tol=1) + assert not _same(different) + assert not _same(different, tol=4) + + +class TestAntiGraph: + @classmethod + def setup_class(cls): + cls.Gnp = nx.gnp_random_graph(20, 0.8, seed=42) + cls.Anp = _AntiGraph(nx.complement(cls.Gnp)) + cls.Gd = nx.davis_southern_women_graph() + cls.Ad = _AntiGraph(nx.complement(cls.Gd)) + cls.Gk = nx.karate_club_graph() + cls.Ak = _AntiGraph(nx.complement(cls.Gk)) + cls.GA = [(cls.Gnp, cls.Anp), (cls.Gd, cls.Ad), (cls.Gk, cls.Ak)] + + def test_size(self): + for G, A in self.GA: + n = G.order() + s = len(list(G.edges())) + len(list(A.edges())) + assert s == (n * (n - 1)) / 2 + + def test_degree(self): + for G, A in self.GA: + assert sorted(G.degree()) == sorted(A.degree()) + + def test_core_number(self): + for G, A in self.GA: + assert nx.core_number(G) == nx.core_number(A) + + def test_connected_components(self): + # ccs are same unless isolated nodes or any node has degree=len(G)-1 + # graphs in self.GA avoid this problem + for G, A in self.GA: + gc = [set(c) for c in nx.connected_components(G)] + ac = [set(c) for c in nx.connected_components(A)] + for comp in ac: + assert comp in gc + + def test_adj(self): + for G, A in self.GA: + for n, nbrs in G.adj.items(): + a_adj = sorted((n, sorted(ad)) for n, ad in A.adj.items()) + g_adj = sorted((n, sorted(ad)) for n, ad in G.adj.items()) + assert a_adj == g_adj + + def test_adjacency(self): + for G, A in self.GA: + a_adj = list(A.adjacency()) + for n, nbrs in G.adjacency(): + assert (n, set(nbrs)) in a_adj + + def test_neighbors(self): + for G, A in self.GA: + node = list(G.nodes())[0] + assert set(G.neighbors(node)) == set(A.neighbors(node)) + + def test_node_not_in_graph(self): + for G, A in self.GA: + node = "non_existent_node" + pytest.raises(nx.NetworkXError, A.neighbors, node) + pytest.raises(nx.NetworkXError, G.neighbors, node) + + def test_degree_thingraph(self): + for G, A in self.GA: + node = list(G.nodes())[0] + nodes = list(G.nodes())[1:4] + assert G.degree(node) == A.degree(node) + assert sum(d for n, d in G.degree()) == sum(d for n, d in A.degree()) + # AntiGraph is a ThinGraph, so all the weights are 1 + assert sum(d for n, d in A.degree()) == sum( + d for n, d in A.degree(weight="weight") + ) + assert sum(d for n, d in G.degree(nodes)) == sum( + d for n, d in A.degree(nodes) + ) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_matching.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_matching.py new file mode 100644 index 00000000..f50da3d2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_matching.py @@ -0,0 +1,8 @@ +import networkx as nx +import networkx.algorithms.approximation as a + + +def test_min_maximal_matching(): + # smoke test + G = nx.Graph() + assert len(a.min_maximal_matching(G)) == 0 diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_maxcut.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_maxcut.py new file mode 100644 index 00000000..ef042440 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_maxcut.py @@ -0,0 +1,94 @@ +import random + +import pytest + +import networkx as nx +from networkx.algorithms.approximation import maxcut + + +@pytest.mark.parametrize( + "f", (nx.approximation.randomized_partitioning, nx.approximation.one_exchange) +) +@pytest.mark.parametrize("graph_constructor", (nx.DiGraph, nx.MultiGraph)) +def test_raises_on_directed_and_multigraphs(f, graph_constructor): + G = graph_constructor([(0, 1), (1, 2)]) + with pytest.raises(nx.NetworkXNotImplemented): + f(G) + + +def _is_valid_cut(G, set1, set2): + union = set1.union(set2) + assert union == set(G.nodes) + assert len(set1) + len(set2) == G.number_of_nodes() + + +def _cut_is_locally_optimal(G, cut_size, set1): + # test if cut can be locally improved + for i, node in enumerate(set1): + cut_size_without_node = nx.algorithms.cut_size( + G, set1 - {node}, weight="weight" + ) + assert cut_size_without_node <= cut_size + + +def test_random_partitioning(): + G = nx.complete_graph(5) + _, (set1, set2) = maxcut.randomized_partitioning(G, seed=5) + _is_valid_cut(G, set1, set2) + + +def test_random_partitioning_all_to_one(): + G = nx.complete_graph(5) + _, (set1, set2) = maxcut.randomized_partitioning(G, p=1) + _is_valid_cut(G, set1, set2) + assert len(set1) == G.number_of_nodes() + assert len(set2) == 0 + + +def test_one_exchange_basic(): + G = nx.complete_graph(5) + random.seed(5) + for u, v, w in G.edges(data=True): + w["weight"] = random.randrange(-100, 100, 1) / 10 + + initial_cut = set(random.sample(sorted(G.nodes()), k=5)) + cut_size, (set1, set2) = maxcut.one_exchange( + G, initial_cut, weight="weight", seed=5 + ) + + _is_valid_cut(G, set1, set2) + _cut_is_locally_optimal(G, cut_size, set1) + + +def test_one_exchange_optimal(): + # Greedy one exchange should find the optimal solution for this graph (14) + G = nx.Graph() + G.add_edge(1, 2, weight=3) + G.add_edge(1, 3, weight=3) + G.add_edge(1, 4, weight=3) + G.add_edge(1, 5, weight=3) + G.add_edge(2, 3, weight=5) + + cut_size, (set1, set2) = maxcut.one_exchange(G, weight="weight", seed=5) + + _is_valid_cut(G, set1, set2) + _cut_is_locally_optimal(G, cut_size, set1) + # check global optimality + assert cut_size == 14 + + +def test_negative_weights(): + G = nx.complete_graph(5) + random.seed(5) + for u, v, w in G.edges(data=True): + w["weight"] = -1 * random.random() + + initial_cut = set(random.sample(sorted(G.nodes()), k=5)) + cut_size, (set1, set2) = maxcut.one_exchange(G, initial_cut, weight="weight") + + # make sure it is a valid cut + _is_valid_cut(G, set1, set2) + # check local optimality + _cut_is_locally_optimal(G, cut_size, set1) + # test that all nodes are in the same partition + assert len(set1) == len(G.nodes) or len(set2) == len(G.nodes) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_ramsey.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_ramsey.py new file mode 100644 index 00000000..32fe1fb8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_ramsey.py @@ -0,0 +1,31 @@ +import networkx as nx +import networkx.algorithms.approximation as apxa + + +def test_ramsey(): + # this should only find the complete graph + graph = nx.complete_graph(10) + c, i = apxa.ramsey_R2(graph) + cdens = nx.density(graph.subgraph(c)) + assert cdens == 1.0, "clique not correctly found by ramsey!" + idens = nx.density(graph.subgraph(i)) + assert idens == 0.0, "i-set not correctly found by ramsey!" + + # this trivial graph has no cliques. should just find i-sets + graph = nx.trivial_graph() + c, i = apxa.ramsey_R2(graph) + assert c == {0}, "clique not correctly found by ramsey!" + assert i == {0}, "i-set not correctly found by ramsey!" + + graph = nx.barbell_graph(10, 5, nx.Graph()) + c, i = apxa.ramsey_R2(graph) + cdens = nx.density(graph.subgraph(c)) + assert cdens == 1.0, "clique not correctly found by ramsey!" + idens = nx.density(graph.subgraph(i)) + assert idens == 0.0, "i-set not correctly found by ramsey!" + + # add self-loops and test again + graph.add_edges_from([(n, n) for n in range(0, len(graph), 2)]) + cc, ii = apxa.ramsey_R2(graph) + assert cc == c + assert ii == i diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_steinertree.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_steinertree.py new file mode 100644 index 00000000..1b074757 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_steinertree.py @@ -0,0 +1,265 @@ +import pytest + +import networkx as nx +from networkx.algorithms.approximation.steinertree import ( + _remove_nonterminal_leaves, + metric_closure, + steiner_tree, +) +from networkx.utils import edges_equal + + +class TestSteinerTree: + @classmethod + def setup_class(cls): + G1 = nx.Graph() + G1.add_edge(1, 2, weight=10) + G1.add_edge(2, 3, weight=10) + G1.add_edge(3, 4, weight=10) + G1.add_edge(4, 5, weight=10) + G1.add_edge(5, 6, weight=10) + G1.add_edge(2, 7, weight=1) + G1.add_edge(7, 5, weight=1) + + G2 = nx.Graph() + G2.add_edge(0, 5, weight=6) + G2.add_edge(1, 2, weight=2) + G2.add_edge(1, 5, weight=3) + G2.add_edge(2, 4, weight=4) + G2.add_edge(3, 5, weight=5) + G2.add_edge(4, 5, weight=1) + + G3 = nx.Graph() + G3.add_edge(1, 2, weight=8) + G3.add_edge(1, 9, weight=3) + G3.add_edge(1, 8, weight=6) + G3.add_edge(1, 10, weight=2) + G3.add_edge(1, 14, weight=3) + G3.add_edge(2, 3, weight=6) + G3.add_edge(3, 4, weight=3) + G3.add_edge(3, 10, weight=2) + G3.add_edge(3, 11, weight=1) + G3.add_edge(4, 5, weight=1) + G3.add_edge(4, 11, weight=1) + G3.add_edge(5, 6, weight=4) + G3.add_edge(5, 11, weight=2) + G3.add_edge(5, 12, weight=1) + G3.add_edge(5, 13, weight=3) + G3.add_edge(6, 7, weight=2) + G3.add_edge(6, 12, weight=3) + G3.add_edge(6, 13, weight=1) + G3.add_edge(7, 8, weight=3) + G3.add_edge(7, 9, weight=3) + G3.add_edge(7, 11, weight=5) + G3.add_edge(7, 13, weight=2) + G3.add_edge(7, 14, weight=4) + G3.add_edge(8, 9, weight=2) + G3.add_edge(9, 14, weight=1) + G3.add_edge(10, 11, weight=2) + G3.add_edge(10, 14, weight=1) + G3.add_edge(11, 12, weight=1) + G3.add_edge(11, 14, weight=7) + G3.add_edge(12, 14, weight=3) + G3.add_edge(12, 15, weight=1) + G3.add_edge(13, 14, weight=4) + G3.add_edge(13, 15, weight=1) + G3.add_edge(14, 15, weight=2) + + cls.G1 = G1 + cls.G2 = G2 + cls.G3 = G3 + cls.G1_term_nodes = [1, 2, 3, 4, 5] + cls.G2_term_nodes = [0, 2, 3] + cls.G3_term_nodes = [1, 3, 5, 6, 8, 10, 11, 12, 13] + + cls.methods = ["kou", "mehlhorn"] + + def test_connected_metric_closure(self): + G = self.G1.copy() + G.add_node(100) + pytest.raises(nx.NetworkXError, metric_closure, G) + + def test_metric_closure(self): + M = metric_closure(self.G1) + mc = [ + (1, 2, {"distance": 10, "path": [1, 2]}), + (1, 3, {"distance": 20, "path": [1, 2, 3]}), + (1, 4, {"distance": 22, "path": [1, 2, 7, 5, 4]}), + (1, 5, {"distance": 12, "path": [1, 2, 7, 5]}), + (1, 6, {"distance": 22, "path": [1, 2, 7, 5, 6]}), + (1, 7, {"distance": 11, "path": [1, 2, 7]}), + (2, 3, {"distance": 10, "path": [2, 3]}), + (2, 4, {"distance": 12, "path": [2, 7, 5, 4]}), + (2, 5, {"distance": 2, "path": [2, 7, 5]}), + (2, 6, {"distance": 12, "path": [2, 7, 5, 6]}), + (2, 7, {"distance": 1, "path": [2, 7]}), + (3, 4, {"distance": 10, "path": [3, 4]}), + (3, 5, {"distance": 12, "path": [3, 2, 7, 5]}), + (3, 6, {"distance": 22, "path": [3, 2, 7, 5, 6]}), + (3, 7, {"distance": 11, "path": [3, 2, 7]}), + (4, 5, {"distance": 10, "path": [4, 5]}), + (4, 6, {"distance": 20, "path": [4, 5, 6]}), + (4, 7, {"distance": 11, "path": [4, 5, 7]}), + (5, 6, {"distance": 10, "path": [5, 6]}), + (5, 7, {"distance": 1, "path": [5, 7]}), + (6, 7, {"distance": 11, "path": [6, 5, 7]}), + ] + assert edges_equal(list(M.edges(data=True)), mc) + + def test_steiner_tree(self): + valid_steiner_trees = [ + [ + [ + (1, 2, {"weight": 10}), + (2, 3, {"weight": 10}), + (2, 7, {"weight": 1}), + (3, 4, {"weight": 10}), + (5, 7, {"weight": 1}), + ], + [ + (1, 2, {"weight": 10}), + (2, 7, {"weight": 1}), + (3, 4, {"weight": 10}), + (4, 5, {"weight": 10}), + (5, 7, {"weight": 1}), + ], + [ + (1, 2, {"weight": 10}), + (2, 3, {"weight": 10}), + (2, 7, {"weight": 1}), + (4, 5, {"weight": 10}), + (5, 7, {"weight": 1}), + ], + ], + [ + [ + (0, 5, {"weight": 6}), + (1, 2, {"weight": 2}), + (1, 5, {"weight": 3}), + (3, 5, {"weight": 5}), + ], + [ + (0, 5, {"weight": 6}), + (4, 2, {"weight": 4}), + (4, 5, {"weight": 1}), + (3, 5, {"weight": 5}), + ], + ], + [ + [ + (1, 10, {"weight": 2}), + (3, 10, {"weight": 2}), + (3, 11, {"weight": 1}), + (5, 12, {"weight": 1}), + (6, 13, {"weight": 1}), + (8, 9, {"weight": 2}), + (9, 14, {"weight": 1}), + (10, 14, {"weight": 1}), + (11, 12, {"weight": 1}), + (12, 15, {"weight": 1}), + (13, 15, {"weight": 1}), + ] + ], + ] + for method in self.methods: + for G, term_nodes, valid_trees in zip( + [self.G1, self.G2, self.G3], + [self.G1_term_nodes, self.G2_term_nodes, self.G3_term_nodes], + valid_steiner_trees, + ): + S = steiner_tree(G, term_nodes, method=method) + assert any( + edges_equal(list(S.edges(data=True)), valid_tree) + for valid_tree in valid_trees + ) + + def test_multigraph_steiner_tree(self): + G = nx.MultiGraph() + G.add_edges_from( + [ + (1, 2, 0, {"weight": 1}), + (2, 3, 0, {"weight": 999}), + (2, 3, 1, {"weight": 1}), + (3, 4, 0, {"weight": 1}), + (3, 5, 0, {"weight": 1}), + ] + ) + terminal_nodes = [2, 4, 5] + expected_edges = [ + (2, 3, 1, {"weight": 1}), # edge with key 1 has lower weight + (3, 4, 0, {"weight": 1}), + (3, 5, 0, {"weight": 1}), + ] + for method in self.methods: + S = steiner_tree(G, terminal_nodes, method=method) + assert edges_equal(S.edges(data=True, keys=True), expected_edges) + + def test_remove_nonterminal_leaves(self): + G = nx.path_graph(10) + _remove_nonterminal_leaves(G, [4, 5, 6]) + + assert list(G) == [4, 5, 6] # only the terminal nodes are left + + +@pytest.mark.parametrize("method", ("kou", "mehlhorn")) +def test_steiner_tree_weight_attribute(method): + G = nx.star_graph(4) + # Add an edge attribute that is named something other than "weight" + nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance") + H = nx.approximation.steiner_tree(G, [1, 3], method=method, weight="distance") + assert nx.utils.edges_equal(H.edges, [(0, 1), (0, 3)]) + + +@pytest.mark.parametrize("method", ("kou", "mehlhorn")) +def test_steiner_tree_multigraph_weight_attribute(method): + G = nx.cycle_graph(3, create_using=nx.MultiGraph) + nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance") + G.add_edge(2, 0, distance=5) + H = nx.approximation.steiner_tree(G, list(G), method=method, weight="distance") + assert len(H.edges) == 2 and H.has_edge(2, 0, key=1) + assert sum(dist for *_, dist in H.edges(data="distance")) == 15 + + +@pytest.mark.parametrize("method", (None, "mehlhorn", "kou")) +def test_steiner_tree_methods(method): + G = nx.star_graph(4) + expected = nx.Graph([(0, 1), (0, 3)]) + st = nx.approximation.steiner_tree(G, [1, 3], method=method) + assert nx.utils.edges_equal(st.edges, expected.edges) + + +def test_steiner_tree_method_invalid(): + G = nx.star_graph(4) + with pytest.raises( + ValueError, match="invalid_method is not a valid choice for an algorithm." + ): + nx.approximation.steiner_tree(G, terminal_nodes=[1, 3], method="invalid_method") + + +def test_steiner_tree_remove_non_terminal_leaves_self_loop_edges(): + # To verify that the last step of the steiner tree approximation + # behaves in the case where a non-terminal leaf has a self loop edge + G = nx.path_graph(10) + + # Add self loops to the terminal nodes + G.add_edges_from([(2, 2), (3, 3), (4, 4), (7, 7), (8, 8)]) + + # Remove non-terminal leaves + _remove_nonterminal_leaves(G, [4, 5, 6, 7]) + + # The terminal nodes should be left + assert list(G) == [4, 5, 6, 7] # only the terminal nodes are left + + +def test_steiner_tree_non_terminal_leaves_multigraph_self_loop_edges(): + # To verify that the last step of the steiner tree approximation + # behaves in the case where a non-terminal leaf has a self loop edge + G = nx.MultiGraph() + G.add_edges_from([(i, i + 1) for i in range(10)]) + G.add_edges_from([(2, 2), (3, 3), (4, 4), (4, 4), (7, 7)]) + + # Remove non-terminal leaves + _remove_nonterminal_leaves(G, [4, 5, 6, 7]) + + # Only the terminal nodes should be left + assert list(G) == [4, 5, 6, 7] diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_traveling_salesman.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_traveling_salesman.py new file mode 100644 index 00000000..2084c19a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_traveling_salesman.py @@ -0,0 +1,977 @@ +"""Unit tests for the traveling_salesman module.""" + +import random + +import pytest + +import networkx as nx +import networkx.algorithms.approximation as nx_app + +pairwise = nx.utils.pairwise + + +def test_christofides_hamiltonian(): + random.seed(42) + G = nx.complete_graph(20) + for u, v in G.edges(): + G[u][v]["weight"] = random.randint(0, 10) + + H = nx.Graph() + H.add_edges_from(pairwise(nx_app.christofides(G))) + H.remove_edges_from(nx.find_cycle(H)) + assert len(H.edges) == 0 + + tree = nx.minimum_spanning_tree(G, weight="weight") + H = nx.Graph() + H.add_edges_from(pairwise(nx_app.christofides(G, tree))) + H.remove_edges_from(nx.find_cycle(H)) + assert len(H.edges) == 0 + + +def test_christofides_incomplete_graph(): + G = nx.complete_graph(10) + G.remove_edge(0, 1) + pytest.raises(nx.NetworkXError, nx_app.christofides, G) + + +def test_christofides_ignore_selfloops(): + G = nx.complete_graph(5) + G.add_edge(3, 3) + cycle = nx_app.christofides(G) + assert len(cycle) - 1 == len(G) == len(set(cycle)) + + +# set up graphs for other tests +class TestBase: + @classmethod + def setup_class(cls): + cls.DG = nx.DiGraph() + cls.DG.add_weighted_edges_from( + { + ("A", "B", 3), + ("A", "C", 17), + ("A", "D", 14), + ("B", "A", 3), + ("B", "C", 12), + ("B", "D", 16), + ("C", "A", 13), + ("C", "B", 12), + ("C", "D", 4), + ("D", "A", 14), + ("D", "B", 15), + ("D", "C", 2), + } + ) + cls.DG_cycle = ["D", "C", "B", "A", "D"] + cls.DG_cost = 31.0 + + cls.DG2 = nx.DiGraph() + cls.DG2.add_weighted_edges_from( + { + ("A", "B", 3), + ("A", "C", 17), + ("A", "D", 14), + ("B", "A", 30), + ("B", "C", 2), + ("B", "D", 16), + ("C", "A", 33), + ("C", "B", 32), + ("C", "D", 34), + ("D", "A", 14), + ("D", "B", 15), + ("D", "C", 2), + } + ) + cls.DG2_cycle = ["D", "A", "B", "C", "D"] + cls.DG2_cost = 53.0 + + cls.unweightedUG = nx.complete_graph(5, nx.Graph()) + cls.unweightedDG = nx.complete_graph(5, nx.DiGraph()) + + cls.incompleteUG = nx.Graph() + cls.incompleteUG.add_weighted_edges_from({(0, 1, 1), (1, 2, 3)}) + cls.incompleteDG = nx.DiGraph() + cls.incompleteDG.add_weighted_edges_from({(0, 1, 1), (1, 2, 3)}) + + cls.UG = nx.Graph() + cls.UG.add_weighted_edges_from( + { + ("A", "B", 3), + ("A", "C", 17), + ("A", "D", 14), + ("B", "C", 12), + ("B", "D", 16), + ("C", "D", 4), + } + ) + cls.UG_cycle = ["D", "C", "B", "A", "D"] + cls.UG_cost = 33.0 + + cls.UG2 = nx.Graph() + cls.UG2.add_weighted_edges_from( + { + ("A", "B", 1), + ("A", "C", 15), + ("A", "D", 5), + ("B", "C", 16), + ("B", "D", 8), + ("C", "D", 3), + } + ) + cls.UG2_cycle = ["D", "C", "B", "A", "D"] + cls.UG2_cost = 25.0 + + +def validate_solution(soln, cost, exp_soln, exp_cost): + assert soln == exp_soln + assert cost == exp_cost + + +def validate_symmetric_solution(soln, cost, exp_soln, exp_cost): + assert soln == exp_soln or soln == exp_soln[::-1] + assert cost == exp_cost + + +class TestGreedyTSP(TestBase): + def test_greedy(self): + cycle = nx_app.greedy_tsp(self.DG, source="D") + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, ["D", "C", "B", "A", "D"], 31.0) + + cycle = nx_app.greedy_tsp(self.DG2, source="D") + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, ["D", "C", "B", "A", "D"], 78.0) + + cycle = nx_app.greedy_tsp(self.UG, source="D") + cost = sum(self.UG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, ["D", "C", "B", "A", "D"], 33.0) + + cycle = nx_app.greedy_tsp(self.UG2, source="D") + cost = sum(self.UG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, ["D", "C", "A", "B", "D"], 27.0) + + def test_not_complete_graph(self): + pytest.raises(nx.NetworkXError, nx_app.greedy_tsp, self.incompleteUG) + pytest.raises(nx.NetworkXError, nx_app.greedy_tsp, self.incompleteDG) + + def test_not_weighted_graph(self): + nx_app.greedy_tsp(self.unweightedUG) + nx_app.greedy_tsp(self.unweightedDG) + + def test_two_nodes(self): + G = nx.Graph() + G.add_weighted_edges_from({(1, 2, 1)}) + cycle = nx_app.greedy_tsp(G) + cost = sum(G[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, [1, 2, 1], 2) + + def test_ignore_selfloops(self): + G = nx.complete_graph(5) + G.add_edge(3, 3) + cycle = nx_app.greedy_tsp(G) + assert len(cycle) - 1 == len(G) == len(set(cycle)) + + +class TestSimulatedAnnealingTSP(TestBase): + tsp = staticmethod(nx_app.simulated_annealing_tsp) + + def test_simulated_annealing_directed(self): + cycle = self.tsp(self.DG, "greedy", source="D", seed=42) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG_cycle, self.DG_cost) + + initial_sol = ["D", "B", "A", "C", "D"] + cycle = self.tsp(self.DG, initial_sol, source="D", seed=42) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG_cycle, self.DG_cost) + + initial_sol = ["D", "A", "C", "B", "D"] + cycle = self.tsp(self.DG, initial_sol, move="1-0", source="D", seed=42) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG_cycle, self.DG_cost) + + cycle = self.tsp(self.DG2, "greedy", source="D", seed=42) + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG2_cycle, self.DG2_cost) + + cycle = self.tsp(self.DG2, "greedy", move="1-0", source="D", seed=42) + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG2_cycle, self.DG2_cost) + + def test_simulated_annealing_undirected(self): + cycle = self.tsp(self.UG, "greedy", source="D", seed=42) + cost = sum(self.UG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.UG_cycle, self.UG_cost) + + cycle = self.tsp(self.UG2, "greedy", source="D", seed=42) + cost = sum(self.UG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_symmetric_solution(cycle, cost, self.UG2_cycle, self.UG2_cost) + + cycle = self.tsp(self.UG2, "greedy", move="1-0", source="D", seed=42) + cost = sum(self.UG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_symmetric_solution(cycle, cost, self.UG2_cycle, self.UG2_cost) + + def test_error_on_input_order_mistake(self): + # see issue #4846 https://github.com/networkx/networkx/issues/4846 + pytest.raises(TypeError, self.tsp, self.UG, weight="weight") + pytest.raises(nx.NetworkXError, self.tsp, self.UG, "weight") + + def test_not_complete_graph(self): + pytest.raises(nx.NetworkXError, self.tsp, self.incompleteUG, "greedy", source=0) + pytest.raises(nx.NetworkXError, self.tsp, self.incompleteDG, "greedy", source=0) + + def test_ignore_selfloops(self): + G = nx.complete_graph(5) + G.add_edge(3, 3) + cycle = self.tsp(G, "greedy") + assert len(cycle) - 1 == len(G) == len(set(cycle)) + + def test_not_weighted_graph(self): + self.tsp(self.unweightedUG, "greedy") + self.tsp(self.unweightedDG, "greedy") + + def test_two_nodes(self): + G = nx.Graph() + G.add_weighted_edges_from({(1, 2, 1)}) + + cycle = self.tsp(G, "greedy", source=1, seed=42) + cost = sum(G[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, [1, 2, 1], 2) + + cycle = self.tsp(G, [1, 2, 1], source=1, seed=42) + cost = sum(G[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, [1, 2, 1], 2) + + def test_failure_of_costs_too_high_when_iterations_low(self): + # Simulated Annealing Version: + # set number of moves low and alpha high + cycle = self.tsp( + self.DG2, "greedy", source="D", move="1-0", alpha=1, N_inner=1, seed=42 + ) + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + print(cycle, cost) + assert cost > self.DG2_cost + + # Try with an incorrect initial guess + initial_sol = ["D", "A", "B", "C", "D"] + cycle = self.tsp( + self.DG, + initial_sol, + source="D", + move="1-0", + alpha=0.1, + N_inner=1, + max_iterations=1, + seed=42, + ) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + print(cycle, cost) + assert cost > self.DG_cost + + +class TestThresholdAcceptingTSP(TestSimulatedAnnealingTSP): + tsp = staticmethod(nx_app.threshold_accepting_tsp) + + def test_failure_of_costs_too_high_when_iterations_low(self): + # Threshold Version: + # set number of moves low and number of iterations low + cycle = self.tsp( + self.DG2, + "greedy", + source="D", + move="1-0", + N_inner=1, + max_iterations=1, + seed=4, + ) + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + assert cost > self.DG2_cost + + # set threshold too low + initial_sol = ["D", "A", "B", "C", "D"] + cycle = self.tsp( + self.DG, initial_sol, source="D", move="1-0", threshold=-3, seed=42 + ) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + assert cost > self.DG_cost + + +# Tests for function traveling_salesman_problem +def test_TSP_method(): + G = nx.cycle_graph(9) + G[4][5]["weight"] = 10 + + # Test using the old currying method + sa_tsp = lambda G, weight: nx_app.simulated_annealing_tsp( + G, "greedy", weight, source=4, seed=1 + ) + + path = nx_app.traveling_salesman_problem( + G, + method=sa_tsp, + cycle=False, + ) + print(path) + assert path == [4, 3, 2, 1, 0, 8, 7, 6, 5] + + +def test_TSP_unweighted(): + G = nx.cycle_graph(9) + path = nx_app.traveling_salesman_problem(G, nodes=[3, 6], cycle=False) + assert path in ([3, 4, 5, 6], [6, 5, 4, 3]) + + cycle = nx_app.traveling_salesman_problem(G, nodes=[3, 6]) + assert cycle in ([3, 4, 5, 6, 5, 4, 3], [6, 5, 4, 3, 4, 5, 6]) + + +def test_TSP_weighted(): + G = nx.cycle_graph(9) + G[0][1]["weight"] = 2 + G[1][2]["weight"] = 2 + G[2][3]["weight"] = 2 + G[3][4]["weight"] = 4 + G[4][5]["weight"] = 5 + G[5][6]["weight"] = 4 + G[6][7]["weight"] = 2 + G[7][8]["weight"] = 2 + G[8][0]["weight"] = 2 + tsp = nx_app.traveling_salesman_problem + + # path between 3 and 6 + expected_paths = ([3, 2, 1, 0, 8, 7, 6], [6, 7, 8, 0, 1, 2, 3]) + # cycle between 3 and 6 + expected_cycles = ( + [3, 2, 1, 0, 8, 7, 6, 7, 8, 0, 1, 2, 3], + [6, 7, 8, 0, 1, 2, 3, 2, 1, 0, 8, 7, 6], + ) + # path through all nodes + expected_tourpaths = ([5, 6, 7, 8, 0, 1, 2, 3, 4], [4, 3, 2, 1, 0, 8, 7, 6, 5]) + + # Check default method + cycle = tsp(G, nodes=[3, 6], weight="weight") + assert cycle in expected_cycles + + path = tsp(G, nodes=[3, 6], weight="weight", cycle=False) + assert path in expected_paths + + tourpath = tsp(G, weight="weight", cycle=False) + assert tourpath in expected_tourpaths + + # Check all methods + methods = [ + (nx_app.christofides, {}), + (nx_app.greedy_tsp, {}), + ( + nx_app.simulated_annealing_tsp, + {"init_cycle": "greedy"}, + ), + ( + nx_app.threshold_accepting_tsp, + {"init_cycle": "greedy"}, + ), + ] + for method, kwargs in methods: + cycle = tsp(G, nodes=[3, 6], weight="weight", method=method, **kwargs) + assert cycle in expected_cycles + + path = tsp( + G, nodes=[3, 6], weight="weight", method=method, cycle=False, **kwargs + ) + assert path in expected_paths + + tourpath = tsp(G, weight="weight", method=method, cycle=False, **kwargs) + assert tourpath in expected_tourpaths + + +def test_TSP_incomplete_graph_short_path(): + G = nx.cycle_graph(9) + G.add_edges_from([(4, 9), (9, 10), (10, 11), (11, 0)]) + G[4][5]["weight"] = 5 + + cycle = nx_app.traveling_salesman_problem(G) + print(cycle) + assert len(cycle) == 17 and len(set(cycle)) == 12 + + # make sure that cutting one edge out of complete graph formulation + # cuts out many edges out of the path of the TSP + path = nx_app.traveling_salesman_problem(G, cycle=False) + print(path) + assert len(path) == 13 and len(set(path)) == 12 + + +def test_held_karp_ascent(): + """ + Test the Held-Karp relaxation with the ascent method + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + # Adjacency matrix from page 1153 of the 1970 Held and Karp paper + # which have been edited to be directional, but also symmetric + G_array = np.array( + [ + [0, 97, 60, 73, 17, 52], + [97, 0, 41, 52, 90, 30], + [60, 41, 0, 21, 35, 41], + [73, 52, 21, 0, 95, 46], + [17, 90, 35, 95, 0, 81], + [52, 30, 41, 46, 81, 0], + ] + ) + + solution_edges = [(1, 3), (2, 4), (3, 2), (4, 0), (5, 1), (0, 5)] + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 207.00 + # Check that the z_stars are the same + solution = nx.DiGraph() + solution.add_edges_from(solution_edges) + assert nx.utils.edges_equal(z_star.edges, solution.edges) + + +def test_ascent_fractional_solution(): + """ + Test the ascent method using a modified version of Figure 2 on page 1140 + in 'The Traveling Salesman Problem and Minimum Spanning Trees' by Held and + Karp + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + # This version of Figure 2 has all of the edge weights multiplied by 100 + # and is a complete directed graph with infinite edge weights for the + # edges not listed in the original graph + G_array = np.array( + [ + [0, 100, 100, 100000, 100000, 1], + [100, 0, 100, 100000, 1, 100000], + [100, 100, 0, 1, 100000, 100000], + [100000, 100000, 1, 0, 100, 100], + [100000, 1, 100000, 100, 0, 100], + [1, 100000, 100000, 100, 100, 0], + ] + ) + + solution_z_star = { + (0, 1): 5 / 12, + (0, 2): 5 / 12, + (0, 5): 5 / 6, + (1, 0): 5 / 12, + (1, 2): 1 / 3, + (1, 4): 5 / 6, + (2, 0): 5 / 12, + (2, 1): 1 / 3, + (2, 3): 5 / 6, + (3, 2): 5 / 6, + (3, 4): 1 / 3, + (3, 5): 1 / 2, + (4, 1): 5 / 6, + (4, 3): 1 / 3, + (4, 5): 1 / 2, + (5, 0): 5 / 6, + (5, 3): 1 / 2, + (5, 4): 1 / 2, + } + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 303.00 + # Check that the z_stars are the same + assert {key: round(z_star[key], 4) for key in z_star} == { + key: round(solution_z_star[key], 4) for key in solution_z_star + } + + +def test_ascent_method_asymmetric(): + """ + Tests the ascent method using a truly asymmetric graph for which the + solution has been brute forced + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + [0, 26, 63, 59, 69, 31, 41], + [62, 0, 91, 53, 75, 87, 47], + [47, 82, 0, 90, 15, 9, 18], + [68, 19, 5, 0, 58, 34, 93], + [11, 58, 53, 55, 0, 61, 79], + [88, 75, 13, 76, 98, 0, 40], + [41, 61, 55, 88, 46, 45, 0], + ] + ) + + solution_edges = [(0, 1), (1, 3), (3, 2), (2, 5), (5, 6), (4, 0), (6, 4)] + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 190.00 + # Check that the z_stars match. + solution = nx.DiGraph() + solution.add_edges_from(solution_edges) + assert nx.utils.edges_equal(z_star.edges, solution.edges) + + +def test_ascent_method_asymmetric_2(): + """ + Tests the ascent method using a truly asymmetric graph for which the + solution has been brute forced + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + [0, 45, 39, 92, 29, 31], + [72, 0, 4, 12, 21, 60], + [81, 6, 0, 98, 70, 53], + [49, 71, 59, 0, 98, 94], + [74, 95, 24, 43, 0, 47], + [56, 43, 3, 65, 22, 0], + ] + ) + + solution_edges = [(0, 5), (5, 4), (1, 3), (3, 0), (2, 1), (4, 2)] + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 144.00 + # Check that the z_stars match. + solution = nx.DiGraph() + solution.add_edges_from(solution_edges) + assert nx.utils.edges_equal(z_star.edges, solution.edges) + + +def test_held_karp_ascent_asymmetric_3(): + """ + Tests the ascent method using a truly asymmetric graph with a fractional + solution for which the solution has been brute forced. + + In this graph their are two different optimal, integral solutions (which + are also the overall atsp solutions) to the Held Karp relaxation. However, + this particular graph has two different tours of optimal value and the + possible solutions in the held_karp_ascent function are not stored in an + ordered data structure. + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + [0, 1, 5, 2, 7, 4], + [7, 0, 7, 7, 1, 4], + [4, 7, 0, 9, 2, 1], + [7, 2, 7, 0, 4, 4], + [5, 5, 4, 4, 0, 3], + [3, 9, 1, 3, 4, 0], + ] + ) + + solution1_edges = [(0, 3), (1, 4), (2, 5), (3, 1), (4, 2), (5, 0)] + + solution2_edges = [(0, 3), (3, 1), (1, 4), (4, 5), (2, 0), (5, 2)] + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + assert round(opt_hk, 2) == 13.00 + # Check that the z_stars are the same + solution1 = nx.DiGraph() + solution1.add_edges_from(solution1_edges) + solution2 = nx.DiGraph() + solution2.add_edges_from(solution2_edges) + assert nx.utils.edges_equal(z_star.edges, solution1.edges) or nx.utils.edges_equal( + z_star.edges, solution2.edges + ) + + +def test_held_karp_ascent_fractional_asymmetric(): + """ + Tests the ascent method using a truly asymmetric graph with a fractional + solution for which the solution has been brute forced + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + [0, 100, 150, 100000, 100000, 1], + [150, 0, 100, 100000, 1, 100000], + [100, 150, 0, 1, 100000, 100000], + [100000, 100000, 1, 0, 150, 100], + [100000, 2, 100000, 100, 0, 150], + [2, 100000, 100000, 150, 100, 0], + ] + ) + + solution_z_star = { + (0, 1): 5 / 12, + (0, 2): 5 / 12, + (0, 5): 5 / 6, + (1, 0): 5 / 12, + (1, 2): 5 / 12, + (1, 4): 5 / 6, + (2, 0): 5 / 12, + (2, 1): 5 / 12, + (2, 3): 5 / 6, + (3, 2): 5 / 6, + (3, 4): 5 / 12, + (3, 5): 5 / 12, + (4, 1): 5 / 6, + (4, 3): 5 / 12, + (4, 5): 5 / 12, + (5, 0): 5 / 6, + (5, 3): 5 / 12, + (5, 4): 5 / 12, + } + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 304.00 + # Check that the z_stars are the same + assert {key: round(z_star[key], 4) for key in z_star} == { + key: round(solution_z_star[key], 4) for key in solution_z_star + } + + +def test_spanning_tree_distribution(): + """ + Test that we can create an exponential distribution of spanning trees such + that the probability of each tree is proportional to the product of edge + weights. + + Results of this test have been confirmed with hypothesis testing from the + created distribution. + + This test uses the symmetric, fractional Held Karp solution. + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + pytest.importorskip("numpy") + pytest.importorskip("scipy") + + z_star = { + (0, 1): 5 / 12, + (0, 2): 5 / 12, + (0, 5): 5 / 6, + (1, 0): 5 / 12, + (1, 2): 1 / 3, + (1, 4): 5 / 6, + (2, 0): 5 / 12, + (2, 1): 1 / 3, + (2, 3): 5 / 6, + (3, 2): 5 / 6, + (3, 4): 1 / 3, + (3, 5): 1 / 2, + (4, 1): 5 / 6, + (4, 3): 1 / 3, + (4, 5): 1 / 2, + (5, 0): 5 / 6, + (5, 3): 1 / 2, + (5, 4): 1 / 2, + } + + solution_gamma = { + (0, 1): -0.6383, + (0, 2): -0.6827, + (0, 5): 0, + (1, 2): -1.0781, + (1, 4): 0, + (2, 3): 0, + (5, 3): -0.2820, + (5, 4): -0.3327, + (4, 3): -0.9927, + } + + # The undirected support of z_star + G = nx.MultiGraph() + for u, v in z_star: + if (u, v) in G.edges or (v, u) in G.edges: + continue + G.add_edge(u, v) + + gamma = tsp.spanning_tree_distribution(G, z_star) + + assert {key: round(gamma[key], 4) for key in gamma} == solution_gamma + + +def test_asadpour_tsp(): + """ + Test the complete asadpour tsp algorithm with the fractional, symmetric + Held Karp solution. This test also uses an incomplete graph as input. + """ + # This version of Figure 2 has all of the edge weights multiplied by 100 + # and the 0 weight edges have a weight of 1. + pytest.importorskip("numpy") + pytest.importorskip("scipy") + + edge_list = [ + (0, 1, 100), + (0, 2, 100), + (0, 5, 1), + (1, 2, 100), + (1, 4, 1), + (2, 3, 1), + (3, 4, 100), + (3, 5, 100), + (4, 5, 100), + (1, 0, 100), + (2, 0, 100), + (5, 0, 1), + (2, 1, 100), + (4, 1, 1), + (3, 2, 1), + (4, 3, 100), + (5, 3, 100), + (5, 4, 100), + ] + + G = nx.DiGraph() + G.add_weighted_edges_from(edge_list) + + tour = nx_app.traveling_salesman_problem( + G, weight="weight", method=nx_app.asadpour_atsp, seed=19 + ) + + # Check that the returned list is a valid tour. Because this is an + # incomplete graph, the conditions are not as strict. We need the tour to + # + # Start and end at the same node + # Pass through every vertex at least once + # Have a total cost at most ln(6) / ln(ln(6)) = 3.0723 times the optimal + # + # For the second condition it is possible to have the tour pass through the + # same vertex more then. Imagine that the tour on the complete version takes + # an edge not in the original graph. In the output this is substituted with + # the shortest path between those vertices, allowing vertices to appear more + # than once. + # + # Even though we are using a fixed seed, multiple tours have been known to + # be returned. The first two are from the original development of this test, + # and the third one from issue #5913 on GitHub. If other tours are returned, + # add it on the list of expected tours. + expected_tours = [ + [1, 4, 5, 0, 2, 3, 2, 1], + [3, 2, 0, 1, 4, 5, 3], + [3, 2, 1, 0, 5, 4, 3], + ] + + assert tour in expected_tours + + +def test_asadpour_real_world(): + """ + This test uses airline prices between the six largest cities in the US. + + * New York City -> JFK + * Los Angeles -> LAX + * Chicago -> ORD + * Houston -> IAH + * Phoenix -> PHX + * Philadelphia -> PHL + + Flight prices from August 2021 using Delta or American airlines to get + nonstop flight. The brute force solution found the optimal tour to cost $872 + + This test also uses the `source` keyword argument to ensure that the tour + always starts at city 0. + """ + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + # JFK LAX ORD IAH PHX PHL + [0, 243, 199, 208, 169, 183], # JFK + [277, 0, 217, 123, 127, 252], # LAX + [297, 197, 0, 197, 123, 177], # ORD + [303, 169, 197, 0, 117, 117], # IAH + [257, 127, 160, 117, 0, 319], # PHX + [183, 332, 217, 117, 319, 0], # PHL + ] + ) + + node_list = ["JFK", "LAX", "ORD", "IAH", "PHX", "PHL"] + + expected_tours = [ + ["JFK", "LAX", "PHX", "ORD", "IAH", "PHL", "JFK"], + ["JFK", "ORD", "PHX", "LAX", "IAH", "PHL", "JFK"], + ] + + G = nx.from_numpy_array(G_array, nodelist=node_list, create_using=nx.DiGraph) + + tour = nx_app.traveling_salesman_problem( + G, weight="weight", method=nx_app.asadpour_atsp, seed=37, source="JFK" + ) + + assert tour in expected_tours + + +def test_asadpour_real_world_path(): + """ + This test uses airline prices between the six largest cities in the US. This + time using a path, not a cycle. + + * New York City -> JFK + * Los Angeles -> LAX + * Chicago -> ORD + * Houston -> IAH + * Phoenix -> PHX + * Philadelphia -> PHL + + Flight prices from August 2021 using Delta or American airlines to get + nonstop flight. The brute force solution found the optimal tour to cost $872 + """ + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + # JFK LAX ORD IAH PHX PHL + [0, 243, 199, 208, 169, 183], # JFK + [277, 0, 217, 123, 127, 252], # LAX + [297, 197, 0, 197, 123, 177], # ORD + [303, 169, 197, 0, 117, 117], # IAH + [257, 127, 160, 117, 0, 319], # PHX + [183, 332, 217, 117, 319, 0], # PHL + ] + ) + + node_list = ["JFK", "LAX", "ORD", "IAH", "PHX", "PHL"] + + expected_paths = [ + ["ORD", "PHX", "LAX", "IAH", "PHL", "JFK"], + ["JFK", "PHL", "IAH", "ORD", "PHX", "LAX"], + ] + + G = nx.from_numpy_array(G_array, nodelist=node_list, create_using=nx.DiGraph) + + path = nx_app.traveling_salesman_problem( + G, weight="weight", cycle=False, method=nx_app.asadpour_atsp, seed=56 + ) + + assert path in expected_paths + + +def test_asadpour_disconnected_graph(): + """ + Test that the proper exception is raised when asadpour_atsp is given an + disconnected graph. + """ + + G = nx.complete_graph(4, create_using=nx.DiGraph) + # have to set edge weights so that if the exception is not raised, the + # function will complete and we will fail the test + nx.set_edge_attributes(G, 1, "weight") + G.add_node(5) + + pytest.raises(nx.NetworkXError, nx_app.asadpour_atsp, G) + + +def test_asadpour_incomplete_graph(): + """ + Test that the proper exception is raised when asadpour_atsp is given an + incomplete graph + """ + + G = nx.complete_graph(4, create_using=nx.DiGraph) + # have to set edge weights so that if the exception is not raised, the + # function will complete and we will fail the test + nx.set_edge_attributes(G, 1, "weight") + G.remove_edge(0, 1) + + pytest.raises(nx.NetworkXError, nx_app.asadpour_atsp, G) + + +def test_asadpour_empty_graph(): + """ + Test the asadpour_atsp function with an empty graph + """ + G = nx.DiGraph() + + pytest.raises(nx.NetworkXError, nx_app.asadpour_atsp, G) + + +@pytest.mark.slow +def test_asadpour_integral_held_karp(): + """ + This test uses an integral held karp solution and the held karp function + will return a graph rather than a dict, bypassing most of the asadpour + algorithm. + + At first glance, this test probably doesn't look like it ensures that we + skip the rest of the asadpour algorithm, but it does. We are not fixing a + see for the random number generator, so if we sample any spanning trees + the approximation would be different basically every time this test is + executed but it is not since held karp is deterministic and we do not + reach the portion of the code with the dependence on random numbers. + """ + np = pytest.importorskip("numpy") + + G_array = np.array( + [ + [0, 26, 63, 59, 69, 31, 41], + [62, 0, 91, 53, 75, 87, 47], + [47, 82, 0, 90, 15, 9, 18], + [68, 19, 5, 0, 58, 34, 93], + [11, 58, 53, 55, 0, 61, 79], + [88, 75, 13, 76, 98, 0, 40], + [41, 61, 55, 88, 46, 45, 0], + ] + ) + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + + for _ in range(2): + tour = nx_app.traveling_salesman_problem(G, method=nx_app.asadpour_atsp) + + assert [1, 3, 2, 5, 2, 6, 4, 0, 1] == tour + + +def test_directed_tsp_impossible(): + """ + Test the asadpour algorithm with a graph without a hamiltonian circuit + """ + pytest.importorskip("numpy") + + # In this graph, once we leave node 0 we cannot return + edges = [ + (0, 1, 10), + (0, 2, 11), + (0, 3, 12), + (1, 2, 4), + (1, 3, 6), + (2, 1, 3), + (2, 3, 2), + (3, 1, 5), + (3, 2, 1), + ] + + G = nx.DiGraph() + G.add_weighted_edges_from(edges) + + pytest.raises(nx.NetworkXError, nx_app.traveling_salesman_problem, G) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_treewidth.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_treewidth.py new file mode 100644 index 00000000..461b0f2e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_treewidth.py @@ -0,0 +1,280 @@ +import itertools + +import networkx as nx +from networkx.algorithms.approximation import ( + treewidth_min_degree, + treewidth_min_fill_in, +) +from networkx.algorithms.approximation.treewidth import ( + MinDegreeHeuristic, + min_fill_in_heuristic, +) + + +def is_tree_decomp(graph, decomp): + """Check if the given tree decomposition is valid.""" + for x in graph.nodes(): + appear_once = False + for bag in decomp.nodes(): + if x in bag: + appear_once = True + break + assert appear_once + + # Check if each connected pair of nodes are at least once together in a bag + for x, y in graph.edges(): + appear_together = False + for bag in decomp.nodes(): + if x in bag and y in bag: + appear_together = True + break + assert appear_together + + # Check if the nodes associated with vertex v form a connected subset of T + for v in graph.nodes(): + subset = [] + for bag in decomp.nodes(): + if v in bag: + subset.append(bag) + sub_graph = decomp.subgraph(subset) + assert nx.is_connected(sub_graph) + + +class TestTreewidthMinDegree: + """Unit tests for the min_degree function""" + + @classmethod + def setup_class(cls): + """Setup for different kinds of trees""" + cls.complete = nx.Graph() + cls.complete.add_edge(1, 2) + cls.complete.add_edge(2, 3) + cls.complete.add_edge(1, 3) + + cls.small_tree = nx.Graph() + cls.small_tree.add_edge(1, 3) + cls.small_tree.add_edge(4, 3) + cls.small_tree.add_edge(2, 3) + cls.small_tree.add_edge(3, 5) + cls.small_tree.add_edge(5, 6) + cls.small_tree.add_edge(5, 7) + cls.small_tree.add_edge(6, 7) + + cls.deterministic_graph = nx.Graph() + cls.deterministic_graph.add_edge(0, 1) # deg(0) = 1 + + cls.deterministic_graph.add_edge(1, 2) # deg(1) = 2 + + cls.deterministic_graph.add_edge(2, 3) + cls.deterministic_graph.add_edge(2, 4) # deg(2) = 3 + + cls.deterministic_graph.add_edge(3, 4) + cls.deterministic_graph.add_edge(3, 5) + cls.deterministic_graph.add_edge(3, 6) # deg(3) = 4 + + cls.deterministic_graph.add_edge(4, 5) + cls.deterministic_graph.add_edge(4, 6) + cls.deterministic_graph.add_edge(4, 7) # deg(4) = 5 + + cls.deterministic_graph.add_edge(5, 6) + cls.deterministic_graph.add_edge(5, 7) + cls.deterministic_graph.add_edge(5, 8) + cls.deterministic_graph.add_edge(5, 9) # deg(5) = 6 + + cls.deterministic_graph.add_edge(6, 7) + cls.deterministic_graph.add_edge(6, 8) + cls.deterministic_graph.add_edge(6, 9) # deg(6) = 6 + + cls.deterministic_graph.add_edge(7, 8) + cls.deterministic_graph.add_edge(7, 9) # deg(7) = 5 + + cls.deterministic_graph.add_edge(8, 9) # deg(8) = 4 + + def test_petersen_graph(self): + """Test Petersen graph tree decomposition result""" + G = nx.petersen_graph() + _, decomp = treewidth_min_degree(G) + is_tree_decomp(G, decomp) + + def test_small_tree_treewidth(self): + """Test small tree + + Test if the computed treewidth of the known self.small_tree is 2. + As we know which value we can expect from our heuristic, values other + than two are regressions + """ + G = self.small_tree + # the order of removal should be [1,2,4]3[5,6,7] + # (with [] denoting any order of the containing nodes) + # resulting in treewidth 2 for the heuristic + treewidth, _ = treewidth_min_fill_in(G) + assert treewidth == 2 + + def test_heuristic_abort(self): + """Test heuristic abort condition for fully connected graph""" + graph = {} + for u in self.complete: + graph[u] = set() + for v in self.complete[u]: + if u != v: # ignore self-loop + graph[u].add(v) + + deg_heuristic = MinDegreeHeuristic(graph) + node = deg_heuristic.best_node(graph) + if node is None: + pass + else: + assert False + + def test_empty_graph(self): + """Test empty graph""" + G = nx.Graph() + _, _ = treewidth_min_degree(G) + + def test_two_component_graph(self): + G = nx.Graph() + G.add_node(1) + G.add_node(2) + treewidth, _ = treewidth_min_degree(G) + assert treewidth == 0 + + def test_not_sortable_nodes(self): + G = nx.Graph([(0, "a")]) + treewidth_min_degree(G) + + def test_heuristic_first_steps(self): + """Test first steps of min_degree heuristic""" + graph = { + n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph + } + deg_heuristic = MinDegreeHeuristic(graph) + elim_node = deg_heuristic.best_node(graph) + print(f"Graph {graph}:") + steps = [] + + while elim_node is not None: + print(f"Removing {elim_node}:") + steps.append(elim_node) + nbrs = graph[elim_node] + + for u, v in itertools.permutations(nbrs, 2): + if v not in graph[u]: + graph[u].add(v) + + for u in graph: + if elim_node in graph[u]: + graph[u].remove(elim_node) + + del graph[elim_node] + print(f"Graph {graph}:") + elim_node = deg_heuristic.best_node(graph) + + # check only the first 5 elements for equality + assert steps[:5] == [0, 1, 2, 3, 4] + + +class TestTreewidthMinFillIn: + """Unit tests for the treewidth_min_fill_in function.""" + + @classmethod + def setup_class(cls): + """Setup for different kinds of trees""" + cls.complete = nx.Graph() + cls.complete.add_edge(1, 2) + cls.complete.add_edge(2, 3) + cls.complete.add_edge(1, 3) + + cls.small_tree = nx.Graph() + cls.small_tree.add_edge(1, 2) + cls.small_tree.add_edge(2, 3) + cls.small_tree.add_edge(3, 4) + cls.small_tree.add_edge(1, 4) + cls.small_tree.add_edge(2, 4) + cls.small_tree.add_edge(4, 5) + cls.small_tree.add_edge(5, 6) + cls.small_tree.add_edge(5, 7) + cls.small_tree.add_edge(6, 7) + + cls.deterministic_graph = nx.Graph() + cls.deterministic_graph.add_edge(1, 2) + cls.deterministic_graph.add_edge(1, 3) + cls.deterministic_graph.add_edge(3, 4) + cls.deterministic_graph.add_edge(2, 4) + cls.deterministic_graph.add_edge(3, 5) + cls.deterministic_graph.add_edge(4, 5) + cls.deterministic_graph.add_edge(3, 6) + cls.deterministic_graph.add_edge(5, 6) + + def test_petersen_graph(self): + """Test Petersen graph tree decomposition result""" + G = nx.petersen_graph() + _, decomp = treewidth_min_fill_in(G) + is_tree_decomp(G, decomp) + + def test_small_tree_treewidth(self): + """Test if the computed treewidth of the known self.small_tree is 2""" + G = self.small_tree + # the order of removal should be [1,2,4]3[5,6,7] + # (with [] denoting any order of the containing nodes) + # resulting in treewidth 2 for the heuristic + treewidth, _ = treewidth_min_fill_in(G) + assert treewidth == 2 + + def test_heuristic_abort(self): + """Test if min_fill_in returns None for fully connected graph""" + graph = {} + for u in self.complete: + graph[u] = set() + for v in self.complete[u]: + if u != v: # ignore self-loop + graph[u].add(v) + next_node = min_fill_in_heuristic(graph) + if next_node is None: + pass + else: + assert False + + def test_empty_graph(self): + """Test empty graph""" + G = nx.Graph() + _, _ = treewidth_min_fill_in(G) + + def test_two_component_graph(self): + G = nx.Graph() + G.add_node(1) + G.add_node(2) + treewidth, _ = treewidth_min_fill_in(G) + assert treewidth == 0 + + def test_not_sortable_nodes(self): + G = nx.Graph([(0, "a")]) + treewidth_min_fill_in(G) + + def test_heuristic_first_steps(self): + """Test first steps of min_fill_in heuristic""" + graph = { + n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph + } + print(f"Graph {graph}:") + elim_node = min_fill_in_heuristic(graph) + steps = [] + + while elim_node is not None: + print(f"Removing {elim_node}:") + steps.append(elim_node) + nbrs = graph[elim_node] + + for u, v in itertools.permutations(nbrs, 2): + if v not in graph[u]: + graph[u].add(v) + + for u in graph: + if elim_node in graph[u]: + graph[u].remove(elim_node) + + del graph[elim_node] + print(f"Graph {graph}:") + elim_node = min_fill_in_heuristic(graph) + + # check only the first 2 elements for equality + assert steps[:2] == [6, 5] diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_vertex_cover.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_vertex_cover.py new file mode 100644 index 00000000..5cc5a38d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/tests/test_vertex_cover.py @@ -0,0 +1,68 @@ +import networkx as nx +from networkx.algorithms.approximation import min_weighted_vertex_cover + + +def is_cover(G, node_cover): + return all({u, v} & node_cover for u, v in G.edges()) + + +class TestMWVC: + """Unit tests for the approximate minimum weighted vertex cover + function, + :func:`~networkx.algorithms.approximation.vertex_cover.min_weighted_vertex_cover`. + + """ + + def test_unweighted_directed(self): + # Create a star graph in which half the nodes are directed in + # and half are directed out. + G = nx.DiGraph() + G.add_edges_from((0, v) for v in range(1, 26)) + G.add_edges_from((v, 0) for v in range(26, 51)) + cover = min_weighted_vertex_cover(G) + assert 1 == len(cover) + assert is_cover(G, cover) + + def test_unweighted_undirected(self): + # create a simple star graph + size = 50 + sg = nx.star_graph(size) + cover = min_weighted_vertex_cover(sg) + assert 1 == len(cover) + assert is_cover(sg, cover) + + def test_weighted(self): + wg = nx.Graph() + wg.add_node(0, weight=10) + wg.add_node(1, weight=1) + wg.add_node(2, weight=1) + wg.add_node(3, weight=1) + wg.add_node(4, weight=1) + + wg.add_edge(0, 1) + wg.add_edge(0, 2) + wg.add_edge(0, 3) + wg.add_edge(0, 4) + + wg.add_edge(1, 2) + wg.add_edge(2, 3) + wg.add_edge(3, 4) + wg.add_edge(4, 1) + + cover = min_weighted_vertex_cover(wg, weight="weight") + csum = sum(wg.nodes[node]["weight"] for node in cover) + assert 4 == csum + assert is_cover(wg, cover) + + def test_unweighted_self_loop(self): + slg = nx.Graph() + slg.add_node(0) + slg.add_node(1) + slg.add_node(2) + + slg.add_edge(0, 1) + slg.add_edge(2, 2) + + cover = min_weighted_vertex_cover(slg) + assert 2 == len(cover) + assert is_cover(slg, cover) diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/traveling_salesman.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/traveling_salesman.py new file mode 100644 index 00000000..2080c99a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/traveling_salesman.py @@ -0,0 +1,1501 @@ +""" +================================= +Travelling Salesman Problem (TSP) +================================= + +Implementation of approximate algorithms +for solving and approximating the TSP problem. + +Categories of algorithms which are implemented: + +- Christofides (provides a 3/2-approximation of TSP) +- Greedy +- Simulated Annealing (SA) +- Threshold Accepting (TA) +- Asadpour Asymmetric Traveling Salesman Algorithm + +The Travelling Salesman Problem tries to find, given the weight +(distance) between all points where a salesman has to visit, the +route so that: + +- The total distance (cost) which the salesman travels is minimized. +- The salesman returns to the starting point. +- Note that for a complete graph, the salesman visits each point once. + +The function `travelling_salesman_problem` allows for incomplete +graphs by finding all-pairs shortest paths, effectively converting +the problem to a complete graph problem. It calls one of the +approximate methods on that problem and then converts the result +back to the original graph using the previously found shortest paths. + +TSP is an NP-hard problem in combinatorial optimization, +important in operations research and theoretical computer science. + +http://en.wikipedia.org/wiki/Travelling_salesman_problem +""" + +import math + +import networkx as nx +from networkx.algorithms.tree.mst import random_spanning_tree +from networkx.utils import not_implemented_for, pairwise, py_random_state + +__all__ = [ + "traveling_salesman_problem", + "christofides", + "asadpour_atsp", + "greedy_tsp", + "simulated_annealing_tsp", + "threshold_accepting_tsp", +] + + +def swap_two_nodes(soln, seed): + """Swap two nodes in `soln` to give a neighbor solution. + + Parameters + ---------- + soln : list of nodes + Current cycle of nodes + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + list + The solution after move is applied. (A neighbor solution.) + + Notes + ----- + This function assumes that the incoming list `soln` is a cycle + (that the first and last element are the same) and also that + we don't want any move to change the first node in the list + (and thus not the last node either). + + The input list is changed as well as returned. Make a copy if needed. + + See Also + -------- + move_one_node + """ + a, b = seed.sample(range(1, len(soln) - 1), k=2) + soln[a], soln[b] = soln[b], soln[a] + return soln + + +def move_one_node(soln, seed): + """Move one node to another position to give a neighbor solution. + + The node to move and the position to move to are chosen randomly. + The first and last nodes are left untouched as soln must be a cycle + starting at that node. + + Parameters + ---------- + soln : list of nodes + Current cycle of nodes + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + list + The solution after move is applied. (A neighbor solution.) + + Notes + ----- + This function assumes that the incoming list `soln` is a cycle + (that the first and last element are the same) and also that + we don't want any move to change the first node in the list + (and thus not the last node either). + + The input list is changed as well as returned. Make a copy if needed. + + See Also + -------- + swap_two_nodes + """ + a, b = seed.sample(range(1, len(soln) - 1), k=2) + soln.insert(b, soln.pop(a)) + return soln + + +@not_implemented_for("directed") +@nx._dispatchable(edge_attrs="weight") +def christofides(G, weight="weight", tree=None): + """Approximate a solution of the traveling salesman problem + + Compute a 3/2-approximation of the traveling salesman problem + in a complete undirected graph using Christofides [1]_ algorithm. + + Parameters + ---------- + G : Graph + `G` should be a complete weighted undirected graph. + The distance between all pairs of nodes should be included. + + weight : string, optional (default="weight") + Edge data key corresponding to the edge weight. + If any edge does not have this attribute the weight is set to 1. + + tree : NetworkX graph or None (default: None) + A minimum spanning tree of G. Or, if None, the minimum spanning + tree is computed using :func:`networkx.minimum_spanning_tree` + + Returns + ------- + list + List of nodes in `G` along a cycle with a 3/2-approximation of + the minimal Hamiltonian cycle. + + References + ---------- + .. [1] Christofides, Nicos. "Worst-case analysis of a new heuristic for + the travelling salesman problem." No. RR-388. Carnegie-Mellon Univ + Pittsburgh Pa Management Sciences Research Group, 1976. + """ + # Remove selfloops if necessary + loop_nodes = nx.nodes_with_selfloops(G) + try: + node = next(loop_nodes) + except StopIteration: + pass + else: + G = G.copy() + G.remove_edge(node, node) + G.remove_edges_from((n, n) for n in loop_nodes) + # Check that G is a complete graph + N = len(G) - 1 + # This check ignores selfloops which is what we want here. + if any(len(nbrdict) != N for n, nbrdict in G.adj.items()): + raise nx.NetworkXError("G must be a complete graph.") + + if tree is None: + tree = nx.minimum_spanning_tree(G, weight=weight) + L = G.copy() + L.remove_nodes_from([v for v, degree in tree.degree if not (degree % 2)]) + MG = nx.MultiGraph() + MG.add_edges_from(tree.edges) + edges = nx.min_weight_matching(L, weight=weight) + MG.add_edges_from(edges) + return _shortcutting(nx.eulerian_circuit(MG)) + + +def _shortcutting(circuit): + """Remove duplicate nodes in the path""" + nodes = [] + for u, v in circuit: + if v in nodes: + continue + if not nodes: + nodes.append(u) + nodes.append(v) + nodes.append(nodes[0]) + return nodes + + +@nx._dispatchable(edge_attrs="weight") +def traveling_salesman_problem( + G, weight="weight", nodes=None, cycle=True, method=None, **kwargs +): + """Find the shortest path in `G` connecting specified nodes + + This function allows approximate solution to the traveling salesman + problem on networks that are not complete graphs and/or where the + salesman does not need to visit all nodes. + + This function proceeds in two steps. First, it creates a complete + graph using the all-pairs shortest_paths between nodes in `nodes`. + Edge weights in the new graph are the lengths of the paths + between each pair of nodes in the original graph. + Second, an algorithm (default: `christofides` for undirected and + `asadpour_atsp` for directed) is used to approximate the minimal Hamiltonian + cycle on this new graph. The available algorithms are: + + - christofides + - greedy_tsp + - simulated_annealing_tsp + - threshold_accepting_tsp + - asadpour_atsp + + Once the Hamiltonian Cycle is found, this function post-processes to + accommodate the structure of the original graph. If `cycle` is ``False``, + the biggest weight edge is removed to make a Hamiltonian path. + Then each edge on the new complete graph used for that analysis is + replaced by the shortest_path between those nodes on the original graph. + If the input graph `G` includes edges with weights that do not adhere to + the triangle inequality, such as when `G` is not a complete graph (i.e + length of non-existent edges is infinity), then the returned path may + contain some repeating nodes (other than the starting node). + + Parameters + ---------- + G : NetworkX graph + A possibly weighted graph + + nodes : collection of nodes (default=G.nodes) + collection (list, set, etc.) of nodes to visit + + weight : string, optional (default="weight") + Edge data key corresponding to the edge weight. + If any edge does not have this attribute the weight is set to 1. + + cycle : bool (default: True) + Indicates whether a cycle should be returned, or a path. + Note: the cycle is the approximate minimal cycle. + The path simply removes the biggest edge in that cycle. + + method : function (default: None) + A function that returns a cycle on all nodes and approximates + the solution to the traveling salesman problem on a complete + graph. The returned cycle is then used to find a corresponding + solution on `G`. `method` should be callable; take inputs + `G`, and `weight`; and return a list of nodes along the cycle. + + Provided options include :func:`christofides`, :func:`greedy_tsp`, + :func:`simulated_annealing_tsp` and :func:`threshold_accepting_tsp`. + + If `method is None`: use :func:`christofides` for undirected `G` and + :func:`asadpour_atsp` for directed `G`. + + **kwargs : dict + Other keyword arguments to be passed to the `method` function passed in. + + Returns + ------- + list + List of nodes in `G` along a path with an approximation of the minimal + path through `nodes`. + + Raises + ------ + NetworkXError + If `G` is a directed graph it has to be strongly connected or the + complete version cannot be generated. + + Examples + -------- + >>> tsp = nx.approximation.traveling_salesman_problem + >>> G = nx.cycle_graph(9) + >>> G[4][5]["weight"] = 5 # all other weights are 1 + >>> tsp(G, nodes=[3, 6]) + [3, 2, 1, 0, 8, 7, 6, 7, 8, 0, 1, 2, 3] + >>> path = tsp(G, cycle=False) + >>> path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4]) + True + + While no longer required, you can still build (curry) your own function + to provide parameter values to the methods. + + >>> SA_tsp = nx.approximation.simulated_annealing_tsp + >>> method = lambda G, weight: SA_tsp(G, "greedy", weight=weight, temp=500) + >>> path = tsp(G, cycle=False, method=method) + >>> path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4]) + True + + Otherwise, pass other keyword arguments directly into the tsp function. + + >>> path = tsp( + ... G, + ... cycle=False, + ... method=nx.approximation.simulated_annealing_tsp, + ... init_cycle="greedy", + ... temp=500, + ... ) + >>> path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4]) + True + """ + if method is None: + if G.is_directed(): + method = asadpour_atsp + else: + method = christofides + if nodes is None: + nodes = list(G.nodes) + + dist = {} + path = {} + for n, (d, p) in nx.all_pairs_dijkstra(G, weight=weight): + dist[n] = d + path[n] = p + + if G.is_directed(): + # If the graph is not strongly connected, raise an exception + if not nx.is_strongly_connected(G): + raise nx.NetworkXError("G is not strongly connected") + GG = nx.DiGraph() + else: + GG = nx.Graph() + for u in nodes: + for v in nodes: + if u == v: + continue + GG.add_edge(u, v, weight=dist[u][v]) + + best_GG = method(GG, weight=weight, **kwargs) + + if not cycle: + # find and remove the biggest edge + (u, v) = max(pairwise(best_GG), key=lambda x: dist[x[0]][x[1]]) + pos = best_GG.index(u) + 1 + while best_GG[pos] != v: + pos = best_GG[pos:].index(u) + 1 + best_GG = best_GG[pos:-1] + best_GG[:pos] + + best_path = [] + for u, v in pairwise(best_GG): + best_path.extend(path[u][v][:-1]) + best_path.append(v) + return best_path + + +@not_implemented_for("undirected") +@py_random_state(2) +@nx._dispatchable(edge_attrs="weight", mutates_input=True) +def asadpour_atsp(G, weight="weight", seed=None, source=None): + """ + Returns an approximate solution to the traveling salesman problem. + + This approximate solution is one of the best known approximations for the + asymmetric traveling salesman problem developed by Asadpour et al, + [1]_. The algorithm first solves the Held-Karp relaxation to find a lower + bound for the weight of the cycle. Next, it constructs an exponential + distribution of undirected spanning trees where the probability of an + edge being in the tree corresponds to the weight of that edge using a + maximum entropy rounding scheme. Next we sample that distribution + $2 \\lceil \\ln n \\rceil$ times and save the minimum sampled tree once the + direction of the arcs is added back to the edges. Finally, we augment + then short circuit that graph to find the approximate tour for the + salesman. + + Parameters + ---------- + G : nx.DiGraph + The graph should be a complete weighted directed graph. The + distance between all paris of nodes should be included and the triangle + inequality should hold. That is, the direct edge between any two nodes + should be the path of least cost. + + weight : string, optional (default="weight") + Edge data key corresponding to the edge weight. + If any edge does not have this attribute the weight is set to 1. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + source : node label (default=`None`) + If given, return the cycle starting and ending at the given node. + + Returns + ------- + cycle : list of nodes + Returns the cycle (list of nodes) that a salesman can follow to minimize + the total weight of the trip. + + Raises + ------ + NetworkXError + If `G` is not complete or has less than two nodes, the algorithm raises + an exception. + + NetworkXError + If `source` is not `None` and is not a node in `G`, the algorithm raises + an exception. + + NetworkXNotImplemented + If `G` is an undirected graph. + + References + ---------- + .. [1] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi, + An o(log n/log log n)-approximation algorithm for the asymmetric + traveling salesman problem, Operations research, 65 (2017), + pp. 1043–1061 + + Examples + -------- + >>> import networkx as nx + >>> import networkx.algorithms.approximation as approx + >>> G = nx.complete_graph(3, create_using=nx.DiGraph) + >>> nx.set_edge_attributes( + ... G, + ... {(0, 1): 2, (1, 2): 2, (2, 0): 2, (0, 2): 1, (2, 1): 1, (1, 0): 1}, + ... "weight", + ... ) + >>> tour = approx.asadpour_atsp(G, source=0) + >>> tour + [0, 2, 1, 0] + """ + from math import ceil, exp + from math import log as ln + + # Check that G is a complete graph + N = len(G) - 1 + if N < 2: + raise nx.NetworkXError("G must have at least two nodes") + # This check ignores selfloops which is what we want here. + if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()): + raise nx.NetworkXError("G is not a complete DiGraph") + # Check that the source vertex, if given, is in the graph + if source is not None and source not in G.nodes: + raise nx.NetworkXError("Given source node not in G.") + + opt_hk, z_star = held_karp_ascent(G, weight) + + # Test to see if the ascent method found an integer solution or a fractional + # solution. If it is integral then z_star is a nx.Graph, otherwise it is + # a dict + if not isinstance(z_star, dict): + # Here we are using the shortcutting method to go from the list of edges + # returned from eulerian_circuit to a list of nodes + return _shortcutting(nx.eulerian_circuit(z_star, source=source)) + + # Create the undirected support of z_star + z_support = nx.MultiGraph() + for u, v in z_star: + if (u, v) not in z_support.edges: + edge_weight = min(G[u][v][weight], G[v][u][weight]) + z_support.add_edge(u, v, **{weight: edge_weight}) + + # Create the exponential distribution of spanning trees + gamma = spanning_tree_distribution(z_support, z_star) + + # Write the lambda values to the edges of z_support + z_support = nx.Graph(z_support) + lambda_dict = {(u, v): exp(gamma[(u, v)]) for u, v in z_support.edges()} + nx.set_edge_attributes(z_support, lambda_dict, "weight") + del gamma, lambda_dict + + # Sample 2 * ceil( ln(n) ) spanning trees and record the minimum one + minimum_sampled_tree = None + minimum_sampled_tree_weight = math.inf + for _ in range(2 * ceil(ln(G.number_of_nodes()))): + sampled_tree = random_spanning_tree(z_support, "weight", seed=seed) + sampled_tree_weight = sampled_tree.size(weight) + if sampled_tree_weight < minimum_sampled_tree_weight: + minimum_sampled_tree = sampled_tree.copy() + minimum_sampled_tree_weight = sampled_tree_weight + + # Orient the edges in that tree to keep the cost of the tree the same. + t_star = nx.MultiDiGraph() + for u, v, d in minimum_sampled_tree.edges(data=weight): + if d == G[u][v][weight]: + t_star.add_edge(u, v, **{weight: d}) + else: + t_star.add_edge(v, u, **{weight: d}) + + # Find the node demands needed to neutralize the flow of t_star in G + node_demands = {n: t_star.out_degree(n) - t_star.in_degree(n) for n in t_star} + nx.set_node_attributes(G, node_demands, "demand") + + # Find the min_cost_flow + flow_dict = nx.min_cost_flow(G, "demand") + + # Build the flow into t_star + for source, values in flow_dict.items(): + for target in values: + if (source, target) not in t_star.edges and values[target] > 0: + # IF values[target] > 0 we have to add that many edges + for _ in range(values[target]): + t_star.add_edge(source, target) + + # Return the shortcut eulerian circuit + circuit = nx.eulerian_circuit(t_star, source=source) + return _shortcutting(circuit) + + +@nx._dispatchable(edge_attrs="weight", mutates_input=True, returns_graph=True) +def held_karp_ascent(G, weight="weight"): + """ + Minimizes the Held-Karp relaxation of the TSP for `G` + + Solves the Held-Karp relaxation of the input complete digraph and scales + the output solution for use in the Asadpour [1]_ ASTP algorithm. + + The Held-Karp relaxation defines the lower bound for solutions to the + ATSP, although it does return a fractional solution. This is used in the + Asadpour algorithm as an initial solution which is later rounded to a + integral tree within the spanning tree polytopes. This function solves + the relaxation with the branch and bound method in [2]_. + + Parameters + ---------- + G : nx.DiGraph + The graph should be a complete weighted directed graph. + The distance between all paris of nodes should be included. + + weight : string, optional (default="weight") + Edge data key corresponding to the edge weight. + If any edge does not have this attribute the weight is set to 1. + + Returns + ------- + OPT : float + The cost for the optimal solution to the Held-Karp relaxation + z : dict or nx.Graph + A symmetrized and scaled version of the optimal solution to the + Held-Karp relaxation for use in the Asadpour algorithm. + + If an integral solution is found, then that is an optimal solution for + the ATSP problem and that is returned instead. + + References + ---------- + .. [1] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi, + An o(log n/log log n)-approximation algorithm for the asymmetric + traveling salesman problem, Operations research, 65 (2017), + pp. 1043–1061 + + .. [2] M. Held, R. M. Karp, The traveling-salesman problem and minimum + spanning trees, Operations Research, 1970-11-01, Vol. 18 (6), + pp.1138-1162 + """ + import numpy as np + from scipy import optimize + + def k_pi(): + """ + Find the set of minimum 1-Arborescences for G at point pi. + + Returns + ------- + Set + The set of minimum 1-Arborescences + """ + # Create a copy of G without vertex 1. + G_1 = G.copy() + minimum_1_arborescences = set() + minimum_1_arborescence_weight = math.inf + + # node is node '1' in the Held and Karp paper + n = next(G.__iter__()) + G_1.remove_node(n) + + # Iterate over the spanning arborescences of the graph until we know + # that we have found the minimum 1-arborescences. My proposed strategy + # is to find the most extensive root to connect to from 'node 1' and + # the least expensive one. We then iterate over arborescences until + # the cost of the basic arborescence is the cost of the minimum one + # plus the difference between the most and least expensive roots, + # that way the cost of connecting 'node 1' will by definition not by + # minimum + min_root = {"node": None, weight: math.inf} + max_root = {"node": None, weight: -math.inf} + for u, v, d in G.edges(n, data=True): + if d[weight] < min_root[weight]: + min_root = {"node": v, weight: d[weight]} + if d[weight] > max_root[weight]: + max_root = {"node": v, weight: d[weight]} + + min_in_edge = min(G.in_edges(n, data=True), key=lambda x: x[2][weight]) + min_root[weight] = min_root[weight] + min_in_edge[2][weight] + max_root[weight] = max_root[weight] + min_in_edge[2][weight] + + min_arb_weight = math.inf + for arb in nx.ArborescenceIterator(G_1): + arb_weight = arb.size(weight) + if min_arb_weight == math.inf: + min_arb_weight = arb_weight + elif arb_weight > min_arb_weight + max_root[weight] - min_root[weight]: + break + # We have to pick the root node of the arborescence for the out + # edge of the first vertex as that is the only node without an + # edge directed into it. + for N, deg in arb.in_degree: + if deg == 0: + # root found + arb.add_edge(n, N, **{weight: G[n][N][weight]}) + arb_weight += G[n][N][weight] + break + + # We can pick the minimum weight in-edge for the vertex with + # a cycle. If there are multiple edges with the same, minimum + # weight, We need to add all of them. + # + # Delete the edge (N, v) so that we cannot pick it. + edge_data = G[N][n] + G.remove_edge(N, n) + min_weight = min(G.in_edges(n, data=weight), key=lambda x: x[2])[2] + min_edges = [ + (u, v, d) for u, v, d in G.in_edges(n, data=weight) if d == min_weight + ] + for u, v, d in min_edges: + new_arb = arb.copy() + new_arb.add_edge(u, v, **{weight: d}) + new_arb_weight = arb_weight + d + # Check to see the weight of the arborescence, if it is a + # new minimum, clear all of the old potential minimum + # 1-arborescences and add this is the only one. If its + # weight is above the known minimum, do not add it. + if new_arb_weight < minimum_1_arborescence_weight: + minimum_1_arborescences.clear() + minimum_1_arborescence_weight = new_arb_weight + # We have a 1-arborescence, add it to the set + if new_arb_weight == minimum_1_arborescence_weight: + minimum_1_arborescences.add(new_arb) + G.add_edge(N, n, **edge_data) + + return minimum_1_arborescences + + def direction_of_ascent(): + """ + Find the direction of ascent at point pi. + + See [1]_ for more information. + + Returns + ------- + dict + A mapping from the nodes of the graph which represents the direction + of ascent. + + References + ---------- + .. [1] M. Held, R. M. Karp, The traveling-salesman problem and minimum + spanning trees, Operations Research, 1970-11-01, Vol. 18 (6), + pp.1138-1162 + """ + # 1. Set d equal to the zero n-vector. + d = {} + for n in G: + d[n] = 0 + del n + # 2. Find a 1-Arborescence T^k such that k is in K(pi, d). + minimum_1_arborescences = k_pi() + while True: + # Reduce K(pi) to K(pi, d) + # Find the arborescence in K(pi) which increases the lest in + # direction d + min_k_d_weight = math.inf + min_k_d = None + for arborescence in minimum_1_arborescences: + weighted_cost = 0 + for n, deg in arborescence.degree: + weighted_cost += d[n] * (deg - 2) + if weighted_cost < min_k_d_weight: + min_k_d_weight = weighted_cost + min_k_d = arborescence + + # 3. If sum of d_i * v_{i, k} is greater than zero, terminate + if min_k_d_weight > 0: + return d, min_k_d + # 4. d_i = d_i + v_{i, k} + for n, deg in min_k_d.degree: + d[n] += deg - 2 + # Check that we do not need to terminate because the direction + # of ascent does not exist. This is done with linear + # programming. + c = np.full(len(minimum_1_arborescences), -1, dtype=int) + a_eq = np.empty((len(G) + 1, len(minimum_1_arborescences)), dtype=int) + b_eq = np.zeros(len(G) + 1, dtype=int) + b_eq[len(G)] = 1 + for arb_count, arborescence in enumerate(minimum_1_arborescences): + n_count = len(G) - 1 + for n, deg in arborescence.degree: + a_eq[n_count][arb_count] = deg - 2 + n_count -= 1 + a_eq[len(G)][arb_count] = 1 + program_result = optimize.linprog( + c, A_eq=a_eq, b_eq=b_eq, method="highs-ipm" + ) + # If the constants exist, then the direction of ascent doesn't + if program_result.success: + # There is no direction of ascent + return None, minimum_1_arborescences + + # 5. GO TO 2 + + def find_epsilon(k, d): + """ + Given the direction of ascent at pi, find the maximum distance we can go + in that direction. + + Parameters + ---------- + k_xy : set + The set of 1-arborescences which have the minimum rate of increase + in the direction of ascent + + d : dict + The direction of ascent + + Returns + ------- + float + The distance we can travel in direction `d` + """ + min_epsilon = math.inf + for e_u, e_v, e_w in G.edges(data=weight): + if (e_u, e_v) in k.edges: + continue + # Now, I have found a condition which MUST be true for the edges to + # be a valid substitute. The edge in the graph which is the + # substitute is the one with the same terminated end. This can be + # checked rather simply. + # + # Find the edge within k which is the substitute. Because k is a + # 1-arborescence, we know that they is only one such edges + # leading into every vertex. + if len(k.in_edges(e_v, data=weight)) > 1: + raise Exception + sub_u, sub_v, sub_w = next(k.in_edges(e_v, data=weight).__iter__()) + k.add_edge(e_u, e_v, **{weight: e_w}) + k.remove_edge(sub_u, sub_v) + if ( + max(d for n, d in k.in_degree()) <= 1 + and len(G) == k.number_of_edges() + and nx.is_weakly_connected(k) + ): + # Ascent method calculation + if d[sub_u] == d[e_u] or sub_w == e_w: + # Revert to the original graph + k.remove_edge(e_u, e_v) + k.add_edge(sub_u, sub_v, **{weight: sub_w}) + continue + epsilon = (sub_w - e_w) / (d[e_u] - d[sub_u]) + if 0 < epsilon < min_epsilon: + min_epsilon = epsilon + # Revert to the original graph + k.remove_edge(e_u, e_v) + k.add_edge(sub_u, sub_v, **{weight: sub_w}) + + return min_epsilon + + # I have to know that the elements in pi correspond to the correct elements + # in the direction of ascent, even if the node labels are not integers. + # Thus, I will use dictionaries to made that mapping. + pi_dict = {} + for n in G: + pi_dict[n] = 0 + del n + original_edge_weights = {} + for u, v, d in G.edges(data=True): + original_edge_weights[(u, v)] = d[weight] + dir_ascent, k_d = direction_of_ascent() + while dir_ascent is not None: + max_distance = find_epsilon(k_d, dir_ascent) + for n, v in dir_ascent.items(): + pi_dict[n] += max_distance * v + for u, v, d in G.edges(data=True): + d[weight] = original_edge_weights[(u, v)] + pi_dict[u] + dir_ascent, k_d = direction_of_ascent() + nx._clear_cache(G) + # k_d is no longer an individual 1-arborescence but rather a set of + # minimal 1-arborescences at the maximum point of the polytope and should + # be reflected as such + k_max = k_d + + # Search for a cycle within k_max. If a cycle exists, return it as the + # solution + for k in k_max: + if len([n for n in k if k.degree(n) == 2]) == G.order(): + # Tour found + # TODO: this branch does not restore original_edge_weights of G! + return k.size(weight), k + + # Write the original edge weights back to G and every member of k_max at + # the maximum point. Also average the number of times that edge appears in + # the set of minimal 1-arborescences. + x_star = {} + size_k_max = len(k_max) + for u, v, d in G.edges(data=True): + edge_count = 0 + d[weight] = original_edge_weights[(u, v)] + for k in k_max: + if (u, v) in k.edges(): + edge_count += 1 + k[u][v][weight] = original_edge_weights[(u, v)] + x_star[(u, v)] = edge_count / size_k_max + # Now symmetrize the edges in x_star and scale them according to (5) in + # reference [1] + z_star = {} + scale_factor = (G.order() - 1) / G.order() + for u, v in x_star: + frequency = x_star[(u, v)] + x_star[(v, u)] + if frequency > 0: + z_star[(u, v)] = scale_factor * frequency + del x_star + # Return the optimal weight and the z dict + return next(k_max.__iter__()).size(weight), z_star + + +@nx._dispatchable +def spanning_tree_distribution(G, z): + """ + Find the asadpour exponential distribution of spanning trees. + + Solves the Maximum Entropy Convex Program in the Asadpour algorithm [1]_ + using the approach in section 7 to build an exponential distribution of + undirected spanning trees. + + This algorithm ensures that the probability of any edge in a spanning + tree is proportional to the sum of the probabilities of the tress + containing that edge over the sum of the probabilities of all spanning + trees of the graph. + + Parameters + ---------- + G : nx.MultiGraph + The undirected support graph for the Held Karp relaxation + + z : dict + The output of `held_karp_ascent()`, a scaled version of the Held-Karp + solution. + + Returns + ------- + gamma : dict + The probability distribution which approximately preserves the marginal + probabilities of `z`. + """ + from math import exp + from math import log as ln + + def q(e): + """ + The value of q(e) is described in the Asadpour paper is "the + probability that edge e will be included in a spanning tree T that is + chosen with probability proportional to exp(gamma(T))" which + basically means that it is the total probability of the edge appearing + across the whole distribution. + + Parameters + ---------- + e : tuple + The `(u, v)` tuple describing the edge we are interested in + + Returns + ------- + float + The probability that a spanning tree chosen according to the + current values of gamma will include edge `e`. + """ + # Create the laplacian matrices + for u, v, d in G.edges(data=True): + d[lambda_key] = exp(gamma[(u, v)]) + G_Kirchhoff = nx.total_spanning_tree_weight(G, lambda_key) + G_e = nx.contracted_edge(G, e, self_loops=False) + G_e_Kirchhoff = nx.total_spanning_tree_weight(G_e, lambda_key) + + # Multiply by the weight of the contracted edge since it is not included + # in the total weight of the contracted graph. + return exp(gamma[(e[0], e[1])]) * G_e_Kirchhoff / G_Kirchhoff + + # initialize gamma to the zero dict + gamma = {} + for u, v, _ in G.edges: + gamma[(u, v)] = 0 + + # set epsilon + EPSILON = 0.2 + + # pick an edge attribute name that is unlikely to be in the graph + lambda_key = "spanning_tree_distribution's secret attribute name for lambda" + + while True: + # We need to know that know that no values of q_e are greater than + # (1 + epsilon) * z_e, however changing one gamma value can increase the + # value of a different q_e, so we have to complete the for loop without + # changing anything for the condition to be meet + in_range_count = 0 + # Search for an edge with q_e > (1 + epsilon) * z_e + for u, v in gamma: + e = (u, v) + q_e = q(e) + z_e = z[e] + if q_e > (1 + EPSILON) * z_e: + delta = ln( + (q_e * (1 - (1 + EPSILON / 2) * z_e)) + / ((1 - q_e) * (1 + EPSILON / 2) * z_e) + ) + gamma[e] -= delta + # Check that delta had the desired effect + new_q_e = q(e) + desired_q_e = (1 + EPSILON / 2) * z_e + if round(new_q_e, 8) != round(desired_q_e, 8): + raise nx.NetworkXError( + f"Unable to modify probability for edge ({u}, {v})" + ) + else: + in_range_count += 1 + # Check if the for loop terminated without changing any gamma + if in_range_count == len(gamma): + break + + # Remove the new edge attributes + for _, _, d in G.edges(data=True): + if lambda_key in d: + del d[lambda_key] + + return gamma + + +@nx._dispatchable(edge_attrs="weight") +def greedy_tsp(G, weight="weight", source=None): + """Return a low cost cycle starting at `source` and its cost. + + This approximates a solution to the traveling salesman problem. + It finds a cycle of all the nodes that a salesman can visit in order + to visit many nodes while minimizing total distance. + It uses a simple greedy algorithm. + In essence, this function returns a large cycle given a source point + for which the total cost of the cycle is minimized. + + Parameters + ---------- + G : Graph + The Graph should be a complete weighted undirected graph. + The distance between all pairs of nodes should be included. + + weight : string, optional (default="weight") + Edge data key corresponding to the edge weight. + If any edge does not have this attribute the weight is set to 1. + + source : node, optional (default: first node in list(G)) + Starting node. If None, defaults to ``next(iter(G))`` + + Returns + ------- + cycle : list of nodes + Returns the cycle (list of nodes) that a salesman + can follow to minimize total weight of the trip. + + Raises + ------ + NetworkXError + If `G` is not complete, the algorithm raises an exception. + + Examples + -------- + >>> from networkx.algorithms import approximation as approx + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from( + ... { + ... ("A", "B", 3), + ... ("A", "C", 17), + ... ("A", "D", 14), + ... ("B", "A", 3), + ... ("B", "C", 12), + ... ("B", "D", 16), + ... ("C", "A", 13), + ... ("C", "B", 12), + ... ("C", "D", 4), + ... ("D", "A", 14), + ... ("D", "B", 15), + ... ("D", "C", 2), + ... } + ... ) + >>> cycle = approx.greedy_tsp(G, source="D") + >>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle)) + >>> cycle + ['D', 'C', 'B', 'A', 'D'] + >>> cost + 31 + + Notes + ----- + This implementation of a greedy algorithm is based on the following: + + - The algorithm adds a node to the solution at every iteration. + - The algorithm selects a node not already in the cycle whose connection + to the previous node adds the least cost to the cycle. + + A greedy algorithm does not always give the best solution. + However, it can construct a first feasible solution which can + be passed as a parameter to an iterative improvement algorithm such + as Simulated Annealing, or Threshold Accepting. + + Time complexity: It has a running time $O(|V|^2)$ + """ + # Check that G is a complete graph + N = len(G) - 1 + # This check ignores selfloops which is what we want here. + if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()): + raise nx.NetworkXError("G must be a complete graph.") + + if source is None: + source = nx.utils.arbitrary_element(G) + + if G.number_of_nodes() == 2: + neighbor = next(G.neighbors(source)) + return [source, neighbor, source] + + nodeset = set(G) + nodeset.remove(source) + cycle = [source] + next_node = source + while nodeset: + nbrdict = G[next_node] + next_node = min(nodeset, key=lambda n: nbrdict[n].get(weight, 1)) + cycle.append(next_node) + nodeset.remove(next_node) + cycle.append(cycle[0]) + return cycle + + +@py_random_state(9) +@nx._dispatchable(edge_attrs="weight") +def simulated_annealing_tsp( + G, + init_cycle, + weight="weight", + source=None, + temp=100, + move="1-1", + max_iterations=10, + N_inner=100, + alpha=0.01, + seed=None, +): + """Returns an approximate solution to the traveling salesman problem. + + This function uses simulated annealing to approximate the minimal cost + cycle through the nodes. Starting from a suboptimal solution, simulated + annealing perturbs that solution, occasionally accepting changes that make + the solution worse to escape from a locally optimal solution. The chance + of accepting such changes decreases over the iterations to encourage + an optimal result. In summary, the function returns a cycle starting + at `source` for which the total cost is minimized. It also returns the cost. + + The chance of accepting a proposed change is related to a parameter called + the temperature (annealing has a physical analogue of steel hardening + as it cools). As the temperature is reduced, the chance of moves that + increase cost goes down. + + Parameters + ---------- + G : Graph + `G` should be a complete weighted graph. + The distance between all pairs of nodes should be included. + + init_cycle : list of all nodes or "greedy" + The initial solution (a cycle through all nodes returning to the start). + This argument has no default to make you think about it. + If "greedy", use `greedy_tsp(G, weight)`. + Other common starting cycles are `list(G) + [next(iter(G))]` or the final + result of `simulated_annealing_tsp` when doing `threshold_accepting_tsp`. + + weight : string, optional (default="weight") + Edge data key corresponding to the edge weight. + If any edge does not have this attribute the weight is set to 1. + + source : node, optional (default: first node in list(G)) + Starting node. If None, defaults to ``next(iter(G))`` + + temp : int, optional (default=100) + The algorithm's temperature parameter. It represents the initial + value of temperature + + move : "1-1" or "1-0" or function, optional (default="1-1") + Indicator of what move to use when finding new trial solutions. + Strings indicate two special built-in moves: + + - "1-1": 1-1 exchange which transposes the position + of two elements of the current solution. + The function called is :func:`swap_two_nodes`. + For example if we apply 1-1 exchange in the solution + ``A = [3, 2, 1, 4, 3]`` + we can get the following by the transposition of 1 and 4 elements: + ``A' = [3, 2, 4, 1, 3]`` + - "1-0": 1-0 exchange which moves an node in the solution + to a new position. + The function called is :func:`move_one_node`. + For example if we apply 1-0 exchange in the solution + ``A = [3, 2, 1, 4, 3]`` + we can transfer the fourth element to the second position: + ``A' = [3, 4, 2, 1, 3]`` + + You may provide your own functions to enact a move from + one solution to a neighbor solution. The function must take + the solution as input along with a `seed` input to control + random number generation (see the `seed` input here). + Your function should maintain the solution as a cycle with + equal first and last node and all others appearing once. + Your function should return the new solution. + + max_iterations : int, optional (default=10) + Declared done when this number of consecutive iterations of + the outer loop occurs without any change in the best cost solution. + + N_inner : int, optional (default=100) + The number of iterations of the inner loop. + + alpha : float between (0, 1), optional (default=0.01) + Percentage of temperature decrease in each iteration + of outer loop + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + cycle : list of nodes + Returns the cycle (list of nodes) that a salesman + can follow to minimize total weight of the trip. + + Raises + ------ + NetworkXError + If `G` is not complete the algorithm raises an exception. + + Examples + -------- + >>> from networkx.algorithms import approximation as approx + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from( + ... { + ... ("A", "B", 3), + ... ("A", "C", 17), + ... ("A", "D", 14), + ... ("B", "A", 3), + ... ("B", "C", 12), + ... ("B", "D", 16), + ... ("C", "A", 13), + ... ("C", "B", 12), + ... ("C", "D", 4), + ... ("D", "A", 14), + ... ("D", "B", 15), + ... ("D", "C", 2), + ... } + ... ) + >>> cycle = approx.simulated_annealing_tsp(G, "greedy", source="D") + >>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle)) + >>> cycle + ['D', 'C', 'B', 'A', 'D'] + >>> cost + 31 + >>> incycle = ["D", "B", "A", "C", "D"] + >>> cycle = approx.simulated_annealing_tsp(G, incycle, source="D") + >>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle)) + >>> cycle + ['D', 'C', 'B', 'A', 'D'] + >>> cost + 31 + + Notes + ----- + Simulated Annealing is a metaheuristic local search algorithm. + The main characteristic of this algorithm is that it accepts + even solutions which lead to the increase of the cost in order + to escape from low quality local optimal solutions. + + This algorithm needs an initial solution. If not provided, it is + constructed by a simple greedy algorithm. At every iteration, the + algorithm selects thoughtfully a neighbor solution. + Consider $c(x)$ cost of current solution and $c(x')$ cost of a + neighbor solution. + If $c(x') - c(x) <= 0$ then the neighbor solution becomes the current + solution for the next iteration. Otherwise, the algorithm accepts + the neighbor solution with probability $p = exp - ([c(x') - c(x)] / temp)$. + Otherwise the current solution is retained. + + `temp` is a parameter of the algorithm and represents temperature. + + Time complexity: + For $N_i$ iterations of the inner loop and $N_o$ iterations of the + outer loop, this algorithm has running time $O(N_i * N_o * |V|)$. + + For more information and how the algorithm is inspired see: + http://en.wikipedia.org/wiki/Simulated_annealing + """ + if move == "1-1": + move = swap_two_nodes + elif move == "1-0": + move = move_one_node + if init_cycle == "greedy": + # Construct an initial solution using a greedy algorithm. + cycle = greedy_tsp(G, weight=weight, source=source) + if G.number_of_nodes() == 2: + return cycle + + else: + cycle = list(init_cycle) + if source is None: + source = cycle[0] + elif source != cycle[0]: + raise nx.NetworkXError("source must be first node in init_cycle") + if cycle[0] != cycle[-1]: + raise nx.NetworkXError("init_cycle must be a cycle. (return to start)") + + if len(cycle) - 1 != len(G) or len(set(G.nbunch_iter(cycle))) != len(G): + raise nx.NetworkXError("init_cycle should be a cycle over all nodes in G.") + + # Check that G is a complete graph + N = len(G) - 1 + # This check ignores selfloops which is what we want here. + if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()): + raise nx.NetworkXError("G must be a complete graph.") + + if G.number_of_nodes() == 2: + neighbor = next(G.neighbors(source)) + return [source, neighbor, source] + + # Find the cost of initial solution + cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(cycle)) + + count = 0 + best_cycle = cycle.copy() + best_cost = cost + while count <= max_iterations and temp > 0: + count += 1 + for i in range(N_inner): + adj_sol = move(cycle, seed) + adj_cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(adj_sol)) + delta = adj_cost - cost + if delta <= 0: + # Set current solution the adjacent solution. + cycle = adj_sol + cost = adj_cost + + if cost < best_cost: + count = 0 + best_cycle = cycle.copy() + best_cost = cost + else: + # Accept even a worse solution with probability p. + p = math.exp(-delta / temp) + if p >= seed.random(): + cycle = adj_sol + cost = adj_cost + temp -= temp * alpha + + return best_cycle + + +@py_random_state(9) +@nx._dispatchable(edge_attrs="weight") +def threshold_accepting_tsp( + G, + init_cycle, + weight="weight", + source=None, + threshold=1, + move="1-1", + max_iterations=10, + N_inner=100, + alpha=0.1, + seed=None, +): + """Returns an approximate solution to the traveling salesman problem. + + This function uses threshold accepting methods to approximate the minimal cost + cycle through the nodes. Starting from a suboptimal solution, threshold + accepting methods perturb that solution, accepting any changes that make + the solution no worse than increasing by a threshold amount. Improvements + in cost are accepted, but so are changes leading to small increases in cost. + This allows the solution to leave suboptimal local minima in solution space. + The threshold is decreased slowly as iterations proceed helping to ensure + an optimum. In summary, the function returns a cycle starting at `source` + for which the total cost is minimized. + + Parameters + ---------- + G : Graph + `G` should be a complete weighted graph. + The distance between all pairs of nodes should be included. + + init_cycle : list or "greedy" + The initial solution (a cycle through all nodes returning to the start). + This argument has no default to make you think about it. + If "greedy", use `greedy_tsp(G, weight)`. + Other common starting cycles are `list(G) + [next(iter(G))]` or the final + result of `simulated_annealing_tsp` when doing `threshold_accepting_tsp`. + + weight : string, optional (default="weight") + Edge data key corresponding to the edge weight. + If any edge does not have this attribute the weight is set to 1. + + source : node, optional (default: first node in list(G)) + Starting node. If None, defaults to ``next(iter(G))`` + + threshold : int, optional (default=1) + The algorithm's threshold parameter. It represents the initial + threshold's value + + move : "1-1" or "1-0" or function, optional (default="1-1") + Indicator of what move to use when finding new trial solutions. + Strings indicate two special built-in moves: + + - "1-1": 1-1 exchange which transposes the position + of two elements of the current solution. + The function called is :func:`swap_two_nodes`. + For example if we apply 1-1 exchange in the solution + ``A = [3, 2, 1, 4, 3]`` + we can get the following by the transposition of 1 and 4 elements: + ``A' = [3, 2, 4, 1, 3]`` + - "1-0": 1-0 exchange which moves an node in the solution + to a new position. + The function called is :func:`move_one_node`. + For example if we apply 1-0 exchange in the solution + ``A = [3, 2, 1, 4, 3]`` + we can transfer the fourth element to the second position: + ``A' = [3, 4, 2, 1, 3]`` + + You may provide your own functions to enact a move from + one solution to a neighbor solution. The function must take + the solution as input along with a `seed` input to control + random number generation (see the `seed` input here). + Your function should maintain the solution as a cycle with + equal first and last node and all others appearing once. + Your function should return the new solution. + + max_iterations : int, optional (default=10) + Declared done when this number of consecutive iterations of + the outer loop occurs without any change in the best cost solution. + + N_inner : int, optional (default=100) + The number of iterations of the inner loop. + + alpha : float between (0, 1), optional (default=0.1) + Percentage of threshold decrease when there is at + least one acceptance of a neighbor solution. + If no inner loop moves are accepted the threshold remains unchanged. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + cycle : list of nodes + Returns the cycle (list of nodes) that a salesman + can follow to minimize total weight of the trip. + + Raises + ------ + NetworkXError + If `G` is not complete the algorithm raises an exception. + + Examples + -------- + >>> from networkx.algorithms import approximation as approx + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from( + ... { + ... ("A", "B", 3), + ... ("A", "C", 17), + ... ("A", "D", 14), + ... ("B", "A", 3), + ... ("B", "C", 12), + ... ("B", "D", 16), + ... ("C", "A", 13), + ... ("C", "B", 12), + ... ("C", "D", 4), + ... ("D", "A", 14), + ... ("D", "B", 15), + ... ("D", "C", 2), + ... } + ... ) + >>> cycle = approx.threshold_accepting_tsp(G, "greedy", source="D") + >>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle)) + >>> cycle + ['D', 'C', 'B', 'A', 'D'] + >>> cost + 31 + >>> incycle = ["D", "B", "A", "C", "D"] + >>> cycle = approx.threshold_accepting_tsp(G, incycle, source="D") + >>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle)) + >>> cycle + ['D', 'C', 'B', 'A', 'D'] + >>> cost + 31 + + Notes + ----- + Threshold Accepting is a metaheuristic local search algorithm. + The main characteristic of this algorithm is that it accepts + even solutions which lead to the increase of the cost in order + to escape from low quality local optimal solutions. + + This algorithm needs an initial solution. This solution can be + constructed by a simple greedy algorithm. At every iteration, it + selects thoughtfully a neighbor solution. + Consider $c(x)$ cost of current solution and $c(x')$ cost of + neighbor solution. + If $c(x') - c(x) <= threshold$ then the neighbor solution becomes the current + solution for the next iteration, where the threshold is named threshold. + + In comparison to the Simulated Annealing algorithm, the Threshold + Accepting algorithm does not accept very low quality solutions + (due to the presence of the threshold value). In the case of + Simulated Annealing, even a very low quality solution can + be accepted with probability $p$. + + Time complexity: + It has a running time $O(m * n * |V|)$ where $m$ and $n$ are the number + of times the outer and inner loop run respectively. + + For more information and how algorithm is inspired see: + https://doi.org/10.1016/0021-9991(90)90201-B + + See Also + -------- + simulated_annealing_tsp + + """ + if move == "1-1": + move = swap_two_nodes + elif move == "1-0": + move = move_one_node + if init_cycle == "greedy": + # Construct an initial solution using a greedy algorithm. + cycle = greedy_tsp(G, weight=weight, source=source) + if G.number_of_nodes() == 2: + return cycle + + else: + cycle = list(init_cycle) + if source is None: + source = cycle[0] + elif source != cycle[0]: + raise nx.NetworkXError("source must be first node in init_cycle") + if cycle[0] != cycle[-1]: + raise nx.NetworkXError("init_cycle must be a cycle. (return to start)") + + if len(cycle) - 1 != len(G) or len(set(G.nbunch_iter(cycle))) != len(G): + raise nx.NetworkXError("init_cycle is not all and only nodes.") + + # Check that G is a complete graph + N = len(G) - 1 + # This check ignores selfloops which is what we want here. + if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()): + raise nx.NetworkXError("G must be a complete graph.") + + if G.number_of_nodes() == 2: + neighbor = list(G.neighbors(source))[0] + return [source, neighbor, source] + + # Find the cost of initial solution + cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(cycle)) + + count = 0 + best_cycle = cycle.copy() + best_cost = cost + while count <= max_iterations: + count += 1 + accepted = False + for i in range(N_inner): + adj_sol = move(cycle, seed) + adj_cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(adj_sol)) + delta = adj_cost - cost + if delta <= threshold: + accepted = True + + # Set current solution the adjacent solution. + cycle = adj_sol + cost = adj_cost + + if cost < best_cost: + count = 0 + best_cycle = cycle.copy() + best_cost = cost + if accepted: + threshold -= threshold * alpha + + return best_cycle diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/treewidth.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/treewidth.py new file mode 100644 index 00000000..31d73f63 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/treewidth.py @@ -0,0 +1,252 @@ +"""Functions for computing treewidth decomposition. + +Treewidth of an undirected graph is a number associated with the graph. +It can be defined as the size of the largest vertex set (bag) in a tree +decomposition of the graph minus one. + +`Wikipedia: Treewidth <https://en.wikipedia.org/wiki/Treewidth>`_ + +The notions of treewidth and tree decomposition have gained their +attractiveness partly because many graph and network problems that are +intractable (e.g., NP-hard) on arbitrary graphs become efficiently +solvable (e.g., with a linear time algorithm) when the treewidth of the +input graphs is bounded by a constant [1]_ [2]_. + +There are two different functions for computing a tree decomposition: +:func:`treewidth_min_degree` and :func:`treewidth_min_fill_in`. + +.. [1] Hans L. Bodlaender and Arie M. C. A. Koster. 2010. "Treewidth + computations I.Upper bounds". Inf. Comput. 208, 3 (March 2010),259-275. + http://dx.doi.org/10.1016/j.ic.2009.03.008 + +.. [2] Hans L. Bodlaender. "Discovering Treewidth". Institute of Information + and Computing Sciences, Utrecht University. + Technical Report UU-CS-2005-018. + http://www.cs.uu.nl + +.. [3] K. Wang, Z. Lu, and J. Hicks *Treewidth*. + https://web.archive.org/web/20210507025929/http://web.eecs.utk.edu/~cphill25/cs594_spring2015_projects/treewidth.pdf + +""" + +import itertools +import sys +from heapq import heapify, heappop, heappush + +import networkx as nx +from networkx.utils import not_implemented_for + +__all__ = ["treewidth_min_degree", "treewidth_min_fill_in"] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable(returns_graph=True) +def treewidth_min_degree(G): + """Returns a treewidth decomposition using the Minimum Degree heuristic. + + The heuristic chooses the nodes according to their degree, i.e., first + the node with the lowest degree is chosen, then the graph is updated + and the corresponding node is removed. Next, a new node with the lowest + degree is chosen, and so on. + + Parameters + ---------- + G : NetworkX graph + + Returns + ------- + Treewidth decomposition : (int, Graph) tuple + 2-tuple with treewidth and the corresponding decomposed tree. + """ + deg_heuristic = MinDegreeHeuristic(G) + return treewidth_decomp(G, lambda graph: deg_heuristic.best_node(graph)) + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable(returns_graph=True) +def treewidth_min_fill_in(G): + """Returns a treewidth decomposition using the Minimum Fill-in heuristic. + + The heuristic chooses a node from the graph, where the number of edges + added turning the neighborhood of the chosen node into clique is as + small as possible. + + Parameters + ---------- + G : NetworkX graph + + Returns + ------- + Treewidth decomposition : (int, Graph) tuple + 2-tuple with treewidth and the corresponding decomposed tree. + """ + return treewidth_decomp(G, min_fill_in_heuristic) + + +class MinDegreeHeuristic: + """Implements the Minimum Degree heuristic. + + The heuristic chooses the nodes according to their degree + (number of neighbors), i.e., first the node with the lowest degree is + chosen, then the graph is updated and the corresponding node is + removed. Next, a new node with the lowest degree is chosen, and so on. + """ + + def __init__(self, graph): + self._graph = graph + + # nodes that have to be updated in the heap before each iteration + self._update_nodes = [] + + self._degreeq = [] # a heapq with 3-tuples (degree,unique_id,node) + self.count = itertools.count() + + # build heap with initial degrees + for n in graph: + self._degreeq.append((len(graph[n]), next(self.count), n)) + heapify(self._degreeq) + + def best_node(self, graph): + # update nodes in self._update_nodes + for n in self._update_nodes: + # insert changed degrees into degreeq + heappush(self._degreeq, (len(graph[n]), next(self.count), n)) + + # get the next valid (minimum degree) node + while self._degreeq: + (min_degree, _, elim_node) = heappop(self._degreeq) + if elim_node not in graph or len(graph[elim_node]) != min_degree: + # outdated entry in degreeq + continue + elif min_degree == len(graph) - 1: + # fully connected: abort condition + return None + + # remember to update nodes in the heap before getting the next node + self._update_nodes = graph[elim_node] + return elim_node + + # the heap is empty: abort + return None + + +def min_fill_in_heuristic(graph): + """Implements the Minimum Degree heuristic. + + Returns the node from the graph, where the number of edges added when + turning the neighborhood of the chosen node into clique is as small as + possible. This algorithm chooses the nodes using the Minimum Fill-In + heuristic. The running time of the algorithm is :math:`O(V^3)` and it uses + additional constant memory.""" + + if len(graph) == 0: + return None + + min_fill_in_node = None + + min_fill_in = sys.maxsize + + # sort nodes by degree + nodes_by_degree = sorted(graph, key=lambda x: len(graph[x])) + min_degree = len(graph[nodes_by_degree[0]]) + + # abort condition (handle complete graph) + if min_degree == len(graph) - 1: + return None + + for node in nodes_by_degree: + num_fill_in = 0 + nbrs = graph[node] + for nbr in nbrs: + # count how many nodes in nbrs current nbr is not connected to + # subtract 1 for the node itself + num_fill_in += len(nbrs - graph[nbr]) - 1 + if num_fill_in >= 2 * min_fill_in: + break + + num_fill_in /= 2 # divide by 2 because of double counting + + if num_fill_in < min_fill_in: # update min-fill-in node + if num_fill_in == 0: + return node + min_fill_in = num_fill_in + min_fill_in_node = node + + return min_fill_in_node + + +@nx._dispatchable(returns_graph=True) +def treewidth_decomp(G, heuristic=min_fill_in_heuristic): + """Returns a treewidth decomposition using the passed heuristic. + + Parameters + ---------- + G : NetworkX graph + heuristic : heuristic function + + Returns + ------- + Treewidth decomposition : (int, Graph) tuple + 2-tuple with treewidth and the corresponding decomposed tree. + """ + + # make dict-of-sets structure + graph = {n: set(G[n]) - {n} for n in G} + + # stack containing nodes and neighbors in the order from the heuristic + node_stack = [] + + # get first node from heuristic + elim_node = heuristic(graph) + while elim_node is not None: + # connect all neighbors with each other + nbrs = graph[elim_node] + for u, v in itertools.permutations(nbrs, 2): + if v not in graph[u]: + graph[u].add(v) + + # push node and its current neighbors on stack + node_stack.append((elim_node, nbrs)) + + # remove node from graph + for u in graph[elim_node]: + graph[u].remove(elim_node) + + del graph[elim_node] + elim_node = heuristic(graph) + + # the abort condition is met; put all remaining nodes into one bag + decomp = nx.Graph() + first_bag = frozenset(graph.keys()) + decomp.add_node(first_bag) + + treewidth = len(first_bag) - 1 + + while node_stack: + # get node and its neighbors from the stack + (curr_node, nbrs) = node_stack.pop() + + # find a bag all neighbors are in + old_bag = None + for bag in decomp.nodes: + if nbrs <= bag: + old_bag = bag + break + + if old_bag is None: + # no old_bag was found: just connect to the first_bag + old_bag = first_bag + + # create new node for decomposition + nbrs.add(curr_node) + new_bag = frozenset(nbrs) + + # update treewidth + treewidth = max(treewidth, len(new_bag) - 1) + + # add edge to decomposition (implicitly also adds the new node) + decomp.add_edge(old_bag, new_bag) + + return treewidth, decomp diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/vertex_cover.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/vertex_cover.py new file mode 100644 index 00000000..13d7167c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/approximation/vertex_cover.py @@ -0,0 +1,83 @@ +"""Functions for computing an approximate minimum weight vertex cover. + +A |vertex cover|_ is a subset of nodes such that each edge in the graph +is incident to at least one node in the subset. + +.. _vertex cover: https://en.wikipedia.org/wiki/Vertex_cover +.. |vertex cover| replace:: *vertex cover* + +""" + +import networkx as nx + +__all__ = ["min_weighted_vertex_cover"] + + +@nx._dispatchable(node_attrs="weight") +def min_weighted_vertex_cover(G, weight=None): + r"""Returns an approximate minimum weighted vertex cover. + + The set of nodes returned by this function is guaranteed to be a + vertex cover, and the total weight of the set is guaranteed to be at + most twice the total weight of the minimum weight vertex cover. In + other words, + + .. math:: + + w(S) \leq 2 * w(S^*), + + where $S$ is the vertex cover returned by this function, + $S^*$ is the vertex cover of minimum weight out of all vertex + covers of the graph, and $w$ is the function that computes the + sum of the weights of each node in that given set. + + Parameters + ---------- + G : NetworkX graph + + weight : string, optional (default = None) + If None, every node has weight 1. If a string, use this node + attribute as the node weight. A node without this attribute is + assumed to have weight 1. + + Returns + ------- + min_weighted_cover : set + Returns a set of nodes whose weight sum is no more than twice + the weight sum of the minimum weight vertex cover. + + Notes + ----- + For a directed graph, a vertex cover has the same definition: a set + of nodes such that each edge in the graph is incident to at least + one node in the set. Whether the node is the head or tail of the + directed edge is ignored. + + This is the local-ratio algorithm for computing an approximate + vertex cover. The algorithm greedily reduces the costs over edges, + iteratively building a cover. The worst-case runtime of this + implementation is $O(m \log n)$, where $n$ is the number + of nodes and $m$ the number of edges in the graph. + + References + ---------- + .. [1] Bar-Yehuda, R., and Even, S. (1985). "A local-ratio theorem for + approximating the weighted vertex cover problem." + *Annals of Discrete Mathematics*, 25, 27–46 + <http://www.cs.technion.ac.il/~reuven/PDF/vc_lr.pdf> + + """ + cost = dict(G.nodes(data=weight, default=1)) + # While there are uncovered edges, choose an uncovered and update + # the cost of the remaining edges. + cover = set() + for u, v in G.edges(): + if u in cover or v in cover: + continue + if cost[u] <= cost[v]: + cover.add(u) + cost[v] -= cost[u] + else: + cover.add(v) + cost[u] -= cost[v] + return cover |