about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/utils.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/utils.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/utils.py6605
1 files changed, 6605 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/utils.py b/.venv/lib/python3.12/site-packages/litellm/utils.py
new file mode 100644
index 00000000..52dbccb0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/utils.py
@@ -0,0 +1,6605 @@
+# +-----------------------------------------------+
+# |                                               |
+# |           Give Feedback / Get Help            |
+# | https://github.com/BerriAI/litellm/issues/new |
+# |                                               |
+# +-----------------------------------------------+
+#
+#  Thank you users! We ❤️ you! - Krrish & Ishaan
+
+import ast
+import asyncio
+import base64
+import binascii
+import copy
+import datetime
+import hashlib
+import inspect
+import io
+import itertools
+import json
+import logging
+import os
+import random  # type: ignore
+import re
+import struct
+import subprocess
+
+# What is this?
+## Generic utils.py file. Problem-specific utils (e.g. 'cost calculation), should all be in `litellm_core_utils/`.
+import sys
+import textwrap
+import threading
+import time
+import traceback
+import uuid
+from dataclasses import dataclass, field
+from functools import lru_cache, wraps
+from importlib import resources
+from inspect import iscoroutine
+from os.path import abspath, dirname, join
+
+import aiohttp
+import dotenv
+import httpx
+import openai
+import tiktoken
+from httpx import Proxy
+from httpx._utils import get_environment_proxies
+from openai.lib import _parsing, _pydantic
+from openai.types.chat.completion_create_params import ResponseFormat
+from pydantic import BaseModel
+from tiktoken import Encoding
+from tokenizers import Tokenizer
+
+import litellm
+import litellm._service_logger  # for storing API inputs, outputs, and metadata
+import litellm.litellm_core_utils
+import litellm.litellm_core_utils.audio_utils.utils
+import litellm.litellm_core_utils.json_validation_rule
+from litellm.caching._internal_lru_cache import lru_cache_wrapper
+from litellm.caching.caching import DualCache
+from litellm.caching.caching_handler import CachingHandlerResponse, LLMCachingHandler
+from litellm.integrations.custom_guardrail import CustomGuardrail
+from litellm.integrations.custom_logger import CustomLogger
+from litellm.litellm_core_utils.core_helpers import (
+    map_finish_reason,
+    process_response_headers,
+)
+from litellm.litellm_core_utils.credential_accessor import CredentialAccessor
+from litellm.litellm_core_utils.default_encoding import encoding
+from litellm.litellm_core_utils.exception_mapping_utils import (
+    _get_response_headers,
+    exception_type,
+    get_error_message,
+)
+from litellm.litellm_core_utils.get_litellm_params import (
+    _get_base_model_from_litellm_call_metadata,
+    get_litellm_params,
+)
+from litellm.litellm_core_utils.get_llm_provider_logic import (
+    _is_non_openai_azure_model,
+    get_llm_provider,
+)
+from litellm.litellm_core_utils.get_supported_openai_params import (
+    get_supported_openai_params,
+)
+from litellm.litellm_core_utils.llm_request_utils import _ensure_extra_body_is_safe
+from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import (
+    LiteLLMResponseObjectHandler,
+    _handle_invalid_parallel_tool_calls,
+    _parse_content_for_reasoning,
+    convert_to_model_response_object,
+    convert_to_streaming_response,
+    convert_to_streaming_response_async,
+)
+from litellm.litellm_core_utils.llm_response_utils.get_api_base import get_api_base
+from litellm.litellm_core_utils.llm_response_utils.get_formatted_prompt import (
+    get_formatted_prompt,
+)
+from litellm.litellm_core_utils.llm_response_utils.get_headers import (
+    get_response_headers,
+)
+from litellm.litellm_core_utils.llm_response_utils.response_metadata import (
+    ResponseMetadata,
+)
+from litellm.litellm_core_utils.redact_messages import (
+    LiteLLMLoggingObject,
+    redact_message_input_output_from_logging,
+)
+from litellm.litellm_core_utils.rules import Rules
+from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
+from litellm.litellm_core_utils.token_counter import (
+    calculate_img_tokens,
+    get_modified_max_tokens,
+)
+from litellm.llms.bedrock.common_utils import BedrockModelInfo
+from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.router_utils.get_retry_from_policy import (
+    get_num_retries_from_retry_policy,
+    reset_retry_policy,
+)
+from litellm.secret_managers.main import get_secret
+from litellm.types.llms.anthropic import (
+    ANTHROPIC_API_ONLY_HEADERS,
+    AnthropicThinkingParam,
+)
+from litellm.types.llms.openai import (
+    AllMessageValues,
+    AllPromptValues,
+    ChatCompletionAssistantToolCall,
+    ChatCompletionNamedToolChoiceParam,
+    ChatCompletionToolParam,
+    ChatCompletionToolParamFunctionChunk,
+    OpenAITextCompletionUserMessage,
+)
+from litellm.types.rerank import RerankResponse
+from litellm.types.utils import FileTypes  # type: ignore
+from litellm.types.utils import (
+    OPENAI_RESPONSE_HEADERS,
+    CallTypes,
+    ChatCompletionDeltaToolCall,
+    ChatCompletionMessageToolCall,
+    Choices,
+    CostPerToken,
+    CredentialItem,
+    CustomHuggingfaceTokenizer,
+    Delta,
+    Embedding,
+    EmbeddingResponse,
+    Function,
+    ImageResponse,
+    LlmProviders,
+    LlmProvidersSet,
+    Message,
+    ModelInfo,
+    ModelInfoBase,
+    ModelResponse,
+    ModelResponseStream,
+    ProviderField,
+    ProviderSpecificModelInfo,
+    RawRequestTypedDict,
+    SelectTokenizerResponse,
+    StreamingChoices,
+    TextChoices,
+    TextCompletionResponse,
+    TranscriptionResponse,
+    Usage,
+    all_litellm_params,
+)
+
+with resources.open_text(
+    "litellm.litellm_core_utils.tokenizers", "anthropic_tokenizer.json"
+) as f:
+    json_data = json.load(f)
+# Convert to str (if necessary)
+claude_json_str = json.dumps(json_data)
+import importlib.metadata
+from typing import (
+    TYPE_CHECKING,
+    Any,
+    Callable,
+    Dict,
+    Iterable,
+    List,
+    Literal,
+    Optional,
+    Tuple,
+    Type,
+    Union,
+    cast,
+    get_args,
+)
+
+from openai import OpenAIError as OriginalError
+
+from litellm.litellm_core_utils.thread_pool_executor import executor
+from litellm.llms.base_llm.anthropic_messages.transformation import (
+    BaseAnthropicMessagesConfig,
+)
+from litellm.llms.base_llm.audio_transcription.transformation import (
+    BaseAudioTranscriptionConfig,
+)
+from litellm.llms.base_llm.base_utils import (
+    BaseLLMModelInfo,
+    type_to_response_format_param,
+)
+from litellm.llms.base_llm.chat.transformation import BaseConfig
+from litellm.llms.base_llm.completion.transformation import BaseTextCompletionConfig
+from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig
+from litellm.llms.base_llm.image_variations.transformation import (
+    BaseImageVariationConfig,
+)
+from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig
+from litellm.llms.base_llm.responses.transformation import BaseResponsesAPIConfig
+
+from ._logging import _is_debugging_on, verbose_logger
+from .caching.caching import (
+    Cache,
+    QdrantSemanticCache,
+    RedisCache,
+    RedisSemanticCache,
+    S3Cache,
+)
+from .exceptions import (
+    APIConnectionError,
+    APIError,
+    AuthenticationError,
+    BadRequestError,
+    BudgetExceededError,
+    ContentPolicyViolationError,
+    ContextWindowExceededError,
+    NotFoundError,
+    OpenAIError,
+    PermissionDeniedError,
+    RateLimitError,
+    ServiceUnavailableError,
+    Timeout,
+    UnprocessableEntityError,
+    UnsupportedParamsError,
+)
+from .proxy._types import AllowedModelRegion, KeyManagementSystem
+from .types.llms.openai import (
+    ChatCompletionDeltaToolCallChunk,
+    ChatCompletionToolCallChunk,
+    ChatCompletionToolCallFunctionChunk,
+)
+from .types.router import LiteLLM_Params
+
+####### ENVIRONMENT VARIABLES ####################
+# Adjust to your specific application needs / system capabilities.
+sentry_sdk_instance = None
+capture_exception = None
+add_breadcrumb = None
+posthog = None
+slack_app = None
+alerts_channel = None
+heliconeLogger = None
+athinaLogger = None
+promptLayerLogger = None
+langsmithLogger = None
+logfireLogger = None
+weightsBiasesLogger = None
+customLogger = None
+langFuseLogger = None
+openMeterLogger = None
+lagoLogger = None
+dataDogLogger = None
+prometheusLogger = None
+dynamoLogger = None
+s3Logger = None
+genericAPILogger = None
+greenscaleLogger = None
+lunaryLogger = None
+aispendLogger = None
+supabaseClient = None
+callback_list: Optional[List[str]] = []
+user_logger_fn = None
+additional_details: Optional[Dict[str, str]] = {}
+local_cache: Optional[Dict[str, str]] = {}
+last_fetched_at = None
+last_fetched_at_keys = None
+######## Model Response #########################
+
+# All liteLLM Model responses will be in this format, Follows the OpenAI Format
+# https://docs.litellm.ai/docs/completion/output
+# {
+#   'choices': [
+#      {
+#         'finish_reason': 'stop',
+#         'index': 0,
+#         'message': {
+#            'role': 'assistant',
+#             'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
+#         }
+#       }
+#     ],
+#  'created': 1691429984.3852863,
+#  'model': 'claude-instant-1',
+#  'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41}
+# }
+
+
+############################################################
+def print_verbose(
+    print_statement,
+    logger_only: bool = False,
+    log_level: Literal["DEBUG", "INFO", "ERROR"] = "DEBUG",
+):
+    try:
+        if log_level == "DEBUG":
+            verbose_logger.debug(print_statement)
+        elif log_level == "INFO":
+            verbose_logger.info(print_statement)
+        elif log_level == "ERROR":
+            verbose_logger.error(print_statement)
+        if litellm.set_verbose is True and logger_only is False:
+            print(print_statement)  # noqa
+    except Exception:
+        pass
+
+
+####### CLIENT ###################
+# make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking
+def custom_llm_setup():
+    """
+    Add custom_llm provider to provider list
+    """
+    for custom_llm in litellm.custom_provider_map:
+        if custom_llm["provider"] not in litellm.provider_list:
+            litellm.provider_list.append(custom_llm["provider"])
+
+        if custom_llm["provider"] not in litellm._custom_providers:
+            litellm._custom_providers.append(custom_llm["provider"])
+
+
+def _add_custom_logger_callback_to_specific_event(
+    callback: str, logging_event: Literal["success", "failure"]
+) -> None:
+    """
+    Add a custom logger callback to the specific event
+    """
+    from litellm import _custom_logger_compatible_callbacks_literal
+    from litellm.litellm_core_utils.litellm_logging import (
+        _init_custom_logger_compatible_class,
+    )
+
+    if callback not in litellm._known_custom_logger_compatible_callbacks:
+        verbose_logger.debug(
+            f"Callback {callback} is not a valid custom logger compatible callback. Known list - {litellm._known_custom_logger_compatible_callbacks}"
+        )
+        return
+
+    callback_class = _init_custom_logger_compatible_class(
+        cast(_custom_logger_compatible_callbacks_literal, callback),
+        internal_usage_cache=None,
+        llm_router=None,
+    )
+
+    if callback_class:
+        if (
+            logging_event == "success"
+            and _custom_logger_class_exists_in_success_callbacks(callback_class)
+            is False
+        ):
+            litellm.logging_callback_manager.add_litellm_success_callback(
+                callback_class
+            )
+            litellm.logging_callback_manager.add_litellm_async_success_callback(
+                callback_class
+            )
+            if callback in litellm.success_callback:
+                litellm.success_callback.remove(
+                    callback
+                )  # remove the string from the callback list
+            if callback in litellm._async_success_callback:
+                litellm._async_success_callback.remove(
+                    callback
+                )  # remove the string from the callback list
+        elif (
+            logging_event == "failure"
+            and _custom_logger_class_exists_in_failure_callbacks(callback_class)
+            is False
+        ):
+            litellm.logging_callback_manager.add_litellm_failure_callback(
+                callback_class
+            )
+            litellm.logging_callback_manager.add_litellm_async_failure_callback(
+                callback_class
+            )
+            if callback in litellm.failure_callback:
+                litellm.failure_callback.remove(
+                    callback
+                )  # remove the string from the callback list
+            if callback in litellm._async_failure_callback:
+                litellm._async_failure_callback.remove(
+                    callback
+                )  # remove the string from the callback list
+
+
+def _custom_logger_class_exists_in_success_callbacks(
+    callback_class: CustomLogger,
+) -> bool:
+    """
+    Returns True if an instance of the custom logger exists in litellm.success_callback or litellm._async_success_callback
+
+    e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.success_callback or litellm._async_success_callback
+
+    Prevents double adding a custom logger callback to the litellm callbacks
+    """
+    return any(
+        isinstance(cb, type(callback_class))
+        for cb in litellm.success_callback + litellm._async_success_callback
+    )
+
+
+def _custom_logger_class_exists_in_failure_callbacks(
+    callback_class: CustomLogger,
+) -> bool:
+    """
+    Returns True if an instance of the custom logger exists in litellm.failure_callback or litellm._async_failure_callback
+
+    e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.failure_callback or litellm._async_failure_callback
+
+    Prevents double adding a custom logger callback to the litellm callbacks
+    """
+    return any(
+        isinstance(cb, type(callback_class))
+        for cb in litellm.failure_callback + litellm._async_failure_callback
+    )
+
+
+def get_request_guardrails(kwargs: Dict[str, Any]) -> List[str]:
+    """
+    Get the request guardrails from the kwargs
+    """
+    metadata = kwargs.get("metadata") or {}
+    requester_metadata = metadata.get("requester_metadata") or {}
+    applied_guardrails = requester_metadata.get("guardrails") or []
+    return applied_guardrails
+
+
+def get_applied_guardrails(kwargs: Dict[str, Any]) -> List[str]:
+    """
+    - Add 'default_on' guardrails to the list
+    - Add request guardrails to the list
+    """
+
+    request_guardrails = get_request_guardrails(kwargs)
+    applied_guardrails = []
+    for callback in litellm.callbacks:
+        if callback is not None and isinstance(callback, CustomGuardrail):
+            if callback.guardrail_name is not None:
+                if callback.default_on is True:
+                    applied_guardrails.append(callback.guardrail_name)
+                elif callback.guardrail_name in request_guardrails:
+                    applied_guardrails.append(callback.guardrail_name)
+
+    return applied_guardrails
+
+
+def load_credentials_from_list(kwargs: dict):
+    """
+    Updates kwargs with the credentials if credential_name in kwarg
+    """
+    credential_name = kwargs.get("litellm_credential_name")
+    if credential_name and litellm.credential_list:
+        credential_accessor = CredentialAccessor.get_credential_values(credential_name)
+        for key, value in credential_accessor.items():
+            if key not in kwargs:
+                kwargs[key] = value
+
+
+def get_dynamic_callbacks(
+    dynamic_callbacks: Optional[List[Union[str, Callable, CustomLogger]]]
+) -> List:
+    returned_callbacks = litellm.callbacks.copy()
+    if dynamic_callbacks:
+        returned_callbacks.extend(dynamic_callbacks)  # type: ignore
+    return returned_callbacks
+
+
+def function_setup(  # noqa: PLR0915
+    original_function: str, rules_obj, start_time, *args, **kwargs
+):  # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc.
+
+    ### NOTICES ###
+    from litellm import Logging as LiteLLMLogging
+    from litellm.litellm_core_utils.litellm_logging import set_callbacks
+
+    if litellm.set_verbose is True:
+        verbose_logger.warning(
+            "`litellm.set_verbose` is deprecated. Please set `os.environ['LITELLM_LOG'] = 'DEBUG'` for debug logs."
+        )
+    try:
+        global callback_list, add_breadcrumb, user_logger_fn, Logging
+
+        ## CUSTOM LLM SETUP ##
+        custom_llm_setup()
+
+        ## GET APPLIED GUARDRAILS
+        applied_guardrails = get_applied_guardrails(kwargs)
+
+        ## LOGGING SETUP
+        function_id: Optional[str] = kwargs["id"] if "id" in kwargs else None
+
+        ## DYNAMIC CALLBACKS ##
+        dynamic_callbacks: Optional[List[Union[str, Callable, CustomLogger]]] = (
+            kwargs.pop("callbacks", None)
+        )
+        all_callbacks = get_dynamic_callbacks(dynamic_callbacks=dynamic_callbacks)
+
+        if len(all_callbacks) > 0:
+            for callback in all_callbacks:
+                # check if callback is a string - e.g. "lago", "openmeter"
+                if isinstance(callback, str):
+                    callback = litellm.litellm_core_utils.litellm_logging._init_custom_logger_compatible_class(  # type: ignore
+                        callback, internal_usage_cache=None, llm_router=None  # type: ignore
+                    )
+                    if callback is None or any(
+                        isinstance(cb, type(callback))
+                        for cb in litellm._async_success_callback
+                    ):  # don't double add a callback
+                        continue
+                if callback not in litellm.input_callback:
+                    litellm.input_callback.append(callback)  # type: ignore
+                if callback not in litellm.success_callback:
+                    litellm.logging_callback_manager.add_litellm_success_callback(callback)  # type: ignore
+                if callback not in litellm.failure_callback:
+                    litellm.logging_callback_manager.add_litellm_failure_callback(callback)  # type: ignore
+                if callback not in litellm._async_success_callback:
+                    litellm.logging_callback_manager.add_litellm_async_success_callback(callback)  # type: ignore
+                if callback not in litellm._async_failure_callback:
+                    litellm.logging_callback_manager.add_litellm_async_failure_callback(callback)  # type: ignore
+            print_verbose(
+                f"Initialized litellm callbacks, Async Success Callbacks: {litellm._async_success_callback}"
+            )
+
+        if (
+            len(litellm.input_callback) > 0
+            or len(litellm.success_callback) > 0
+            or len(litellm.failure_callback) > 0
+        ) and len(
+            callback_list  # type: ignore
+        ) == 0:  # type: ignore
+            callback_list = list(
+                set(
+                    litellm.input_callback  # type: ignore
+                    + litellm.success_callback
+                    + litellm.failure_callback
+                )
+            )
+            set_callbacks(callback_list=callback_list, function_id=function_id)
+        ## ASYNC CALLBACKS
+        if len(litellm.input_callback) > 0:
+            removed_async_items = []
+            for index, callback in enumerate(litellm.input_callback):  # type: ignore
+                if inspect.iscoroutinefunction(callback):
+                    litellm._async_input_callback.append(callback)
+                    removed_async_items.append(index)
+
+            # Pop the async items from input_callback in reverse order to avoid index issues
+            for index in reversed(removed_async_items):
+                litellm.input_callback.pop(index)
+        if len(litellm.success_callback) > 0:
+            removed_async_items = []
+            for index, callback in enumerate(litellm.success_callback):  # type: ignore
+                if inspect.iscoroutinefunction(callback):
+                    litellm.logging_callback_manager.add_litellm_async_success_callback(
+                        callback
+                    )
+                    removed_async_items.append(index)
+                elif callback == "dynamodb" or callback == "openmeter":
+                    # dynamo is an async callback, it's used for the proxy and needs to be async
+                    # we only support async dynamo db logging for acompletion/aembedding since that's used on proxy
+                    litellm.logging_callback_manager.add_litellm_async_success_callback(
+                        callback
+                    )
+                    removed_async_items.append(index)
+                elif (
+                    callback in litellm._known_custom_logger_compatible_callbacks
+                    and isinstance(callback, str)
+                ):
+                    _add_custom_logger_callback_to_specific_event(callback, "success")
+
+            # Pop the async items from success_callback in reverse order to avoid index issues
+            for index in reversed(removed_async_items):
+                litellm.success_callback.pop(index)
+
+        if len(litellm.failure_callback) > 0:
+            removed_async_items = []
+            for index, callback in enumerate(litellm.failure_callback):  # type: ignore
+                if inspect.iscoroutinefunction(callback):
+                    litellm.logging_callback_manager.add_litellm_async_failure_callback(
+                        callback
+                    )
+                    removed_async_items.append(index)
+                elif (
+                    callback in litellm._known_custom_logger_compatible_callbacks
+                    and isinstance(callback, str)
+                ):
+                    _add_custom_logger_callback_to_specific_event(callback, "failure")
+
+            # Pop the async items from failure_callback in reverse order to avoid index issues
+            for index in reversed(removed_async_items):
+                litellm.failure_callback.pop(index)
+        ### DYNAMIC CALLBACKS ###
+        dynamic_success_callbacks: Optional[
+            List[Union[str, Callable, CustomLogger]]
+        ] = None
+        dynamic_async_success_callbacks: Optional[
+            List[Union[str, Callable, CustomLogger]]
+        ] = None
+        dynamic_failure_callbacks: Optional[
+            List[Union[str, Callable, CustomLogger]]
+        ] = None
+        dynamic_async_failure_callbacks: Optional[
+            List[Union[str, Callable, CustomLogger]]
+        ] = None
+        if kwargs.get("success_callback", None) is not None and isinstance(
+            kwargs["success_callback"], list
+        ):
+            removed_async_items = []
+            for index, callback in enumerate(kwargs["success_callback"]):
+                if (
+                    inspect.iscoroutinefunction(callback)
+                    or callback == "dynamodb"
+                    or callback == "s3"
+                ):
+                    if dynamic_async_success_callbacks is not None and isinstance(
+                        dynamic_async_success_callbacks, list
+                    ):
+                        dynamic_async_success_callbacks.append(callback)
+                    else:
+                        dynamic_async_success_callbacks = [callback]
+                    removed_async_items.append(index)
+            # Pop the async items from success_callback in reverse order to avoid index issues
+            for index in reversed(removed_async_items):
+                kwargs["success_callback"].pop(index)
+            dynamic_success_callbacks = kwargs.pop("success_callback")
+        if kwargs.get("failure_callback", None) is not None and isinstance(
+            kwargs["failure_callback"], list
+        ):
+            dynamic_failure_callbacks = kwargs.pop("failure_callback")
+
+        if add_breadcrumb:
+            try:
+                details_to_log = copy.deepcopy(kwargs)
+            except Exception:
+                details_to_log = kwargs
+
+            if litellm.turn_off_message_logging:
+                # make a copy of the _model_Call_details and log it
+                details_to_log.pop("messages", None)
+                details_to_log.pop("input", None)
+                details_to_log.pop("prompt", None)
+            add_breadcrumb(
+                category="litellm.llm_call",
+                message=f"Keyword Args: {details_to_log}",
+                level="info",
+            )
+        if "logger_fn" in kwargs:
+            user_logger_fn = kwargs["logger_fn"]
+        # INIT LOGGER - for user-specified integrations
+        model = args[0] if len(args) > 0 else kwargs.get("model", None)
+        call_type = original_function
+        if (
+            call_type == CallTypes.completion.value
+            or call_type == CallTypes.acompletion.value
+        ):
+            messages = None
+            if len(args) > 1:
+                messages = args[1]
+            elif kwargs.get("messages", None):
+                messages = kwargs["messages"]
+            ### PRE-CALL RULES ###
+            if (
+                isinstance(messages, list)
+                and len(messages) > 0
+                and isinstance(messages[0], dict)
+                and "content" in messages[0]
+            ):
+                rules_obj.pre_call_rules(
+                    input="".join(
+                        m.get("content", "")
+                        for m in messages
+                        if "content" in m and isinstance(m["content"], str)
+                    ),
+                    model=model,
+                )
+        elif (
+            call_type == CallTypes.embedding.value
+            or call_type == CallTypes.aembedding.value
+        ):
+            messages = args[1] if len(args) > 1 else kwargs.get("input", None)
+        elif (
+            call_type == CallTypes.image_generation.value
+            or call_type == CallTypes.aimage_generation.value
+        ):
+            messages = args[0] if len(args) > 0 else kwargs["prompt"]
+        elif (
+            call_type == CallTypes.moderation.value
+            or call_type == CallTypes.amoderation.value
+        ):
+            messages = args[1] if len(args) > 1 else kwargs["input"]
+        elif (
+            call_type == CallTypes.atext_completion.value
+            or call_type == CallTypes.text_completion.value
+        ):
+            messages = args[0] if len(args) > 0 else kwargs["prompt"]
+        elif (
+            call_type == CallTypes.rerank.value or call_type == CallTypes.arerank.value
+        ):
+            messages = kwargs.get("query")
+        elif (
+            call_type == CallTypes.atranscription.value
+            or call_type == CallTypes.transcription.value
+        ):
+            _file_obj: FileTypes = args[1] if len(args) > 1 else kwargs["file"]
+            file_checksum = (
+                litellm.litellm_core_utils.audio_utils.utils.get_audio_file_name(
+                    file_obj=_file_obj
+                )
+            )
+            if "metadata" in kwargs:
+                kwargs["metadata"]["file_checksum"] = file_checksum
+            else:
+                kwargs["metadata"] = {"file_checksum": file_checksum}
+            messages = file_checksum
+        elif (
+            call_type == CallTypes.aspeech.value or call_type == CallTypes.speech.value
+        ):
+            messages = kwargs.get("input", "speech")
+        elif (
+            call_type == CallTypes.aresponses.value
+            or call_type == CallTypes.responses.value
+        ):
+            messages = args[0] if len(args) > 0 else kwargs["input"]
+        else:
+            messages = "default-message-value"
+        stream = True if "stream" in kwargs and kwargs["stream"] is True else False
+        logging_obj = LiteLLMLogging(
+            model=model,
+            messages=messages,
+            stream=stream,
+            litellm_call_id=kwargs["litellm_call_id"],
+            litellm_trace_id=kwargs.get("litellm_trace_id"),
+            function_id=function_id or "",
+            call_type=call_type,
+            start_time=start_time,
+            dynamic_success_callbacks=dynamic_success_callbacks,
+            dynamic_failure_callbacks=dynamic_failure_callbacks,
+            dynamic_async_success_callbacks=dynamic_async_success_callbacks,
+            dynamic_async_failure_callbacks=dynamic_async_failure_callbacks,
+            kwargs=kwargs,
+            applied_guardrails=applied_guardrails,
+        )
+
+        ## check if metadata is passed in
+        litellm_params: Dict[str, Any] = {"api_base": ""}
+        if "metadata" in kwargs:
+            litellm_params["metadata"] = kwargs["metadata"]
+        logging_obj.update_environment_variables(
+            model=model,
+            user="",
+            optional_params={},
+            litellm_params=litellm_params,
+            stream_options=kwargs.get("stream_options", None),
+        )
+        return logging_obj, kwargs
+    except Exception as e:
+        verbose_logger.exception(
+            "litellm.utils.py::function_setup() - [Non-Blocking] Error in function_setup"
+        )
+        raise e
+
+
+async def _client_async_logging_helper(
+    logging_obj: LiteLLMLoggingObject,
+    result,
+    start_time,
+    end_time,
+    is_completion_with_fallbacks: bool,
+):
+    if (
+        is_completion_with_fallbacks is False
+    ):  # don't log the parent event litellm.completion_with_fallbacks as a 'log_success_event', this will lead to double logging the same call - https://github.com/BerriAI/litellm/issues/7477
+        print_verbose(
+            f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
+        )
+        # check if user does not want this to be logged
+        asyncio.create_task(
+            logging_obj.async_success_handler(result, start_time, end_time)
+        )
+        logging_obj.handle_sync_success_callbacks_for_async_calls(
+            result=result,
+            start_time=start_time,
+            end_time=end_time,
+        )
+
+
+def _get_wrapper_num_retries(
+    kwargs: Dict[str, Any], exception: Exception
+) -> Tuple[Optional[int], Dict[str, Any]]:
+    """
+    Get the number of retries from the kwargs and the retry policy.
+    Used for the wrapper functions.
+    """
+
+    num_retries = kwargs.get("num_retries", None)
+    if num_retries is None:
+        num_retries = litellm.num_retries
+    if kwargs.get("retry_policy", None):
+        retry_policy_num_retries = get_num_retries_from_retry_policy(
+            exception=exception,
+            retry_policy=kwargs.get("retry_policy"),
+        )
+        kwargs["retry_policy"] = reset_retry_policy()
+        if retry_policy_num_retries is not None:
+            num_retries = retry_policy_num_retries
+
+    return num_retries, kwargs
+
+
+def _get_wrapper_timeout(
+    kwargs: Dict[str, Any], exception: Exception
+) -> Optional[Union[float, int, httpx.Timeout]]:
+    """
+    Get the timeout from the kwargs
+    Used for the wrapper functions.
+    """
+
+    timeout = cast(
+        Optional[Union[float, int, httpx.Timeout]], kwargs.get("timeout", None)
+    )
+
+    return timeout
+
+
+def client(original_function):  # noqa: PLR0915
+    rules_obj = Rules()
+
+    def check_coroutine(value) -> bool:
+        if inspect.iscoroutine(value):
+            return True
+        elif inspect.iscoroutinefunction(value):
+            return True
+        else:
+            return False
+
+    def post_call_processing(original_response, model, optional_params: Optional[dict]):
+        try:
+            if original_response is None:
+                pass
+            else:
+                call_type = original_function.__name__
+                if (
+                    call_type == CallTypes.completion.value
+                    or call_type == CallTypes.acompletion.value
+                ):
+                    is_coroutine = check_coroutine(original_response)
+                    if is_coroutine is True:
+                        pass
+                    else:
+                        if (
+                            isinstance(original_response, ModelResponse)
+                            and len(original_response.choices) > 0
+                        ):
+                            model_response: Optional[str] = original_response.choices[
+                                0
+                            ].message.content  # type: ignore
+                            if model_response is not None:
+                                ### POST-CALL RULES ###
+                                rules_obj.post_call_rules(
+                                    input=model_response, model=model
+                                )
+                                ### JSON SCHEMA VALIDATION ###
+                                if litellm.enable_json_schema_validation is True:
+                                    try:
+                                        if (
+                                            optional_params is not None
+                                            and "response_format" in optional_params
+                                            and optional_params["response_format"]
+                                            is not None
+                                        ):
+                                            json_response_format: Optional[dict] = None
+                                            if (
+                                                isinstance(
+                                                    optional_params["response_format"],
+                                                    dict,
+                                                )
+                                                and optional_params[
+                                                    "response_format"
+                                                ].get("json_schema")
+                                                is not None
+                                            ):
+                                                json_response_format = optional_params[
+                                                    "response_format"
+                                                ]
+                                            elif _parsing._completions.is_basemodel_type(
+                                                optional_params["response_format"]  # type: ignore
+                                            ):
+                                                json_response_format = (
+                                                    type_to_response_format_param(
+                                                        response_format=optional_params[
+                                                            "response_format"
+                                                        ]
+                                                    )
+                                                )
+                                            if json_response_format is not None:
+                                                litellm.litellm_core_utils.json_validation_rule.validate_schema(
+                                                    schema=json_response_format[
+                                                        "json_schema"
+                                                    ]["schema"],
+                                                    response=model_response,
+                                                )
+                                    except TypeError:
+                                        pass
+                                if (
+                                    optional_params is not None
+                                    and "response_format" in optional_params
+                                    and isinstance(
+                                        optional_params["response_format"], dict
+                                    )
+                                    and "type" in optional_params["response_format"]
+                                    and optional_params["response_format"]["type"]
+                                    == "json_object"
+                                    and "response_schema"
+                                    in optional_params["response_format"]
+                                    and isinstance(
+                                        optional_params["response_format"][
+                                            "response_schema"
+                                        ],
+                                        dict,
+                                    )
+                                    and "enforce_validation"
+                                    in optional_params["response_format"]
+                                    and optional_params["response_format"][
+                                        "enforce_validation"
+                                    ]
+                                    is True
+                                ):
+                                    # schema given, json response expected, and validation enforced
+                                    litellm.litellm_core_utils.json_validation_rule.validate_schema(
+                                        schema=optional_params["response_format"][
+                                            "response_schema"
+                                        ],
+                                        response=model_response,
+                                    )
+
+        except Exception as e:
+            raise e
+
+    @wraps(original_function)
+    def wrapper(*args, **kwargs):  # noqa: PLR0915
+        # DO NOT MOVE THIS. It always needs to run first
+        # Check if this is an async function. If so only execute the async function
+        call_type = original_function.__name__
+        if _is_async_request(kwargs):
+            # [OPTIONAL] CHECK MAX RETRIES / REQUEST
+            if litellm.num_retries_per_request is not None:
+                # check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
+                previous_models = kwargs.get("metadata", {}).get(
+                    "previous_models", None
+                )
+                if previous_models is not None:
+                    if litellm.num_retries_per_request <= len(previous_models):
+                        raise Exception("Max retries per request hit!")
+
+            # MODEL CALL
+            result = original_function(*args, **kwargs)
+            if "stream" in kwargs and kwargs["stream"] is True:
+                if (
+                    "complete_response" in kwargs
+                    and kwargs["complete_response"] is True
+                ):
+                    chunks = []
+                    for idx, chunk in enumerate(result):
+                        chunks.append(chunk)
+                    return litellm.stream_chunk_builder(
+                        chunks, messages=kwargs.get("messages", None)
+                    )
+                else:
+                    return result
+
+            return result
+
+        # Prints Exactly what was passed to litellm function - don't execute any logic here - it should just print
+        print_args_passed_to_litellm(original_function, args, kwargs)
+        start_time = datetime.datetime.now()
+        result = None
+        logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get(
+            "litellm_logging_obj", None
+        )
+
+        # only set litellm_call_id if its not in kwargs
+        if "litellm_call_id" not in kwargs:
+            kwargs["litellm_call_id"] = str(uuid.uuid4())
+
+        model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None)
+
+        try:
+            if logging_obj is None:
+                logging_obj, kwargs = function_setup(
+                    original_function.__name__, rules_obj, start_time, *args, **kwargs
+                )
+            ## LOAD CREDENTIALS
+            load_credentials_from_list(kwargs)
+            kwargs["litellm_logging_obj"] = logging_obj
+            _llm_caching_handler: LLMCachingHandler = LLMCachingHandler(
+                original_function=original_function,
+                request_kwargs=kwargs,
+                start_time=start_time,
+            )
+            logging_obj._llm_caching_handler = _llm_caching_handler
+
+            # CHECK FOR 'os.environ/' in kwargs
+            for k, v in kwargs.items():
+                if v is not None and isinstance(v, str) and v.startswith("os.environ/"):
+                    kwargs[k] = litellm.get_secret(v)
+            # [OPTIONAL] CHECK BUDGET
+            if litellm.max_budget:
+                if litellm._current_cost > litellm.max_budget:
+                    raise BudgetExceededError(
+                        current_cost=litellm._current_cost,
+                        max_budget=litellm.max_budget,
+                    )
+
+            # [OPTIONAL] CHECK MAX RETRIES / REQUEST
+            if litellm.num_retries_per_request is not None:
+                # check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
+                previous_models = kwargs.get("metadata", {}).get(
+                    "previous_models", None
+                )
+                if previous_models is not None:
+                    if litellm.num_retries_per_request <= len(previous_models):
+                        raise Exception("Max retries per request hit!")
+
+            # [OPTIONAL] CHECK CACHE
+            print_verbose(
+                f"SYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache')['no-cache']: {kwargs.get('cache', {}).get('no-cache', False)}"
+            )
+            # if caching is false or cache["no-cache"]==True, don't run this
+            if (
+                (
+                    (
+                        (
+                            kwargs.get("caching", None) is None
+                            and litellm.cache is not None
+                        )
+                        or kwargs.get("caching", False) is True
+                    )
+                    and kwargs.get("cache", {}).get("no-cache", False) is not True
+                )
+                and kwargs.get("aembedding", False) is not True
+                and kwargs.get("atext_completion", False) is not True
+                and kwargs.get("acompletion", False) is not True
+                and kwargs.get("aimg_generation", False) is not True
+                and kwargs.get("atranscription", False) is not True
+                and kwargs.get("arerank", False) is not True
+                and kwargs.get("_arealtime", False) is not True
+            ):  # allow users to control returning cached responses from the completion function
+                # checking cache
+                verbose_logger.debug("INSIDE CHECKING SYNC CACHE")
+                caching_handler_response: CachingHandlerResponse = (
+                    _llm_caching_handler._sync_get_cache(
+                        model=model or "",
+                        original_function=original_function,
+                        logging_obj=logging_obj,
+                        start_time=start_time,
+                        call_type=call_type,
+                        kwargs=kwargs,
+                        args=args,
+                    )
+                )
+
+                if caching_handler_response.cached_result is not None:
+                    verbose_logger.debug("Cache hit!")
+                    return caching_handler_response.cached_result
+
+            # CHECK MAX TOKENS
+            if (
+                kwargs.get("max_tokens", None) is not None
+                and model is not None
+                and litellm.modify_params
+                is True  # user is okay with params being modified
+                and (
+                    call_type == CallTypes.acompletion.value
+                    or call_type == CallTypes.completion.value
+                )
+            ):
+                try:
+                    base_model = model
+                    if kwargs.get("hf_model_name", None) is not None:
+                        base_model = f"huggingface/{kwargs.get('hf_model_name')}"
+                    messages = None
+                    if len(args) > 1:
+                        messages = args[1]
+                    elif kwargs.get("messages", None):
+                        messages = kwargs["messages"]
+                    user_max_tokens = kwargs.get("max_tokens")
+                    modified_max_tokens = get_modified_max_tokens(
+                        model=model,
+                        base_model=base_model,
+                        messages=messages,
+                        user_max_tokens=user_max_tokens,
+                        buffer_num=None,
+                        buffer_perc=None,
+                    )
+                    kwargs["max_tokens"] = modified_max_tokens
+                except Exception as e:
+                    print_verbose(f"Error while checking max token limit: {str(e)}")
+            # MODEL CALL
+            result = original_function(*args, **kwargs)
+            end_time = datetime.datetime.now()
+            if "stream" in kwargs and kwargs["stream"] is True:
+                if (
+                    "complete_response" in kwargs
+                    and kwargs["complete_response"] is True
+                ):
+                    chunks = []
+                    for idx, chunk in enumerate(result):
+                        chunks.append(chunk)
+                    return litellm.stream_chunk_builder(
+                        chunks, messages=kwargs.get("messages", None)
+                    )
+                else:
+                    # RETURN RESULT
+                    update_response_metadata(
+                        result=result,
+                        logging_obj=logging_obj,
+                        model=model,
+                        kwargs=kwargs,
+                        start_time=start_time,
+                        end_time=end_time,
+                    )
+                    return result
+            elif "acompletion" in kwargs and kwargs["acompletion"] is True:
+                return result
+            elif "aembedding" in kwargs and kwargs["aembedding"] is True:
+                return result
+            elif "aimg_generation" in kwargs and kwargs["aimg_generation"] is True:
+                return result
+            elif "atranscription" in kwargs and kwargs["atranscription"] is True:
+                return result
+            elif "aspeech" in kwargs and kwargs["aspeech"] is True:
+                return result
+            elif asyncio.iscoroutine(result):  # bubble up to relevant async function
+                return result
+
+            ### POST-CALL RULES ###
+            post_call_processing(
+                original_response=result,
+                model=model or None,
+                optional_params=kwargs,
+            )
+
+            # [OPTIONAL] ADD TO CACHE
+            _llm_caching_handler.sync_set_cache(
+                result=result,
+                args=args,
+                kwargs=kwargs,
+            )
+
+            # LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
+            verbose_logger.info("Wrapper: Completed Call, calling success_handler")
+            executor.submit(
+                logging_obj.success_handler,
+                result,
+                start_time,
+                end_time,
+            )
+            # RETURN RESULT
+            update_response_metadata(
+                result=result,
+                logging_obj=logging_obj,
+                model=model,
+                kwargs=kwargs,
+                start_time=start_time,
+                end_time=end_time,
+            )
+            return result
+        except Exception as e:
+            call_type = original_function.__name__
+            if call_type == CallTypes.completion.value:
+                num_retries = (
+                    kwargs.get("num_retries", None) or litellm.num_retries or None
+                )
+                if kwargs.get("retry_policy", None):
+                    num_retries = get_num_retries_from_retry_policy(
+                        exception=e,
+                        retry_policy=kwargs.get("retry_policy"),
+                    )
+                    kwargs["retry_policy"] = (
+                        reset_retry_policy()
+                    )  # prevent infinite loops
+                litellm.num_retries = (
+                    None  # set retries to None to prevent infinite loops
+                )
+                context_window_fallback_dict = kwargs.get(
+                    "context_window_fallback_dict", {}
+                )
+
+                _is_litellm_router_call = "model_group" in kwargs.get(
+                    "metadata", {}
+                )  # check if call from litellm.router/proxy
+                if (
+                    num_retries and not _is_litellm_router_call
+                ):  # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying
+                    if (
+                        isinstance(e, openai.APIError)
+                        or isinstance(e, openai.Timeout)
+                        or isinstance(e, openai.APIConnectionError)
+                    ):
+                        kwargs["num_retries"] = num_retries
+                        return litellm.completion_with_retries(*args, **kwargs)
+                elif (
+                    isinstance(e, litellm.exceptions.ContextWindowExceededError)
+                    and context_window_fallback_dict
+                    and model in context_window_fallback_dict
+                    and not _is_litellm_router_call
+                ):
+                    if len(args) > 0:
+                        args[0] = context_window_fallback_dict[model]  # type: ignore
+                    else:
+                        kwargs["model"] = context_window_fallback_dict[model]
+                    return original_function(*args, **kwargs)
+            traceback_exception = traceback.format_exc()
+            end_time = datetime.datetime.now()
+
+            # LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated
+            if logging_obj:
+                logging_obj.failure_handler(
+                    e, traceback_exception, start_time, end_time
+                )  # DO NOT MAKE THREADED - router retry fallback relies on this!
+            raise e
+
+    @wraps(original_function)
+    async def wrapper_async(*args, **kwargs):  # noqa: PLR0915
+        print_args_passed_to_litellm(original_function, args, kwargs)
+        start_time = datetime.datetime.now()
+        result = None
+        logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get(
+            "litellm_logging_obj", None
+        )
+        _llm_caching_handler: LLMCachingHandler = LLMCachingHandler(
+            original_function=original_function,
+            request_kwargs=kwargs,
+            start_time=start_time,
+        )
+        # only set litellm_call_id if its not in kwargs
+        call_type = original_function.__name__
+        if "litellm_call_id" not in kwargs:
+            kwargs["litellm_call_id"] = str(uuid.uuid4())
+
+        model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None)
+        is_completion_with_fallbacks = kwargs.get("fallbacks") is not None
+
+        try:
+            if logging_obj is None:
+                logging_obj, kwargs = function_setup(
+                    original_function.__name__, rules_obj, start_time, *args, **kwargs
+                )
+            kwargs["litellm_logging_obj"] = logging_obj
+            ## LOAD CREDENTIALS
+            load_credentials_from_list(kwargs)
+            logging_obj._llm_caching_handler = _llm_caching_handler
+            # [OPTIONAL] CHECK BUDGET
+            if litellm.max_budget:
+                if litellm._current_cost > litellm.max_budget:
+                    raise BudgetExceededError(
+                        current_cost=litellm._current_cost,
+                        max_budget=litellm.max_budget,
+                    )
+
+            # [OPTIONAL] CHECK CACHE
+            print_verbose(
+                f"ASYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache'): {kwargs.get('cache', None)}"
+            )
+            _caching_handler_response: CachingHandlerResponse = (
+                await _llm_caching_handler._async_get_cache(
+                    model=model or "",
+                    original_function=original_function,
+                    logging_obj=logging_obj,
+                    start_time=start_time,
+                    call_type=call_type,
+                    kwargs=kwargs,
+                    args=args,
+                )
+            )
+            if (
+                _caching_handler_response.cached_result is not None
+                and _caching_handler_response.final_embedding_cached_response is None
+            ):
+                return _caching_handler_response.cached_result
+
+            elif _caching_handler_response.embedding_all_elements_cache_hit is True:
+                return _caching_handler_response.final_embedding_cached_response
+
+            # MODEL CALL
+            result = await original_function(*args, **kwargs)
+            end_time = datetime.datetime.now()
+            if "stream" in kwargs and kwargs["stream"] is True:
+                if (
+                    "complete_response" in kwargs
+                    and kwargs["complete_response"] is True
+                ):
+                    chunks = []
+                    for idx, chunk in enumerate(result):
+                        chunks.append(chunk)
+                    return litellm.stream_chunk_builder(
+                        chunks, messages=kwargs.get("messages", None)
+                    )
+                else:
+                    update_response_metadata(
+                        result=result,
+                        logging_obj=logging_obj,
+                        model=model,
+                        kwargs=kwargs,
+                        start_time=start_time,
+                        end_time=end_time,
+                    )
+                    return result
+            elif call_type == CallTypes.arealtime.value:
+                return result
+            ### POST-CALL RULES ###
+            post_call_processing(
+                original_response=result, model=model, optional_params=kwargs
+            )
+
+            ## Add response to cache
+            await _llm_caching_handler.async_set_cache(
+                result=result,
+                original_function=original_function,
+                kwargs=kwargs,
+                args=args,
+            )
+
+            # LOG SUCCESS - handle streaming success logging in the _next_ object
+            asyncio.create_task(
+                _client_async_logging_helper(
+                    logging_obj=logging_obj,
+                    result=result,
+                    start_time=start_time,
+                    end_time=end_time,
+                    is_completion_with_fallbacks=is_completion_with_fallbacks,
+                )
+            )
+            logging_obj.handle_sync_success_callbacks_for_async_calls(
+                result=result,
+                start_time=start_time,
+                end_time=end_time,
+            )
+            # REBUILD EMBEDDING CACHING
+            if (
+                isinstance(result, EmbeddingResponse)
+                and _caching_handler_response.final_embedding_cached_response
+                is not None
+            ):
+                return _llm_caching_handler._combine_cached_embedding_response_with_api_result(
+                    _caching_handler_response=_caching_handler_response,
+                    embedding_response=result,
+                    start_time=start_time,
+                    end_time=end_time,
+                )
+
+            update_response_metadata(
+                result=result,
+                logging_obj=logging_obj,
+                model=model,
+                kwargs=kwargs,
+                start_time=start_time,
+                end_time=end_time,
+            )
+
+            return result
+        except Exception as e:
+            traceback_exception = traceback.format_exc()
+            end_time = datetime.datetime.now()
+            if logging_obj:
+                try:
+                    logging_obj.failure_handler(
+                        e, traceback_exception, start_time, end_time
+                    )  # DO NOT MAKE THREADED - router retry fallback relies on this!
+                except Exception as e:
+                    raise e
+                try:
+                    await logging_obj.async_failure_handler(
+                        e, traceback_exception, start_time, end_time
+                    )
+                except Exception as e:
+                    raise e
+
+            call_type = original_function.__name__
+            num_retries, kwargs = _get_wrapper_num_retries(kwargs=kwargs, exception=e)
+            if call_type == CallTypes.acompletion.value:
+                context_window_fallback_dict = kwargs.get(
+                    "context_window_fallback_dict", {}
+                )
+
+                _is_litellm_router_call = "model_group" in kwargs.get(
+                    "metadata", {}
+                )  # check if call from litellm.router/proxy
+
+                if (
+                    num_retries and not _is_litellm_router_call
+                ):  # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying
+
+                    try:
+                        litellm.num_retries = (
+                            None  # set retries to None to prevent infinite loops
+                        )
+                        kwargs["num_retries"] = num_retries
+                        kwargs["original_function"] = original_function
+                        if isinstance(
+                            e, openai.RateLimitError
+                        ):  # rate limiting specific error
+                            kwargs["retry_strategy"] = "exponential_backoff_retry"
+                        elif isinstance(e, openai.APIError):  # generic api error
+                            kwargs["retry_strategy"] = "constant_retry"
+                        return await litellm.acompletion_with_retries(*args, **kwargs)
+                    except Exception:
+                        pass
+                elif (
+                    isinstance(e, litellm.exceptions.ContextWindowExceededError)
+                    and context_window_fallback_dict
+                    and model in context_window_fallback_dict
+                ):
+
+                    if len(args) > 0:
+                        args[0] = context_window_fallback_dict[model]  # type: ignore
+                    else:
+                        kwargs["model"] = context_window_fallback_dict[model]
+                    return await original_function(*args, **kwargs)
+
+            setattr(
+                e, "num_retries", num_retries
+            )  ## IMPORTANT: returns the deployment's num_retries to the router
+
+            timeout = _get_wrapper_timeout(kwargs=kwargs, exception=e)
+            setattr(e, "timeout", timeout)
+            raise e
+
+    is_coroutine = inspect.iscoroutinefunction(original_function)
+
+    # Return the appropriate wrapper based on the original function type
+    if is_coroutine:
+        return wrapper_async
+    else:
+        return wrapper
+
+
+def _is_async_request(
+    kwargs: Optional[dict],
+    is_pass_through: bool = False,
+) -> bool:
+    """
+    Returns True if the call type is an internal async request.
+
+    eg. litellm.acompletion, litellm.aimage_generation, litellm.acreate_batch, litellm._arealtime
+
+    Args:
+        kwargs (dict): The kwargs passed to the litellm function
+        is_pass_through (bool): Whether the call is a pass-through call. By default all pass through calls are async.
+    """
+    if kwargs is None:
+        return False
+    if (
+        kwargs.get("acompletion", False) is True
+        or kwargs.get("aembedding", False) is True
+        or kwargs.get("aimg_generation", False) is True
+        or kwargs.get("amoderation", False) is True
+        or kwargs.get("atext_completion", False) is True
+        or kwargs.get("atranscription", False) is True
+        or kwargs.get("arerank", False) is True
+        or kwargs.get("_arealtime", False) is True
+        or kwargs.get("acreate_batch", False) is True
+        or kwargs.get("acreate_fine_tuning_job", False) is True
+        or is_pass_through is True
+    ):
+        return True
+    return False
+
+
+def update_response_metadata(
+    result: Any,
+    logging_obj: LiteLLMLoggingObject,
+    model: Optional[str],
+    kwargs: dict,
+    start_time: datetime.datetime,
+    end_time: datetime.datetime,
+) -> None:
+    """
+    Updates response metadata, adds the following:
+        - response._hidden_params
+        - response._hidden_params["litellm_overhead_time_ms"]
+        - response.response_time_ms
+    """
+    if result is None:
+        return
+
+    metadata = ResponseMetadata(result)
+    metadata.set_hidden_params(logging_obj=logging_obj, model=model, kwargs=kwargs)
+    metadata.set_timing_metrics(
+        start_time=start_time, end_time=end_time, logging_obj=logging_obj
+    )
+    metadata.apply()
+
+
+def _select_tokenizer(
+    model: str, custom_tokenizer: Optional[CustomHuggingfaceTokenizer] = None
+):
+    if custom_tokenizer is not None:
+        _tokenizer = create_pretrained_tokenizer(
+            identifier=custom_tokenizer["identifier"],
+            revision=custom_tokenizer["revision"],
+            auth_token=custom_tokenizer["auth_token"],
+        )
+        return _tokenizer
+    return _select_tokenizer_helper(model=model)
+
+
+@lru_cache(maxsize=128)
+def _select_tokenizer_helper(model: str) -> SelectTokenizerResponse:
+
+    if litellm.disable_hf_tokenizer_download is True:
+        return _return_openai_tokenizer(model)
+
+    try:
+        result = _return_huggingface_tokenizer(model)
+        if result is not None:
+            return result
+    except Exception as e:
+        verbose_logger.debug(f"Error selecting tokenizer: {e}")
+
+    # default - tiktoken
+    return _return_openai_tokenizer(model)
+
+
+def _return_openai_tokenizer(model: str) -> SelectTokenizerResponse:
+    return {"type": "openai_tokenizer", "tokenizer": encoding}
+
+
+def _return_huggingface_tokenizer(model: str) -> Optional[SelectTokenizerResponse]:
+    if model in litellm.cohere_models and "command-r" in model:
+        # cohere
+        cohere_tokenizer = Tokenizer.from_pretrained(
+            "Xenova/c4ai-command-r-v01-tokenizer"
+        )
+        return {"type": "huggingface_tokenizer", "tokenizer": cohere_tokenizer}
+    # anthropic
+    elif model in litellm.anthropic_models and "claude-3" not in model:
+        claude_tokenizer = Tokenizer.from_str(claude_json_str)
+        return {"type": "huggingface_tokenizer", "tokenizer": claude_tokenizer}
+    # llama2
+    elif "llama-2" in model.lower() or "replicate" in model.lower():
+        tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
+        return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
+    # llama3
+    elif "llama-3" in model.lower():
+        tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer")
+        return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
+    else:
+        return None
+
+
+def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
+    """
+    Encodes the given text using the specified model.
+
+    Args:
+        model (str): The name of the model to use for tokenization.
+        custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
+        text (str): The text to be encoded.
+
+    Returns:
+        enc: The encoded text.
+    """
+    tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
+    if isinstance(tokenizer_json["tokenizer"], Encoding):
+        enc = tokenizer_json["tokenizer"].encode(text, disallowed_special=())
+    else:
+        enc = tokenizer_json["tokenizer"].encode(text)
+    return enc
+
+
+def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None):
+    tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
+    dec = tokenizer_json["tokenizer"].decode(tokens)
+    return dec
+
+
+def openai_token_counter(  # noqa: PLR0915
+    messages: Optional[list] = None,
+    model="gpt-3.5-turbo-0613",
+    text: Optional[str] = None,
+    is_tool_call: Optional[bool] = False,
+    tools: Optional[List[ChatCompletionToolParam]] = None,
+    tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None,
+    count_response_tokens: Optional[
+        bool
+    ] = False,  # Flag passed from litellm.stream_chunk_builder, to indicate counting tokens for LLM Response. We need this because for LLM input we add +3 tokens per message - based on OpenAI's token counter
+    use_default_image_token_count: Optional[bool] = False,
+    default_token_count: Optional[int] = None,
+):
+    """
+    Return the number of tokens used by a list of messages.
+
+    Borrowed from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb.
+    """
+    print_verbose(f"LiteLLM: Utils - Counting tokens for OpenAI model={model}")
+    try:
+        if "gpt-4o" in model:
+            encoding = tiktoken.get_encoding("o200k_base")
+        else:
+            encoding = tiktoken.encoding_for_model(model)
+    except KeyError:
+        print_verbose("Warning: model not found. Using cl100k_base encoding.")
+        encoding = tiktoken.get_encoding("cl100k_base")
+    if model == "gpt-3.5-turbo-0301":
+        tokens_per_message = (
+            4  # every message follows <|start|>{role/name}\n{content}<|end|>\n
+        )
+        tokens_per_name = -1  # if there's a name, the role is omitted
+    elif model in litellm.open_ai_chat_completion_models:
+        tokens_per_message = 3
+        tokens_per_name = 1
+    elif model in litellm.azure_llms:
+        tokens_per_message = 3
+        tokens_per_name = 1
+    else:
+        raise NotImplementedError(
+            f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
+        )
+    num_tokens = 0
+    includes_system_message = False
+
+    if is_tool_call and text is not None:
+        # if it's a tool call we assembled 'text' in token_counter()
+        num_tokens = len(encoding.encode(text, disallowed_special=()))
+    elif messages is not None:
+        for message in messages:
+            num_tokens += tokens_per_message
+            if message.get("role", None) == "system":
+                includes_system_message = True
+            for key, value in message.items():
+                if isinstance(value, str):
+                    num_tokens += len(encoding.encode(value, disallowed_special=()))
+                    if key == "name":
+                        num_tokens += tokens_per_name
+                elif isinstance(value, List):
+                    text, num_tokens_from_list = _get_num_tokens_from_content_list(
+                        content_list=value,
+                        use_default_image_token_count=use_default_image_token_count,
+                        default_token_count=default_token_count,
+                    )
+                    num_tokens += num_tokens_from_list
+    elif text is not None and count_response_tokens is True:
+        # This is the case where we need to count tokens for a streamed response. We should NOT add +3 tokens per message in this branch
+        num_tokens = len(encoding.encode(text, disallowed_special=()))
+        return num_tokens
+    elif text is not None:
+        num_tokens = len(encoding.encode(text, disallowed_special=()))
+    num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>
+
+    if tools:
+        num_tokens += len(encoding.encode(_format_function_definitions(tools)))
+        num_tokens += 9  # Additional tokens for function definition of tools
+    # If there's a system message and tools are present, subtract four tokens
+    if tools and includes_system_message:
+        num_tokens -= 4
+    # If tool_choice is 'none', add one token.
+    # If it's an object, add 4 + the number of tokens in the function name.
+    # If it's undefined or 'auto', don't add anything.
+    if tool_choice == "none":
+        num_tokens += 1
+    elif isinstance(tool_choice, dict):
+        num_tokens += 7
+        num_tokens += len(encoding.encode(tool_choice["function"]["name"]))
+
+    return num_tokens
+
+
+def create_pretrained_tokenizer(
+    identifier: str, revision="main", auth_token: Optional[str] = None
+):
+    """
+    Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.
+
+    Args:
+    identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file
+    revision (str, defaults to main): A branch or commit id
+    auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub
+
+    Returns:
+    dict: A dictionary with the tokenizer and its type.
+    """
+
+    try:
+        tokenizer = Tokenizer.from_pretrained(
+            identifier, revision=revision, auth_token=auth_token  # type: ignore
+        )
+    except Exception as e:
+        verbose_logger.error(
+            f"Error creating pretrained tokenizer: {e}. Defaulting to version without 'auth_token'."
+        )
+        tokenizer = Tokenizer.from_pretrained(identifier, revision=revision)
+    return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
+
+
+def create_tokenizer(json: str):
+    """
+    Creates a tokenizer from a valid JSON string for use with `token_counter`.
+
+    Args:
+    json (str): A valid JSON string representing a previously serialized tokenizer
+
+    Returns:
+    dict: A dictionary with the tokenizer and its type.
+    """
+
+    tokenizer = Tokenizer.from_str(json)
+    return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
+
+
+def _format_function_definitions(tools):
+    """Formats tool definitions in the format that OpenAI appears to use.
+    Based on https://github.com/forestwanglin/openai-java/blob/main/jtokkit/src/main/java/xyz/felh/openai/jtokkit/utils/TikTokenUtils.java
+    """
+    lines = []
+    lines.append("namespace functions {")
+    lines.append("")
+    for tool in tools:
+        function = tool.get("function")
+        if function_description := function.get("description"):
+            lines.append(f"// {function_description}")
+        function_name = function.get("name")
+        parameters = function.get("parameters", {})
+        properties = parameters.get("properties")
+        if properties and properties.keys():
+            lines.append(f"type {function_name} = (_: {{")
+            lines.append(_format_object_parameters(parameters, 0))
+            lines.append("}) => any;")
+        else:
+            lines.append(f"type {function_name} = () => any;")
+        lines.append("")
+    lines.append("} // namespace functions")
+    return "\n".join(lines)
+
+
+def _format_object_parameters(parameters, indent):
+    properties = parameters.get("properties")
+    if not properties:
+        return ""
+    required_params = parameters.get("required", [])
+    lines = []
+    for key, props in properties.items():
+        description = props.get("description")
+        if description:
+            lines.append(f"// {description}")
+        question = "?"
+        if required_params and key in required_params:
+            question = ""
+        lines.append(f"{key}{question}: {_format_type(props, indent)},")
+    return "\n".join([" " * max(0, indent) + line for line in lines])
+
+
+def _format_type(props, indent):
+    type = props.get("type")
+    if type == "string":
+        if "enum" in props:
+            return " | ".join([f'"{item}"' for item in props["enum"]])
+        return "string"
+    elif type == "array":
+        # items is required, OpenAI throws an error if it's missing
+        return f"{_format_type(props['items'], indent)}[]"
+    elif type == "object":
+        return f"{{\n{_format_object_parameters(props, indent + 2)}\n}}"
+    elif type in ["integer", "number"]:
+        if "enum" in props:
+            return " | ".join([f'"{item}"' for item in props["enum"]])
+        return "number"
+    elif type == "boolean":
+        return "boolean"
+    elif type == "null":
+        return "null"
+    else:
+        # This is a guess, as an empty string doesn't yield the expected token count
+        return "any"
+
+
+def _get_num_tokens_from_content_list(
+    content_list: List[Dict[str, Any]],
+    use_default_image_token_count: Optional[bool] = False,
+    default_token_count: Optional[int] = None,
+) -> Tuple[str, int]:
+    """
+    Get the number of tokens from a list of content.
+
+    Returns:
+        Tuple[str, int]: A tuple containing the text and the number of tokens.
+    """
+    try:
+        num_tokens = 0
+        text = ""
+        for c in content_list:
+            if c["type"] == "text":
+                text += c["text"]
+                num_tokens += len(encoding.encode(c["text"], disallowed_special=()))
+            elif c["type"] == "image_url":
+                if isinstance(c["image_url"], dict):
+                    image_url_dict = c["image_url"]
+                    detail = image_url_dict.get("detail", "auto")
+                    url = image_url_dict.get("url")
+                    num_tokens += calculate_img_tokens(
+                        data=url,
+                        mode=detail,
+                        use_default_image_token_count=use_default_image_token_count
+                        or False,
+                    )
+                elif isinstance(c["image_url"], str):
+                    image_url_str = c["image_url"]
+                    num_tokens += calculate_img_tokens(
+                        data=image_url_str,
+                        mode="auto",
+                        use_default_image_token_count=use_default_image_token_count
+                        or False,
+                    )
+        return text, num_tokens
+    except Exception as e:
+        if default_token_count is not None:
+            return "", default_token_count
+        raise ValueError(
+            f"Error getting number of tokens from content list: {e}, default_token_count={default_token_count}"
+        )
+
+
+def token_counter(
+    model="",
+    custom_tokenizer: Optional[Union[dict, SelectTokenizerResponse]] = None,
+    text: Optional[Union[str, List[str]]] = None,
+    messages: Optional[List] = None,
+    count_response_tokens: Optional[bool] = False,
+    tools: Optional[List[ChatCompletionToolParam]] = None,
+    tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None,
+    use_default_image_token_count: Optional[bool] = False,
+    default_token_count: Optional[int] = None,
+) -> int:
+    """
+    Count the number of tokens in a given text using a specified model.
+
+    Args:
+    model (str): The name of the model to use for tokenization. Default is an empty string.
+    custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
+    text (str): The raw text string to be passed to the model. Default is None.
+    messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
+    default_token_count (Optional[int]): The default number of tokens to return for a message block, if an error occurs. Default is None.
+
+    Returns:
+    int: The number of tokens in the text.
+    """
+    # use tiktoken, anthropic, cohere, llama2, or llama3's tokenizer depending on the model
+    is_tool_call = False
+    num_tokens = 0
+    if text is None:
+        if messages is not None:
+            print_verbose(f"token_counter messages received: {messages}")
+            text = ""
+            for message in messages:
+                if message.get("content", None) is not None:
+                    content = message.get("content")
+                    if isinstance(content, str):
+                        text += message["content"]
+                    elif isinstance(content, List):
+                        text, num_tokens = _get_num_tokens_from_content_list(
+                            content_list=content,
+                            use_default_image_token_count=use_default_image_token_count,
+                            default_token_count=default_token_count,
+                        )
+                if message.get("tool_calls"):
+                    is_tool_call = True
+                    for tool_call in message["tool_calls"]:
+                        if "function" in tool_call:
+                            function_arguments = tool_call["function"]["arguments"]
+                            text = (
+                                text if isinstance(text, str) else "".join(text or [])
+                            ) + (str(function_arguments) if function_arguments else "")
+
+        else:
+            raise ValueError("text and messages cannot both be None")
+    elif isinstance(text, List):
+        text = "".join(t for t in text if isinstance(t, str))
+    elif isinstance(text, str):
+        count_response_tokens = True  # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this
+
+    if model is not None or custom_tokenizer is not None:
+        tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
+        if tokenizer_json["type"] == "huggingface_tokenizer":
+            enc = tokenizer_json["tokenizer"].encode(text)
+            num_tokens = len(enc.ids)
+        elif tokenizer_json["type"] == "openai_tokenizer":
+            if (
+                model in litellm.open_ai_chat_completion_models
+                or model in litellm.azure_llms
+            ):
+                if model in litellm.azure_llms:
+                    # azure llms use gpt-35-turbo instead of gpt-3.5-turbo 🙃
+                    model = model.replace("-35", "-3.5")
+
+                print_verbose(
+                    f"Token Counter - using OpenAI token counter, for model={model}"
+                )
+                num_tokens = openai_token_counter(
+                    text=text,  # type: ignore
+                    model=model,
+                    messages=messages,
+                    is_tool_call=is_tool_call,
+                    count_response_tokens=count_response_tokens,
+                    tools=tools,
+                    tool_choice=tool_choice,
+                    use_default_image_token_count=use_default_image_token_count
+                    or False,
+                    default_token_count=default_token_count,
+                )
+            else:
+                print_verbose(
+                    f"Token Counter - using generic token counter, for model={model}"
+                )
+                num_tokens = openai_token_counter(
+                    text=text,  # type: ignore
+                    model="gpt-3.5-turbo",
+                    messages=messages,
+                    is_tool_call=is_tool_call,
+                    count_response_tokens=count_response_tokens,
+                    tools=tools,
+                    tool_choice=tool_choice,
+                    use_default_image_token_count=use_default_image_token_count
+                    or False,
+                    default_token_count=default_token_count,
+                )
+    else:
+        num_tokens = len(encoding.encode(text, disallowed_special=()))  # type: ignore
+    return num_tokens
+
+
+def supports_httpx_timeout(custom_llm_provider: str) -> bool:
+    """
+    Helper function to know if a provider implementation supports httpx timeout
+    """
+    supported_providers = ["openai", "azure", "bedrock"]
+
+    if custom_llm_provider in supported_providers:
+        return True
+
+    return False
+
+
+def supports_system_messages(model: str, custom_llm_provider: Optional[str]) -> bool:
+    """
+    Check if the given model supports system messages and return a boolean value.
+
+    Parameters:
+    model (str): The model name to be checked.
+    custom_llm_provider (str): The provider to be checked.
+
+    Returns:
+    bool: True if the model supports system messages, False otherwise.
+
+    Raises:
+    Exception: If the given model is not found in model_prices_and_context_window.json.
+    """
+    return _supports_factory(
+        model=model,
+        custom_llm_provider=custom_llm_provider,
+        key="supports_system_messages",
+    )
+
+
+def supports_native_streaming(model: str, custom_llm_provider: Optional[str]) -> bool:
+    """
+    Check if the given model supports native streaming and return a boolean value.
+
+    Parameters:
+    model (str): The model name to be checked.
+    custom_llm_provider (str): The provider to be checked.
+
+    Returns:
+    bool: True if the model supports native streaming, False otherwise.
+
+    Raises:
+    Exception: If the given model is not found in model_prices_and_context_window.json.
+    """
+    try:
+        model, custom_llm_provider, _, _ = litellm.get_llm_provider(
+            model=model, custom_llm_provider=custom_llm_provider
+        )
+
+        model_info = _get_model_info_helper(
+            model=model, custom_llm_provider=custom_llm_provider
+        )
+        supports_native_streaming = model_info.get("supports_native_streaming", True)
+        if supports_native_streaming is None:
+            supports_native_streaming = True
+        return supports_native_streaming
+    except Exception as e:
+        verbose_logger.debug(
+            f"Model not found or error in checking supports_native_streaming support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
+        )
+        return False
+
+
+def supports_response_schema(
+    model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+    """
+    Check if the given model + provider supports 'response_schema' as a param.
+
+    Parameters:
+    model (str): The model name to be checked.
+    custom_llm_provider (str): The provider to be checked.
+
+    Returns:
+    bool: True if the model supports response_schema, False otherwise.
+
+    Does not raise error. Defaults to 'False'. Outputs logging.error.
+    """
+    ## GET LLM PROVIDER ##
+    try:
+        model, custom_llm_provider, _, _ = get_llm_provider(
+            model=model, custom_llm_provider=custom_llm_provider
+        )
+    except Exception as e:
+        verbose_logger.debug(
+            f"Model not found or error in checking response schema support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
+        )
+        return False
+
+    # providers that globally support response schema
+    PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA = [
+        litellm.LlmProviders.PREDIBASE,
+        litellm.LlmProviders.FIREWORKS_AI,
+    ]
+
+    if custom_llm_provider in PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA:
+        return True
+    return _supports_factory(
+        model=model,
+        custom_llm_provider=custom_llm_provider,
+        key="supports_response_schema",
+    )
+
+
+def supports_parallel_function_calling(
+    model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+    """
+    Check if the given model supports parallel tool calls and return a boolean value.
+    """
+    return _supports_factory(
+        model=model,
+        custom_llm_provider=custom_llm_provider,
+        key="supports_parallel_function_calling",
+    )
+
+
+def supports_function_calling(
+    model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+    """
+    Check if the given model supports function calling and return a boolean value.
+
+    Parameters:
+    model (str): The model name to be checked.
+    custom_llm_provider (Optional[str]): The provider to be checked.
+
+    Returns:
+    bool: True if the model supports function calling, False otherwise.
+
+    Raises:
+    Exception: If the given model is not found or there's an error in retrieval.
+    """
+    return _supports_factory(
+        model=model,
+        custom_llm_provider=custom_llm_provider,
+        key="supports_function_calling",
+    )
+
+
+def supports_tool_choice(model: str, custom_llm_provider: Optional[str] = None) -> bool:
+    """
+    Check if the given model supports `tool_choice` and return a boolean value.
+    """
+    return _supports_factory(
+        model=model, custom_llm_provider=custom_llm_provider, key="supports_tool_choice"
+    )
+
+
+def _supports_factory(model: str, custom_llm_provider: Optional[str], key: str) -> bool:
+    """
+    Check if the given model supports function calling and return a boolean value.
+
+    Parameters:
+    model (str): The model name to be checked.
+    custom_llm_provider (Optional[str]): The provider to be checked.
+
+    Returns:
+    bool: True if the model supports function calling, False otherwise.
+
+    Raises:
+    Exception: If the given model is not found or there's an error in retrieval.
+    """
+    try:
+        model, custom_llm_provider, _, _ = litellm.get_llm_provider(
+            model=model, custom_llm_provider=custom_llm_provider
+        )
+
+        model_info = _get_model_info_helper(
+            model=model, custom_llm_provider=custom_llm_provider
+        )
+
+        if model_info.get(key, False) is True:
+            return True
+        return False
+    except Exception as e:
+        verbose_logger.debug(
+            f"Model not found or error in checking {key} support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
+        )
+
+        provider_info = get_provider_info(
+            model=model, custom_llm_provider=custom_llm_provider
+        )
+
+        if provider_info is not None and provider_info.get(key, False) is True:
+            return True
+        return False
+
+
+def supports_audio_input(model: str, custom_llm_provider: Optional[str] = None) -> bool:
+    """Check if a given model supports audio input in a chat completion call"""
+    return _supports_factory(
+        model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input"
+    )
+
+
+def supports_pdf_input(model: str, custom_llm_provider: Optional[str] = None) -> bool:
+    """Check if a given model supports pdf input in a chat completion call"""
+    return _supports_factory(
+        model=model, custom_llm_provider=custom_llm_provider, key="supports_pdf_input"
+    )
+
+
+def supports_audio_output(
+    model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+    """Check if a given model supports audio output in a chat completion call"""
+    return _supports_factory(
+        model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input"
+    )
+
+
+def supports_prompt_caching(
+    model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+    """
+    Check if the given model supports prompt caching and return a boolean value.
+
+    Parameters:
+    model (str): The model name to be checked.
+    custom_llm_provider (Optional[str]): The provider to be checked.
+
+    Returns:
+    bool: True if the model supports prompt caching, False otherwise.
+
+    Raises:
+    Exception: If the given model is not found or there's an error in retrieval.
+    """
+    return _supports_factory(
+        model=model,
+        custom_llm_provider=custom_llm_provider,
+        key="supports_prompt_caching",
+    )
+
+
+def supports_vision(model: str, custom_llm_provider: Optional[str] = None) -> bool:
+    """
+    Check if the given model supports vision and return a boolean value.
+
+    Parameters:
+    model (str): The model name to be checked.
+    custom_llm_provider (Optional[str]): The provider to be checked.
+
+    Returns:
+    bool: True if the model supports vision, False otherwise.
+    """
+    return _supports_factory(
+        model=model,
+        custom_llm_provider=custom_llm_provider,
+        key="supports_vision",
+    )
+
+
+def supports_embedding_image_input(
+    model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+    """
+    Check if the given model supports embedding image input and return a boolean value.
+    """
+    return _supports_factory(
+        model=model,
+        custom_llm_provider=custom_llm_provider,
+        key="supports_embedding_image_input",
+    )
+
+
+####### HELPER FUNCTIONS ################
+def _update_dictionary(existing_dict: Dict, new_dict: dict) -> dict:
+    for k, v in new_dict.items():
+        existing_dict[k] = v
+
+    return existing_dict
+
+
+def register_model(model_cost: Union[str, dict]):  # noqa: PLR0915
+    """
+    Register new / Override existing models (and their pricing) to specific providers.
+    Provide EITHER a model cost dictionary or a url to a hosted json blob
+    Example usage:
+    model_cost_dict = {
+        "gpt-4": {
+            "max_tokens": 8192,
+            "input_cost_per_token": 0.00003,
+            "output_cost_per_token": 0.00006,
+            "litellm_provider": "openai",
+            "mode": "chat"
+        },
+    }
+    """
+
+    loaded_model_cost = {}
+    if isinstance(model_cost, dict):
+        loaded_model_cost = model_cost
+    elif isinstance(model_cost, str):
+        loaded_model_cost = litellm.get_model_cost_map(url=model_cost)
+
+    for key, value in loaded_model_cost.items():
+        ## get model info ##
+        try:
+            existing_model: dict = cast(dict, get_model_info(model=key))
+            model_cost_key = existing_model["key"]
+        except Exception:
+            existing_model = {}
+            model_cost_key = key
+        ## override / add new keys to the existing model cost dictionary
+        updated_dictionary = _update_dictionary(existing_model, value)
+        litellm.model_cost.setdefault(model_cost_key, {}).update(updated_dictionary)
+        verbose_logger.debug(
+            f"added/updated model={model_cost_key} in litellm.model_cost: {model_cost_key}"
+        )
+        # add new model names to provider lists
+        if value.get("litellm_provider") == "openai":
+            if key not in litellm.open_ai_chat_completion_models:
+                litellm.open_ai_chat_completion_models.append(key)
+        elif value.get("litellm_provider") == "text-completion-openai":
+            if key not in litellm.open_ai_text_completion_models:
+                litellm.open_ai_text_completion_models.append(key)
+        elif value.get("litellm_provider") == "cohere":
+            if key not in litellm.cohere_models:
+                litellm.cohere_models.append(key)
+        elif value.get("litellm_provider") == "anthropic":
+            if key not in litellm.anthropic_models:
+                litellm.anthropic_models.append(key)
+        elif value.get("litellm_provider") == "openrouter":
+            split_string = key.split("/", 1)
+            if key not in litellm.openrouter_models:
+                litellm.openrouter_models.append(split_string[1])
+        elif value.get("litellm_provider") == "vertex_ai-text-models":
+            if key not in litellm.vertex_text_models:
+                litellm.vertex_text_models.append(key)
+        elif value.get("litellm_provider") == "vertex_ai-code-text-models":
+            if key not in litellm.vertex_code_text_models:
+                litellm.vertex_code_text_models.append(key)
+        elif value.get("litellm_provider") == "vertex_ai-chat-models":
+            if key not in litellm.vertex_chat_models:
+                litellm.vertex_chat_models.append(key)
+        elif value.get("litellm_provider") == "vertex_ai-code-chat-models":
+            if key not in litellm.vertex_code_chat_models:
+                litellm.vertex_code_chat_models.append(key)
+        elif value.get("litellm_provider") == "ai21":
+            if key not in litellm.ai21_models:
+                litellm.ai21_models.append(key)
+        elif value.get("litellm_provider") == "nlp_cloud":
+            if key not in litellm.nlp_cloud_models:
+                litellm.nlp_cloud_models.append(key)
+        elif value.get("litellm_provider") == "aleph_alpha":
+            if key not in litellm.aleph_alpha_models:
+                litellm.aleph_alpha_models.append(key)
+        elif value.get("litellm_provider") == "bedrock":
+            if key not in litellm.bedrock_models:
+                litellm.bedrock_models.append(key)
+    return model_cost
+
+
+def _should_drop_param(k, additional_drop_params) -> bool:
+    if (
+        additional_drop_params is not None
+        and isinstance(additional_drop_params, list)
+        and k in additional_drop_params
+    ):
+        return True  # allow user to drop specific params for a model - e.g. vllm - logit bias
+
+    return False
+
+
+def _get_non_default_params(
+    passed_params: dict, default_params: dict, additional_drop_params: Optional[bool]
+) -> dict:
+    non_default_params = {}
+    for k, v in passed_params.items():
+        if (
+            k in default_params
+            and v != default_params[k]
+            and _should_drop_param(k=k, additional_drop_params=additional_drop_params)
+            is False
+        ):
+            non_default_params[k] = v
+
+    return non_default_params
+
+
+def get_optional_params_transcription(
+    model: str,
+    language: Optional[str] = None,
+    prompt: Optional[str] = None,
+    response_format: Optional[str] = None,
+    temperature: Optional[int] = None,
+    timestamp_granularities: Optional[List[Literal["word", "segment"]]] = None,
+    custom_llm_provider: Optional[str] = None,
+    drop_params: Optional[bool] = None,
+    **kwargs,
+):
+    # retrieve all parameters passed to the function
+    passed_params = locals()
+    custom_llm_provider = passed_params.pop("custom_llm_provider")
+    drop_params = passed_params.pop("drop_params")
+    special_params = passed_params.pop("kwargs")
+    for k, v in special_params.items():
+        passed_params[k] = v
+
+    default_params = {
+        "language": None,
+        "prompt": None,
+        "response_format": None,
+        "temperature": None,  # openai defaults this to 0
+    }
+
+    non_default_params = {
+        k: v
+        for k, v in passed_params.items()
+        if (k in default_params and v != default_params[k])
+    }
+    optional_params = {}
+
+    ## raise exception if non-default value passed for non-openai/azure embedding calls
+    def _check_valid_arg(supported_params):
+        if len(non_default_params.keys()) > 0:
+            keys = list(non_default_params.keys())
+            for k in keys:
+                if (
+                    drop_params is True or litellm.drop_params is True
+                ) and k not in supported_params:  # drop the unsupported non-default values
+                    non_default_params.pop(k, None)
+                elif k not in supported_params:
+                    raise UnsupportedParamsError(
+                        status_code=500,
+                        message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
+                    )
+            return non_default_params
+
+    provider_config: Optional[BaseAudioTranscriptionConfig] = None
+    if custom_llm_provider is not None:
+        provider_config = ProviderConfigManager.get_provider_audio_transcription_config(
+            model=model,
+            provider=LlmProviders(custom_llm_provider),
+        )
+
+    if custom_llm_provider == "openai" or custom_llm_provider == "azure":
+        optional_params = non_default_params
+    elif custom_llm_provider == "groq":
+        supported_params = litellm.GroqSTTConfig().get_supported_openai_params_stt()
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = litellm.GroqSTTConfig().map_openai_params_stt(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=drop_params if drop_params is not None else False,
+        )
+    elif provider_config is not None:  # handles fireworks ai, and any future providers
+        supported_params = provider_config.get_supported_openai_params(model=model)
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = provider_config.map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=drop_params if drop_params is not None else False,
+        )
+    for k in passed_params.keys():  # pass additional kwargs without modification
+        if k not in default_params.keys():
+            optional_params[k] = passed_params[k]
+    return optional_params
+
+
+def get_optional_params_image_gen(
+    model: Optional[str] = None,
+    n: Optional[int] = None,
+    quality: Optional[str] = None,
+    response_format: Optional[str] = None,
+    size: Optional[str] = None,
+    style: Optional[str] = None,
+    user: Optional[str] = None,
+    custom_llm_provider: Optional[str] = None,
+    additional_drop_params: Optional[bool] = None,
+    **kwargs,
+):
+    # retrieve all parameters passed to the function
+    passed_params = locals()
+    model = passed_params.pop("model", None)
+    custom_llm_provider = passed_params.pop("custom_llm_provider")
+    additional_drop_params = passed_params.pop("additional_drop_params", None)
+    special_params = passed_params.pop("kwargs")
+    for k, v in special_params.items():
+        if k.startswith("aws_") and (
+            custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker"
+        ):  # allow dynamically setting boto3 init logic
+            continue
+        elif k == "hf_model_name" and custom_llm_provider != "sagemaker":
+            continue
+        elif (
+            k.startswith("vertex_")
+            and custom_llm_provider != "vertex_ai"
+            and custom_llm_provider != "vertex_ai_beta"
+        ):  # allow dynamically setting vertex ai init logic
+            continue
+        passed_params[k] = v
+
+    default_params = {
+        "n": None,
+        "quality": None,
+        "response_format": None,
+        "size": None,
+        "style": None,
+        "user": None,
+    }
+
+    non_default_params = _get_non_default_params(
+        passed_params=passed_params,
+        default_params=default_params,
+        additional_drop_params=additional_drop_params,
+    )
+    optional_params = {}
+
+    ## raise exception if non-default value passed for non-openai/azure embedding calls
+    def _check_valid_arg(supported_params):
+        if len(non_default_params.keys()) > 0:
+            keys = list(non_default_params.keys())
+            for k in keys:
+                if (
+                    litellm.drop_params is True and k not in supported_params
+                ):  # drop the unsupported non-default values
+                    non_default_params.pop(k, None)
+                elif k not in supported_params:
+                    raise UnsupportedParamsError(
+                        status_code=500,
+                        message=f"Setting `{k}` is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
+                    )
+            return non_default_params
+
+    if (
+        custom_llm_provider == "openai"
+        or custom_llm_provider == "azure"
+        or custom_llm_provider in litellm.openai_compatible_providers
+    ):
+        optional_params = non_default_params
+    elif custom_llm_provider == "bedrock":
+        # use stability3 config class if model is a stability3 model
+        config_class = (
+            litellm.AmazonStability3Config
+            if litellm.AmazonStability3Config._is_stability_3_model(model=model)
+            else (
+                litellm.AmazonNovaCanvasConfig
+                if litellm.AmazonNovaCanvasConfig._is_nova_model(model=model)
+                else litellm.AmazonStabilityConfig
+            )
+        )
+        supported_params = config_class.get_supported_openai_params(model=model)
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = config_class.map_openai_params(
+            non_default_params=non_default_params, optional_params={}
+        )
+    elif custom_llm_provider == "vertex_ai":
+        supported_params = ["n"]
+        """
+        All params here: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/imagegeneration?project=adroit-crow-413218
+        """
+        _check_valid_arg(supported_params=supported_params)
+        if n is not None:
+            optional_params["sampleCount"] = int(n)
+
+    for k in passed_params.keys():
+        if k not in default_params.keys():
+            optional_params[k] = passed_params[k]
+    return optional_params
+
+
+def get_optional_params_embeddings(  # noqa: PLR0915
+    # 2 optional params
+    model: str,
+    user: Optional[str] = None,
+    encoding_format: Optional[str] = None,
+    dimensions: Optional[int] = None,
+    custom_llm_provider="",
+    drop_params: Optional[bool] = None,
+    additional_drop_params: Optional[bool] = None,
+    **kwargs,
+):
+    # retrieve all parameters passed to the function
+    passed_params = locals()
+    custom_llm_provider = passed_params.pop("custom_llm_provider", None)
+    special_params = passed_params.pop("kwargs")
+    for k, v in special_params.items():
+        passed_params[k] = v
+
+    drop_params = passed_params.pop("drop_params", None)
+    additional_drop_params = passed_params.pop("additional_drop_params", None)
+
+    default_params = {"user": None, "encoding_format": None, "dimensions": None}
+
+    def _check_valid_arg(supported_params: Optional[list]):
+        if supported_params is None:
+            return
+        unsupported_params = {}
+        for k in non_default_params.keys():
+            if k not in supported_params:
+                unsupported_params[k] = non_default_params[k]
+        if unsupported_params:
+            if litellm.drop_params is True or (
+                drop_params is not None and drop_params is True
+            ):
+                pass
+            else:
+                raise UnsupportedParamsError(
+                    status_code=500,
+                    message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
+                )
+
+    non_default_params = _get_non_default_params(
+        passed_params=passed_params,
+        default_params=default_params,
+        additional_drop_params=additional_drop_params,
+    )
+    ## raise exception if non-default value passed for non-openai/azure embedding calls
+    if custom_llm_provider == "openai":
+        # 'dimensions` is only supported in `text-embedding-3` and later models
+
+        if (
+            model is not None
+            and "text-embedding-3" not in model
+            and "dimensions" in non_default_params.keys()
+        ):
+            raise UnsupportedParamsError(
+                status_code=500,
+                message="Setting dimensions is not supported for OpenAI `text-embedding-3` and later models. To drop it from the call, set `litellm.drop_params = True`.",
+            )
+    elif custom_llm_provider == "triton":
+        supported_params = get_supported_openai_params(
+            model=model,
+            custom_llm_provider=custom_llm_provider,
+            request_type="embeddings",
+        )
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = litellm.TritonEmbeddingConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params={},
+            model=model,
+            drop_params=drop_params if drop_params is not None else False,
+        )
+        final_params = {**optional_params, **kwargs}
+        return final_params
+    elif custom_llm_provider == "databricks":
+        supported_params = get_supported_openai_params(
+            model=model or "",
+            custom_llm_provider="databricks",
+            request_type="embeddings",
+        )
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = litellm.DatabricksEmbeddingConfig().map_openai_params(
+            non_default_params=non_default_params, optional_params={}
+        )
+        final_params = {**optional_params, **kwargs}
+        return final_params
+    elif custom_llm_provider == "nvidia_nim":
+        supported_params = get_supported_openai_params(
+            model=model or "",
+            custom_llm_provider="nvidia_nim",
+            request_type="embeddings",
+        )
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = litellm.nvidiaNimEmbeddingConfig.map_openai_params(
+            non_default_params=non_default_params, optional_params={}, kwargs=kwargs
+        )
+        return optional_params
+    elif custom_llm_provider == "vertex_ai":
+        supported_params = get_supported_openai_params(
+            model=model,
+            custom_llm_provider="vertex_ai",
+            request_type="embeddings",
+        )
+        _check_valid_arg(supported_params=supported_params)
+        (
+            optional_params,
+            kwargs,
+        ) = litellm.VertexAITextEmbeddingConfig().map_openai_params(
+            non_default_params=non_default_params, optional_params={}, kwargs=kwargs
+        )
+        final_params = {**optional_params, **kwargs}
+        return final_params
+    elif custom_llm_provider == "lm_studio":
+        supported_params = (
+            litellm.LmStudioEmbeddingConfig().get_supported_openai_params()
+        )
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = litellm.LmStudioEmbeddingConfig().map_openai_params(
+            non_default_params=non_default_params, optional_params={}
+        )
+        final_params = {**optional_params, **kwargs}
+        return final_params
+    elif custom_llm_provider == "bedrock":
+        # if dimensions is in non_default_params -> pass it for model=bedrock/amazon.titan-embed-text-v2
+        if "amazon.titan-embed-text-v1" in model:
+            object: Any = litellm.AmazonTitanG1Config()
+        elif "amazon.titan-embed-image-v1" in model:
+            object = litellm.AmazonTitanMultimodalEmbeddingG1Config()
+        elif "amazon.titan-embed-text-v2:0" in model:
+            object = litellm.AmazonTitanV2Config()
+        elif "cohere.embed-multilingual-v3" in model:
+            object = litellm.BedrockCohereEmbeddingConfig()
+        else:  # unmapped model
+            supported_params = []
+            _check_valid_arg(supported_params=supported_params)
+            final_params = {**kwargs}
+            return final_params
+
+        supported_params = object.get_supported_openai_params()
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = object.map_openai_params(
+            non_default_params=non_default_params, optional_params={}
+        )
+        final_params = {**optional_params, **kwargs}
+        return final_params
+    elif custom_llm_provider == "mistral":
+        supported_params = get_supported_openai_params(
+            model=model,
+            custom_llm_provider="mistral",
+            request_type="embeddings",
+        )
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = litellm.MistralEmbeddingConfig().map_openai_params(
+            non_default_params=non_default_params, optional_params={}
+        )
+        final_params = {**optional_params, **kwargs}
+        return final_params
+    elif custom_llm_provider == "jina_ai":
+        supported_params = get_supported_openai_params(
+            model=model,
+            custom_llm_provider="jina_ai",
+            request_type="embeddings",
+        )
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = litellm.JinaAIEmbeddingConfig().map_openai_params(
+            non_default_params=non_default_params, optional_params={}
+        )
+        final_params = {**optional_params, **kwargs}
+        return final_params
+    elif custom_llm_provider == "voyage":
+        supported_params = get_supported_openai_params(
+            model=model,
+            custom_llm_provider="voyage",
+            request_type="embeddings",
+        )
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = litellm.VoyageEmbeddingConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params={},
+            model=model,
+            drop_params=drop_params if drop_params is not None else False,
+        )
+        final_params = {**optional_params, **kwargs}
+        return final_params
+    elif custom_llm_provider == "fireworks_ai":
+        supported_params = get_supported_openai_params(
+            model=model,
+            custom_llm_provider="fireworks_ai",
+            request_type="embeddings",
+        )
+        _check_valid_arg(supported_params=supported_params)
+        optional_params = litellm.FireworksAIEmbeddingConfig().map_openai_params(
+            non_default_params=non_default_params, optional_params={}, model=model
+        )
+        final_params = {**optional_params, **kwargs}
+        return final_params
+
+    elif (
+        custom_llm_provider != "openai"
+        and custom_llm_provider != "azure"
+        and custom_llm_provider not in litellm.openai_compatible_providers
+    ):
+        if len(non_default_params.keys()) > 0:
+            if (
+                litellm.drop_params is True or drop_params is True
+            ):  # drop the unsupported non-default values
+                keys = list(non_default_params.keys())
+                for k in keys:
+                    non_default_params.pop(k, None)
+            else:
+                raise UnsupportedParamsError(
+                    status_code=500,
+                    message=f"Setting {non_default_params} is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
+                )
+    final_params = {**non_default_params, **kwargs}
+    return final_params
+
+
+def _remove_additional_properties(schema):
+    """
+    clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240
+
+    Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088
+    """
+    if isinstance(schema, dict):
+        # Remove the 'additionalProperties' key if it exists and is set to False
+        if "additionalProperties" in schema and schema["additionalProperties"] is False:
+            del schema["additionalProperties"]
+
+        # Recursively process all dictionary values
+        for key, value in schema.items():
+            _remove_additional_properties(value)
+
+    elif isinstance(schema, list):
+        # Recursively process all items in the list
+        for item in schema:
+            _remove_additional_properties(item)
+
+    return schema
+
+
+def _remove_strict_from_schema(schema):
+    """
+    Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088
+    """
+    if isinstance(schema, dict):
+        # Remove the 'additionalProperties' key if it exists and is set to False
+        if "strict" in schema:
+            del schema["strict"]
+
+        # Recursively process all dictionary values
+        for key, value in schema.items():
+            _remove_strict_from_schema(value)
+
+    elif isinstance(schema, list):
+        # Recursively process all items in the list
+        for item in schema:
+            _remove_strict_from_schema(item)
+
+    return schema
+
+
+def _remove_unsupported_params(
+    non_default_params: dict, supported_openai_params: Optional[List[str]]
+) -> dict:
+    """
+    Remove unsupported params from non_default_params
+    """
+    remove_keys = []
+    if supported_openai_params is None:
+        return {}  # no supported params, so no optional openai params to send
+    for param in non_default_params.keys():
+        if param not in supported_openai_params:
+            remove_keys.append(param)
+    for key in remove_keys:
+        non_default_params.pop(key, None)
+    return non_default_params
+
+
+def get_optional_params(  # noqa: PLR0915
+    # use the openai defaults
+    # https://platform.openai.com/docs/api-reference/chat/create
+    model: str,
+    functions=None,
+    function_call=None,
+    temperature=None,
+    top_p=None,
+    n=None,
+    stream=False,
+    stream_options=None,
+    stop=None,
+    max_tokens=None,
+    max_completion_tokens=None,
+    modalities=None,
+    prediction=None,
+    audio=None,
+    presence_penalty=None,
+    frequency_penalty=None,
+    logit_bias=None,
+    user=None,
+    custom_llm_provider="",
+    response_format=None,
+    seed=None,
+    tools=None,
+    tool_choice=None,
+    max_retries=None,
+    logprobs=None,
+    top_logprobs=None,
+    extra_headers=None,
+    api_version=None,
+    parallel_tool_calls=None,
+    drop_params=None,
+    reasoning_effort=None,
+    additional_drop_params=None,
+    messages: Optional[List[AllMessageValues]] = None,
+    thinking: Optional[AnthropicThinkingParam] = None,
+    **kwargs,
+):
+    # retrieve all parameters passed to the function
+    passed_params = locals().copy()
+    special_params = passed_params.pop("kwargs")
+    for k, v in special_params.items():
+        if k.startswith("aws_") and (
+            custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker"
+        ):  # allow dynamically setting boto3 init logic
+            continue
+        elif k == "hf_model_name" and custom_llm_provider != "sagemaker":
+            continue
+        elif (
+            k.startswith("vertex_")
+            and custom_llm_provider != "vertex_ai"
+            and custom_llm_provider != "vertex_ai_beta"
+        ):  # allow dynamically setting vertex ai init logic
+            continue
+        passed_params[k] = v
+
+    optional_params: Dict = {}
+
+    common_auth_dict = litellm.common_cloud_provider_auth_params
+    if custom_llm_provider in common_auth_dict["providers"]:
+        """
+        Check if params = ["project", "region_name", "token"]
+        and correctly translate for = ["azure", "vertex_ai", "watsonx", "aws"]
+        """
+        if custom_llm_provider == "azure":
+            optional_params = litellm.AzureOpenAIConfig().map_special_auth_params(
+                non_default_params=passed_params, optional_params=optional_params
+            )
+        elif custom_llm_provider == "bedrock":
+            optional_params = (
+                litellm.AmazonBedrockGlobalConfig().map_special_auth_params(
+                    non_default_params=passed_params, optional_params=optional_params
+                )
+            )
+        elif (
+            custom_llm_provider == "vertex_ai"
+            or custom_llm_provider == "vertex_ai_beta"
+        ):
+            optional_params = litellm.VertexAIConfig().map_special_auth_params(
+                non_default_params=passed_params, optional_params=optional_params
+            )
+        elif custom_llm_provider == "watsonx":
+            optional_params = litellm.IBMWatsonXAIConfig().map_special_auth_params(
+                non_default_params=passed_params, optional_params=optional_params
+            )
+
+    default_params = {
+        "functions": None,
+        "function_call": None,
+        "temperature": None,
+        "top_p": None,
+        "n": None,
+        "stream": None,
+        "stream_options": None,
+        "stop": None,
+        "max_tokens": None,
+        "max_completion_tokens": None,
+        "modalities": None,
+        "prediction": None,
+        "audio": None,
+        "presence_penalty": None,
+        "frequency_penalty": None,
+        "logit_bias": None,
+        "user": None,
+        "model": None,
+        "custom_llm_provider": "",
+        "response_format": None,
+        "seed": None,
+        "tools": None,
+        "tool_choice": None,
+        "max_retries": None,
+        "logprobs": None,
+        "top_logprobs": None,
+        "extra_headers": None,
+        "api_version": None,
+        "parallel_tool_calls": None,
+        "drop_params": None,
+        "additional_drop_params": None,
+        "messages": None,
+        "reasoning_effort": None,
+        "thinking": None,
+    }
+
+    # filter out those parameters that were passed with non-default values
+
+    non_default_params = {
+        k: v
+        for k, v in passed_params.items()
+        if (
+            k != "model"
+            and k != "custom_llm_provider"
+            and k != "api_version"
+            and k != "drop_params"
+            and k != "additional_drop_params"
+            and k != "messages"
+            and k in default_params
+            and v != default_params[k]
+            and _should_drop_param(k=k, additional_drop_params=additional_drop_params)
+            is False
+        )
+    }
+
+    ## raise exception if function calling passed in for a provider that doesn't support it
+    if (
+        "functions" in non_default_params
+        or "function_call" in non_default_params
+        or "tools" in non_default_params
+    ):
+        if (
+            custom_llm_provider == "ollama"
+            and custom_llm_provider != "text-completion-openai"
+            and custom_llm_provider != "azure"
+            and custom_llm_provider != "vertex_ai"
+            and custom_llm_provider != "anyscale"
+            and custom_llm_provider != "together_ai"
+            and custom_llm_provider != "groq"
+            and custom_llm_provider != "nvidia_nim"
+            and custom_llm_provider != "cerebras"
+            and custom_llm_provider != "xai"
+            and custom_llm_provider != "ai21_chat"
+            and custom_llm_provider != "volcengine"
+            and custom_llm_provider != "deepseek"
+            and custom_llm_provider != "codestral"
+            and custom_llm_provider != "mistral"
+            and custom_llm_provider != "anthropic"
+            and custom_llm_provider != "cohere_chat"
+            and custom_llm_provider != "cohere"
+            and custom_llm_provider != "bedrock"
+            and custom_llm_provider != "ollama_chat"
+            and custom_llm_provider != "openrouter"
+            and custom_llm_provider not in litellm.openai_compatible_providers
+        ):
+            if custom_llm_provider == "ollama":
+                # ollama actually supports json output
+                optional_params["format"] = "json"
+                litellm.add_function_to_prompt = (
+                    True  # so that main.py adds the function call to the prompt
+                )
+                if "tools" in non_default_params:
+                    optional_params["functions_unsupported_model"] = (
+                        non_default_params.pop("tools")
+                    )
+                    non_default_params.pop(
+                        "tool_choice", None
+                    )  # causes ollama requests to hang
+                elif "functions" in non_default_params:
+                    optional_params["functions_unsupported_model"] = (
+                        non_default_params.pop("functions")
+                    )
+            elif (
+                litellm.add_function_to_prompt
+            ):  # if user opts to add it to prompt instead
+                optional_params["functions_unsupported_model"] = non_default_params.pop(
+                    "tools", non_default_params.pop("functions", None)
+                )
+            else:
+                raise UnsupportedParamsError(
+                    status_code=500,
+                    message=f"Function calling is not supported by {custom_llm_provider}.",
+                )
+
+    provider_config: Optional[BaseConfig] = None
+    if custom_llm_provider is not None and custom_llm_provider in [
+        provider.value for provider in LlmProviders
+    ]:
+        provider_config = ProviderConfigManager.get_provider_chat_config(
+            model=model, provider=LlmProviders(custom_llm_provider)
+        )
+
+    if "response_format" in non_default_params:
+        if provider_config is not None:
+            non_default_params["response_format"] = (
+                provider_config.get_json_schema_from_pydantic_object(
+                    response_format=non_default_params["response_format"]
+                )
+            )
+        else:
+            non_default_params["response_format"] = type_to_response_format_param(
+                response_format=non_default_params["response_format"]
+            )
+
+    if "tools" in non_default_params and isinstance(
+        non_default_params, list
+    ):  # fixes https://github.com/BerriAI/litellm/issues/4933
+        tools = non_default_params["tools"]
+        for (
+            tool
+        ) in (
+            tools
+        ):  # clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240
+            tool_function = tool.get("function", {})
+            parameters = tool_function.get("parameters", None)
+            if parameters is not None:
+                new_parameters = copy.deepcopy(parameters)
+                if (
+                    "additionalProperties" in new_parameters
+                    and new_parameters["additionalProperties"] is False
+                ):
+                    new_parameters.pop("additionalProperties", None)
+                tool_function["parameters"] = new_parameters
+
+    def _check_valid_arg(supported_params: List[str]):
+        verbose_logger.info(
+            f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}"
+        )
+        verbose_logger.debug(
+            f"\nLiteLLM: Params passed to completion() {passed_params}"
+        )
+        verbose_logger.debug(
+            f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}"
+        )
+        unsupported_params = {}
+        for k in non_default_params.keys():
+            if k not in supported_params:
+                if k == "user" or k == "stream_options" or k == "stream":
+                    continue
+                if k == "n" and n == 1:  # langchain sends n=1 as a default value
+                    continue  # skip this param
+                if (
+                    k == "max_retries"
+                ):  # TODO: This is a patch. We support max retries for OpenAI, Azure. For non OpenAI LLMs we need to add support for max retries
+                    continue  # skip this param
+                # Always keeps this in elif code blocks
+                else:
+                    unsupported_params[k] = non_default_params[k]
+
+        if unsupported_params:
+            if litellm.drop_params is True or (
+                drop_params is not None and drop_params is True
+            ):
+                for k in unsupported_params.keys():
+                    non_default_params.pop(k, None)
+            else:
+                raise UnsupportedParamsError(
+                    status_code=500,
+                    message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
+                )
+
+    supported_params = get_supported_openai_params(
+        model=model, custom_llm_provider=custom_llm_provider
+    )
+    if supported_params is None:
+        supported_params = get_supported_openai_params(
+            model=model, custom_llm_provider="openai"
+        )
+    _check_valid_arg(supported_params=supported_params or [])
+    ## raise exception if provider doesn't support passed in param
+    if custom_llm_provider == "anthropic":
+        ## check if unsupported param passed in
+        optional_params = litellm.AnthropicConfig().map_openai_params(
+            model=model,
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "anthropic_text":
+        optional_params = litellm.AnthropicTextConfig().map_openai_params(
+            model=model,
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+        optional_params = litellm.AnthropicTextConfig().map_openai_params(
+            model=model,
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+
+    elif custom_llm_provider == "cohere":
+        ## check if unsupported param passed in
+        # handle cohere params
+        optional_params = litellm.CohereConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "cohere_chat":
+        # handle cohere params
+        optional_params = litellm.CohereChatConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "triton":
+        optional_params = litellm.TritonConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=drop_params if drop_params is not None else False,
+        )
+
+    elif custom_llm_provider == "maritalk":
+        optional_params = litellm.MaritalkConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "replicate":
+
+        optional_params = litellm.ReplicateConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "predibase":
+        optional_params = litellm.PredibaseConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "huggingface":
+        optional_params = litellm.HuggingfaceConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "together_ai":
+
+        optional_params = litellm.TogetherAIConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "vertex_ai" and (
+        model in litellm.vertex_chat_models
+        or model in litellm.vertex_code_chat_models
+        or model in litellm.vertex_text_models
+        or model in litellm.vertex_code_text_models
+        or model in litellm.vertex_language_models
+        or model in litellm.vertex_vision_models
+    ):
+        optional_params = litellm.VertexGeminiConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+
+    elif custom_llm_provider == "gemini":
+        optional_params = litellm.GoogleAIStudioGeminiConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "vertex_ai_beta" or (
+        custom_llm_provider == "vertex_ai" and "gemini" in model
+    ):
+        optional_params = litellm.VertexGeminiConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif litellm.VertexAIAnthropicConfig.is_supported_model(
+        model=model, custom_llm_provider=custom_llm_provider
+    ):
+        optional_params = litellm.VertexAIAnthropicConfig().map_openai_params(
+            model=model,
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "vertex_ai":
+
+        if model in litellm.vertex_mistral_models:
+            if "codestral" in model:
+                optional_params = (
+                    litellm.CodestralTextCompletionConfig().map_openai_params(
+                        model=model,
+                        non_default_params=non_default_params,
+                        optional_params=optional_params,
+                        drop_params=(
+                            drop_params
+                            if drop_params is not None and isinstance(drop_params, bool)
+                            else False
+                        ),
+                    )
+                )
+            else:
+                optional_params = litellm.MistralConfig().map_openai_params(
+                    model=model,
+                    non_default_params=non_default_params,
+                    optional_params=optional_params,
+                    drop_params=(
+                        drop_params
+                        if drop_params is not None and isinstance(drop_params, bool)
+                        else False
+                    ),
+                )
+        elif model in litellm.vertex_ai_ai21_models:
+            optional_params = litellm.VertexAIAi21Config().map_openai_params(
+                non_default_params=non_default_params,
+                optional_params=optional_params,
+                model=model,
+                drop_params=(
+                    drop_params
+                    if drop_params is not None and isinstance(drop_params, bool)
+                    else False
+                ),
+            )
+        else:  # use generic openai-like param mapping
+            optional_params = litellm.VertexAILlama3Config().map_openai_params(
+                non_default_params=non_default_params,
+                optional_params=optional_params,
+                model=model,
+                drop_params=(
+                    drop_params
+                    if drop_params is not None and isinstance(drop_params, bool)
+                    else False
+                ),
+            )
+
+    elif custom_llm_provider == "sagemaker":
+        # temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
+        optional_params = litellm.SagemakerConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "bedrock":
+        bedrock_route = BedrockModelInfo.get_bedrock_route(model)
+        bedrock_base_model = BedrockModelInfo.get_base_model(model)
+        if bedrock_route == "converse" or bedrock_route == "converse_like":
+            optional_params = litellm.AmazonConverseConfig().map_openai_params(
+                model=model,
+                non_default_params=non_default_params,
+                optional_params=optional_params,
+                drop_params=(
+                    drop_params
+                    if drop_params is not None and isinstance(drop_params, bool)
+                    else False
+                ),
+                messages=messages,
+            )
+
+        elif "anthropic" in bedrock_base_model and bedrock_route == "invoke":
+            if bedrock_base_model.startswith("anthropic.claude-3"):
+
+                optional_params = (
+                    litellm.AmazonAnthropicClaude3Config().map_openai_params(
+                        non_default_params=non_default_params,
+                        optional_params=optional_params,
+                        model=model,
+                        drop_params=(
+                            drop_params
+                            if drop_params is not None and isinstance(drop_params, bool)
+                            else False
+                        ),
+                    )
+                )
+
+            else:
+                optional_params = litellm.AmazonAnthropicConfig().map_openai_params(
+                    non_default_params=non_default_params,
+                    optional_params=optional_params,
+                    model=model,
+                    drop_params=(
+                        drop_params
+                        if drop_params is not None and isinstance(drop_params, bool)
+                        else False
+                    ),
+                )
+        elif provider_config is not None:
+            optional_params = provider_config.map_openai_params(
+                non_default_params=non_default_params,
+                optional_params=optional_params,
+                model=model,
+                drop_params=(
+                    drop_params
+                    if drop_params is not None and isinstance(drop_params, bool)
+                    else False
+                ),
+            )
+    elif custom_llm_provider == "cloudflare":
+
+        optional_params = litellm.CloudflareChatConfig().map_openai_params(
+            model=model,
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "ollama":
+
+        optional_params = litellm.OllamaConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "ollama_chat":
+
+        optional_params = litellm.OllamaChatConfig().map_openai_params(
+            model=model,
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "nlp_cloud":
+        optional_params = litellm.NLPCloudConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+
+    elif custom_llm_provider == "petals":
+        optional_params = litellm.PetalsConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "deepinfra":
+        optional_params = litellm.DeepInfraConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "perplexity" and provider_config is not None:
+        optional_params = provider_config.map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "mistral" or custom_llm_provider == "codestral":
+        optional_params = litellm.MistralConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "text-completion-codestral":
+        optional_params = litellm.CodestralTextCompletionConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+
+    elif custom_llm_provider == "databricks":
+        optional_params = litellm.DatabricksConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "nvidia_nim":
+        optional_params = litellm.NvidiaNimConfig().map_openai_params(
+            model=model,
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "cerebras":
+        optional_params = litellm.CerebrasConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "xai":
+        optional_params = litellm.XAIChatConfig().map_openai_params(
+            model=model,
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+        )
+    elif custom_llm_provider == "ai21_chat" or custom_llm_provider == "ai21":
+        optional_params = litellm.AI21ChatConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "fireworks_ai":
+        optional_params = litellm.FireworksAIConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "volcengine":
+        optional_params = litellm.VolcEngineConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "hosted_vllm":
+        optional_params = litellm.HostedVLLMChatConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "vllm":
+        optional_params = litellm.VLLMConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "groq":
+        optional_params = litellm.GroqChatConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "deepseek":
+        optional_params = litellm.OpenAIConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "openrouter":
+        optional_params = litellm.OpenrouterConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+
+    elif custom_llm_provider == "watsonx":
+        optional_params = litellm.IBMWatsonXChatConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+        # WatsonX-text param check
+        for param in passed_params.keys():
+            if litellm.IBMWatsonXAIConfig().is_watsonx_text_param(param):
+                raise ValueError(
+                    f"LiteLLM now defaults to Watsonx's `/text/chat` endpoint. Please use the `watsonx_text` provider instead, to call the `/text/generation` endpoint. Param: {param}"
+                )
+    elif custom_llm_provider == "watsonx_text":
+        optional_params = litellm.IBMWatsonXAIConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "openai":
+        optional_params = litellm.OpenAIConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    elif custom_llm_provider == "azure":
+        if litellm.AzureOpenAIO1Config().is_o_series_model(model=model):
+            optional_params = litellm.AzureOpenAIO1Config().map_openai_params(
+                non_default_params=non_default_params,
+                optional_params=optional_params,
+                model=model,
+                drop_params=(
+                    drop_params
+                    if drop_params is not None and isinstance(drop_params, bool)
+                    else False
+                ),
+            )
+        else:
+            verbose_logger.debug(
+                "Azure optional params - api_version: api_version={}, litellm.api_version={}, os.environ['AZURE_API_VERSION']={}".format(
+                    api_version, litellm.api_version, get_secret("AZURE_API_VERSION")
+                )
+            )
+            api_version = (
+                api_version
+                or litellm.api_version
+                or get_secret("AZURE_API_VERSION")
+                or litellm.AZURE_DEFAULT_API_VERSION
+            )
+            optional_params = litellm.AzureOpenAIConfig().map_openai_params(
+                non_default_params=non_default_params,
+                optional_params=optional_params,
+                model=model,
+                api_version=api_version,  # type: ignore
+                drop_params=(
+                    drop_params
+                    if drop_params is not None and isinstance(drop_params, bool)
+                    else False
+                ),
+            )
+    else:  # assume passing in params for openai-like api
+        optional_params = litellm.OpenAILikeChatConfig().map_openai_params(
+            non_default_params=non_default_params,
+            optional_params=optional_params,
+            model=model,
+            drop_params=(
+                drop_params
+                if drop_params is not None and isinstance(drop_params, bool)
+                else False
+            ),
+        )
+    if (
+        custom_llm_provider
+        in ["openai", "azure", "text-completion-openai"]
+        + litellm.openai_compatible_providers
+    ):
+        # for openai, azure we should pass the extra/passed params within `extra_body` https://github.com/openai/openai-python/blob/ac33853ba10d13ac149b1fa3ca6dba7d613065c9/src/openai/resources/models.py#L46
+        if (
+            _should_drop_param(
+                k="extra_body", additional_drop_params=additional_drop_params
+            )
+            is False
+        ):
+            extra_body = passed_params.pop("extra_body", {})
+            for k in passed_params.keys():
+                if k not in default_params.keys():
+                    extra_body[k] = passed_params[k]
+            optional_params.setdefault("extra_body", {})
+            optional_params["extra_body"] = {
+                **optional_params["extra_body"],
+                **extra_body,
+            }
+
+            optional_params["extra_body"] = _ensure_extra_body_is_safe(
+                extra_body=optional_params["extra_body"]
+            )
+    else:
+        # if user passed in non-default kwargs for specific providers/models, pass them along
+        for k in passed_params.keys():
+            if k not in default_params.keys():
+                optional_params[k] = passed_params[k]
+    print_verbose(f"Final returned optional params: {optional_params}")
+    return optional_params
+
+
+def get_non_default_params(passed_params: dict) -> dict:
+    default_params = {
+        "functions": None,
+        "function_call": None,
+        "temperature": None,
+        "top_p": None,
+        "n": None,
+        "stream": None,
+        "stream_options": None,
+        "stop": None,
+        "max_tokens": None,
+        "presence_penalty": None,
+        "frequency_penalty": None,
+        "logit_bias": None,
+        "user": None,
+        "model": None,
+        "custom_llm_provider": "",
+        "response_format": None,
+        "seed": None,
+        "tools": None,
+        "tool_choice": None,
+        "max_retries": None,
+        "logprobs": None,
+        "top_logprobs": None,
+        "extra_headers": None,
+    }
+    # filter out those parameters that were passed with non-default values
+    non_default_params = {
+        k: v
+        for k, v in passed_params.items()
+        if (
+            k != "model"
+            and k != "custom_llm_provider"
+            and k in default_params
+            and v != default_params[k]
+        )
+    }
+
+    return non_default_params
+
+
+def calculate_max_parallel_requests(
+    max_parallel_requests: Optional[int],
+    rpm: Optional[int],
+    tpm: Optional[int],
+    default_max_parallel_requests: Optional[int],
+) -> Optional[int]:
+    """
+    Returns the max parallel requests to send to a deployment.
+
+    Used in semaphore for async requests on router.
+
+    Parameters:
+    - max_parallel_requests - Optional[int] - max_parallel_requests allowed for that deployment
+    - rpm - Optional[int] - requests per minute allowed for that deployment
+    - tpm - Optional[int] - tokens per minute allowed for that deployment
+    - default_max_parallel_requests - Optional[int] - default_max_parallel_requests allowed for any deployment
+
+    Returns:
+    - int or None (if all params are None)
+
+    Order:
+    max_parallel_requests > rpm > tpm / 6 (azure formula) > default max_parallel_requests
+
+    Azure RPM formula:
+    6 rpm per 1000 TPM
+    https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits
+
+
+    """
+    if max_parallel_requests is not None:
+        return max_parallel_requests
+    elif rpm is not None:
+        return rpm
+    elif tpm is not None:
+        calculated_rpm = int(tpm / 1000 / 6)
+        if calculated_rpm == 0:
+            calculated_rpm = 1
+        return calculated_rpm
+    elif default_max_parallel_requests is not None:
+        return default_max_parallel_requests
+    return None
+
+
+def _get_order_filtered_deployments(healthy_deployments: List[Dict]) -> List:
+    min_order = min(
+        (
+            deployment["litellm_params"]["order"]
+            for deployment in healthy_deployments
+            if "order" in deployment["litellm_params"]
+        ),
+        default=None,
+    )
+
+    if min_order is not None:
+        filtered_deployments = [
+            deployment
+            for deployment in healthy_deployments
+            if deployment["litellm_params"].get("order") == min_order
+        ]
+
+        return filtered_deployments
+    return healthy_deployments
+
+
+def _get_model_region(
+    custom_llm_provider: str, litellm_params: LiteLLM_Params
+) -> Optional[str]:
+    """
+    Return the region for a model, for a given provider
+    """
+    if custom_llm_provider == "vertex_ai":
+        # check 'vertex_location'
+        vertex_ai_location = (
+            litellm_params.vertex_location
+            or litellm.vertex_location
+            or get_secret("VERTEXAI_LOCATION")
+            or get_secret("VERTEX_LOCATION")
+        )
+        if vertex_ai_location is not None and isinstance(vertex_ai_location, str):
+            return vertex_ai_location
+    elif custom_llm_provider == "bedrock":
+        aws_region_name = litellm_params.aws_region_name
+        if aws_region_name is not None:
+            return aws_region_name
+    elif custom_llm_provider == "watsonx":
+        watsonx_region_name = litellm_params.watsonx_region_name
+        if watsonx_region_name is not None:
+            return watsonx_region_name
+    return litellm_params.region_name
+
+
+def _infer_model_region(litellm_params: LiteLLM_Params) -> Optional[AllowedModelRegion]:
+    """
+    Infer if a model is in the EU or US region
+
+    Returns:
+    - str (region) - "eu" or "us"
+    - None (if region not found)
+    """
+    model, custom_llm_provider, _, _ = litellm.get_llm_provider(
+        model=litellm_params.model, litellm_params=litellm_params
+    )
+
+    model_region = _get_model_region(
+        custom_llm_provider=custom_llm_provider, litellm_params=litellm_params
+    )
+
+    if model_region is None:
+        verbose_logger.debug(
+            "Cannot infer model region for model: {}".format(litellm_params.model)
+        )
+        return None
+
+    if custom_llm_provider == "azure":
+        eu_regions = litellm.AzureOpenAIConfig().get_eu_regions()
+        us_regions = litellm.AzureOpenAIConfig().get_us_regions()
+    elif custom_llm_provider == "vertex_ai":
+        eu_regions = litellm.VertexAIConfig().get_eu_regions()
+        us_regions = litellm.VertexAIConfig().get_us_regions()
+    elif custom_llm_provider == "bedrock":
+        eu_regions = litellm.AmazonBedrockGlobalConfig().get_eu_regions()
+        us_regions = litellm.AmazonBedrockGlobalConfig().get_us_regions()
+    elif custom_llm_provider == "watsonx":
+        eu_regions = litellm.IBMWatsonXAIConfig().get_eu_regions()
+        us_regions = litellm.IBMWatsonXAIConfig().get_us_regions()
+    else:
+        eu_regions = []
+        us_regions = []
+
+    for region in eu_regions:
+        if region in model_region.lower():
+            return "eu"
+    for region in us_regions:
+        if region in model_region.lower():
+            return "us"
+    return None
+
+
+def _is_region_eu(litellm_params: LiteLLM_Params) -> bool:
+    """
+    Return true/false if a deployment is in the EU
+    """
+    if litellm_params.region_name == "eu":
+        return True
+
+    ## Else - try and infer from model region
+    model_region = _infer_model_region(litellm_params=litellm_params)
+    if model_region is not None and model_region == "eu":
+        return True
+    return False
+
+
+def _is_region_us(litellm_params: LiteLLM_Params) -> bool:
+    """
+    Return true/false if a deployment is in the US
+    """
+    if litellm_params.region_name == "us":
+        return True
+
+    ## Else - try and infer from model region
+    model_region = _infer_model_region(litellm_params=litellm_params)
+    if model_region is not None and model_region == "us":
+        return True
+    return False
+
+
+def is_region_allowed(
+    litellm_params: LiteLLM_Params, allowed_model_region: str
+) -> bool:
+    """
+    Return true/false if a deployment is in the EU
+    """
+    if litellm_params.region_name == allowed_model_region:
+        return True
+    return False
+
+
+def get_model_region(
+    litellm_params: LiteLLM_Params, mode: Optional[str]
+) -> Optional[str]:
+    """
+    Pass the litellm params for an azure model, and get back the region
+    """
+    if (
+        "azure" in litellm_params.model
+        and isinstance(litellm_params.api_key, str)
+        and isinstance(litellm_params.api_base, str)
+    ):
+        _model = litellm_params.model.replace("azure/", "")
+        response: dict = litellm.AzureChatCompletion().get_headers(
+            model=_model,
+            api_key=litellm_params.api_key,
+            api_base=litellm_params.api_base,
+            api_version=litellm_params.api_version or litellm.AZURE_DEFAULT_API_VERSION,
+            timeout=10,
+            mode=mode or "chat",
+        )
+
+        region: Optional[str] = response.get("x-ms-region", None)
+        return region
+    return None
+
+
+def get_first_chars_messages(kwargs: dict) -> str:
+    try:
+        _messages = kwargs.get("messages")
+        _messages = str(_messages)[:100]
+        return _messages
+    except Exception:
+        return ""
+
+
+def _count_characters(text: str) -> int:
+    # Remove white spaces and count characters
+    filtered_text = "".join(char for char in text if not char.isspace())
+    return len(filtered_text)
+
+
+def get_response_string(response_obj: Union[ModelResponse, ModelResponseStream]) -> str:
+    _choices: Union[List[Union[Choices, StreamingChoices]], List[StreamingChoices]] = (
+        response_obj.choices
+    )
+
+    response_str = ""
+    for choice in _choices:
+        if isinstance(choice, Choices):
+            if choice.message.content is not None:
+                response_str += choice.message.content
+        elif isinstance(choice, StreamingChoices):
+            if choice.delta.content is not None:
+                response_str += choice.delta.content
+
+    return response_str
+
+
+def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]):
+    api_key = dynamic_api_key or litellm.api_key
+    # openai
+    if llm_provider == "openai" or llm_provider == "text-completion-openai":
+        api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
+    # anthropic
+    elif llm_provider == "anthropic" or llm_provider == "anthropic_text":
+        api_key = api_key or litellm.anthropic_key or get_secret("ANTHROPIC_API_KEY")
+    # ai21
+    elif llm_provider == "ai21":
+        api_key = api_key or litellm.ai21_key or get_secret("AI211_API_KEY")
+    # aleph_alpha
+    elif llm_provider == "aleph_alpha":
+        api_key = (
+            api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY")
+        )
+    # baseten
+    elif llm_provider == "baseten":
+        api_key = api_key or litellm.baseten_key or get_secret("BASETEN_API_KEY")
+    # cohere
+    elif llm_provider == "cohere" or llm_provider == "cohere_chat":
+        api_key = api_key or litellm.cohere_key or get_secret("COHERE_API_KEY")
+    # huggingface
+    elif llm_provider == "huggingface":
+        api_key = (
+            api_key or litellm.huggingface_key or get_secret("HUGGINGFACE_API_KEY")
+        )
+    # nlp_cloud
+    elif llm_provider == "nlp_cloud":
+        api_key = api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY")
+    # replicate
+    elif llm_provider == "replicate":
+        api_key = api_key or litellm.replicate_key or get_secret("REPLICATE_API_KEY")
+    # together_ai
+    elif llm_provider == "together_ai":
+        api_key = (
+            api_key
+            or litellm.togetherai_api_key
+            or get_secret("TOGETHERAI_API_KEY")
+            or get_secret("TOGETHER_AI_TOKEN")
+        )
+    return api_key
+
+
+def get_utc_datetime():
+    import datetime as dt
+    from datetime import datetime
+
+    if hasattr(dt, "UTC"):
+        return datetime.now(dt.UTC)  # type: ignore
+    else:
+        return datetime.utcnow()  # type: ignore
+
+
+def get_max_tokens(model: str) -> Optional[int]:
+    """
+    Get the maximum number of output tokens allowed for a given model.
+
+    Parameters:
+    model (str): The name of the model.
+
+    Returns:
+        int: The maximum number of tokens allowed for the given model.
+
+    Raises:
+        Exception: If the model is not mapped yet.
+
+    Example:
+        >>> get_max_tokens("gpt-4")
+        8192
+    """
+
+    def _get_max_position_embeddings(model_name):
+        # Construct the URL for the config.json file
+        config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
+        try:
+            # Make the HTTP request to get the raw JSON file
+            response = litellm.module_level_client.get(config_url)
+            response.raise_for_status()  # Raise an exception for bad responses (4xx or 5xx)
+
+            # Parse the JSON response
+            config_json = response.json()
+            # Extract and return the max_position_embeddings
+            max_position_embeddings = config_json.get("max_position_embeddings")
+            if max_position_embeddings is not None:
+                return max_position_embeddings
+            else:
+                return None
+        except Exception:
+            return None
+
+    try:
+        if model in litellm.model_cost:
+            if "max_output_tokens" in litellm.model_cost[model]:
+                return litellm.model_cost[model]["max_output_tokens"]
+            elif "max_tokens" in litellm.model_cost[model]:
+                return litellm.model_cost[model]["max_tokens"]
+        model, custom_llm_provider, _, _ = get_llm_provider(model=model)
+        if custom_llm_provider == "huggingface":
+            max_tokens = _get_max_position_embeddings(model_name=model)
+            return max_tokens
+        if model in litellm.model_cost:  # check if extracted model is in model_list
+            if "max_output_tokens" in litellm.model_cost[model]:
+                return litellm.model_cost[model]["max_output_tokens"]
+            elif "max_tokens" in litellm.model_cost[model]:
+                return litellm.model_cost[model]["max_tokens"]
+        else:
+            raise Exception()
+        return None
+    except Exception:
+        raise Exception(
+            f"Model {model} isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
+        )
+
+
+def _strip_stable_vertex_version(model_name) -> str:
+    return re.sub(r"-\d+$", "", model_name)
+
+
+def _get_base_bedrock_model(model_name) -> str:
+    """
+    Get the base model from the given model name.
+
+    Handle model names like - "us.meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
+    AND "meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
+    """
+    from litellm.llms.bedrock.common_utils import BedrockModelInfo
+
+    return BedrockModelInfo.get_base_model(model_name)
+
+
+def _strip_openai_finetune_model_name(model_name: str) -> str:
+    """
+    Strips the organization, custom suffix, and ID from an OpenAI fine-tuned model name.
+
+    input: ft:gpt-3.5-turbo:my-org:custom_suffix:id
+    output: ft:gpt-3.5-turbo
+
+    Args:
+    model_name (str): The full model name
+
+    Returns:
+    str: The stripped model name
+    """
+    return re.sub(r"(:[^:]+){3}$", "", model_name)
+
+
+def _strip_model_name(model: str, custom_llm_provider: Optional[str]) -> str:
+    if custom_llm_provider and custom_llm_provider == "bedrock":
+        stripped_bedrock_model = _get_base_bedrock_model(model_name=model)
+        return stripped_bedrock_model
+    elif custom_llm_provider and (
+        custom_llm_provider == "vertex_ai" or custom_llm_provider == "gemini"
+    ):
+        strip_version = _strip_stable_vertex_version(model_name=model)
+        return strip_version
+    elif custom_llm_provider and (custom_llm_provider == "databricks"):
+        strip_version = _strip_stable_vertex_version(model_name=model)
+        return strip_version
+    elif "ft:" in model:
+        strip_finetune = _strip_openai_finetune_model_name(model_name=model)
+        return strip_finetune
+    else:
+        return model
+
+
+def _get_model_info_from_model_cost(key: str) -> dict:
+    return litellm.model_cost[key]
+
+
+def _check_provider_match(model_info: dict, custom_llm_provider: Optional[str]) -> bool:
+    """
+    Check if the model info provider matches the custom provider.
+    """
+    if custom_llm_provider and (
+        "litellm_provider" in model_info
+        and model_info["litellm_provider"] != custom_llm_provider
+    ):
+        if custom_llm_provider == "vertex_ai" and model_info[
+            "litellm_provider"
+        ].startswith("vertex_ai"):
+            return True
+        elif custom_llm_provider == "fireworks_ai" and model_info[
+            "litellm_provider"
+        ].startswith("fireworks_ai"):
+            return True
+        elif custom_llm_provider.startswith("bedrock") and model_info[
+            "litellm_provider"
+        ].startswith("bedrock"):
+            return True
+        else:
+            return False
+
+    return True
+
+
+from typing import TypedDict
+
+
+class PotentialModelNamesAndCustomLLMProvider(TypedDict):
+    split_model: str
+    combined_model_name: str
+    stripped_model_name: str
+    combined_stripped_model_name: str
+    custom_llm_provider: str
+
+
+def _get_potential_model_names(
+    model: str, custom_llm_provider: Optional[str]
+) -> PotentialModelNamesAndCustomLLMProvider:
+    if custom_llm_provider is None:
+        # Get custom_llm_provider
+        try:
+            split_model, custom_llm_provider, _, _ = get_llm_provider(model=model)
+        except Exception:
+            split_model = model
+        combined_model_name = model
+        stripped_model_name = _strip_model_name(
+            model=model, custom_llm_provider=custom_llm_provider
+        )
+        combined_stripped_model_name = stripped_model_name
+    elif custom_llm_provider and model.startswith(
+        custom_llm_provider + "/"
+    ):  # handle case where custom_llm_provider is provided and model starts with custom_llm_provider
+        split_model = model.split("/", 1)[1]
+        combined_model_name = model
+        stripped_model_name = _strip_model_name(
+            model=split_model, custom_llm_provider=custom_llm_provider
+        )
+        combined_stripped_model_name = "{}/{}".format(
+            custom_llm_provider, stripped_model_name
+        )
+    else:
+        split_model = model
+        combined_model_name = "{}/{}".format(custom_llm_provider, model)
+        stripped_model_name = _strip_model_name(
+            model=model, custom_llm_provider=custom_llm_provider
+        )
+        combined_stripped_model_name = "{}/{}".format(
+            custom_llm_provider,
+            stripped_model_name,
+        )
+
+    return PotentialModelNamesAndCustomLLMProvider(
+        split_model=split_model,
+        combined_model_name=combined_model_name,
+        stripped_model_name=stripped_model_name,
+        combined_stripped_model_name=combined_stripped_model_name,
+        custom_llm_provider=cast(str, custom_llm_provider),
+    )
+
+
+def _get_max_position_embeddings(model_name: str) -> Optional[int]:
+    # Construct the URL for the config.json file
+    config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
+
+    try:
+        # Make the HTTP request to get the raw JSON file
+        response = litellm.module_level_client.get(config_url)
+        response.raise_for_status()  # Raise an exception for bad responses (4xx or 5xx)
+
+        # Parse the JSON response
+        config_json = response.json()
+
+        # Extract and return the max_position_embeddings
+        max_position_embeddings = config_json.get("max_position_embeddings")
+
+        if max_position_embeddings is not None:
+            return max_position_embeddings
+        else:
+            return None
+    except Exception:
+        return None
+
+
+def _cached_get_model_info_helper(
+    model: str, custom_llm_provider: Optional[str]
+) -> ModelInfoBase:
+    """
+    _get_model_info_helper wrapped with lru_cache
+
+    Speed Optimization to hit high RPS
+    """
+    return _get_model_info_helper(model=model, custom_llm_provider=custom_llm_provider)
+
+
+def get_provider_info(
+    model: str, custom_llm_provider: Optional[str]
+) -> Optional[ProviderSpecificModelInfo]:
+    ## PROVIDER-SPECIFIC INFORMATION
+    # if custom_llm_provider == "predibase":
+    #     _model_info["supports_response_schema"] = True
+    provider_config: Optional[BaseLLMModelInfo] = None
+    if custom_llm_provider and custom_llm_provider in LlmProvidersSet:
+        # Check if the provider string exists in LlmProviders enum
+        provider_config = ProviderConfigManager.get_provider_model_info(
+            model=model, provider=LlmProviders(custom_llm_provider)
+        )
+
+    model_info: Optional[ProviderSpecificModelInfo] = None
+    if provider_config:
+        model_info = provider_config.get_provider_info(model=model)
+
+    return model_info
+
+
+def _get_model_info_helper(  # noqa: PLR0915
+    model: str, custom_llm_provider: Optional[str] = None
+) -> ModelInfoBase:
+    """
+    Helper for 'get_model_info'. Separated out to avoid infinite loop caused by returning 'supported_openai_param's
+    """
+    try:
+        azure_llms = {**litellm.azure_llms, **litellm.azure_embedding_models}
+        if model in azure_llms:
+            model = azure_llms[model]
+        if custom_llm_provider is not None and custom_llm_provider == "vertex_ai_beta":
+            custom_llm_provider = "vertex_ai"
+        if custom_llm_provider is not None and custom_llm_provider == "vertex_ai":
+            if "meta/" + model in litellm.vertex_llama3_models:
+                model = "meta/" + model
+            elif model + "@latest" in litellm.vertex_mistral_models:
+                model = model + "@latest"
+            elif model + "@latest" in litellm.vertex_ai_ai21_models:
+                model = model + "@latest"
+        ##########################
+        potential_model_names = _get_potential_model_names(
+            model=model, custom_llm_provider=custom_llm_provider
+        )
+
+        verbose_logger.debug(
+            f"checking potential_model_names in litellm.model_cost: {potential_model_names}"
+        )
+
+        combined_model_name = potential_model_names["combined_model_name"]
+        stripped_model_name = potential_model_names["stripped_model_name"]
+        combined_stripped_model_name = potential_model_names[
+            "combined_stripped_model_name"
+        ]
+        split_model = potential_model_names["split_model"]
+        custom_llm_provider = potential_model_names["custom_llm_provider"]
+        #########################
+        if custom_llm_provider == "huggingface":
+            max_tokens = _get_max_position_embeddings(model_name=model)
+            return ModelInfoBase(
+                key=model,
+                max_tokens=max_tokens,  # type: ignore
+                max_input_tokens=None,
+                max_output_tokens=None,
+                input_cost_per_token=0,
+                output_cost_per_token=0,
+                litellm_provider="huggingface",
+                mode="chat",
+                supports_system_messages=None,
+                supports_response_schema=None,
+                supports_function_calling=None,
+                supports_tool_choice=None,
+                supports_assistant_prefill=None,
+                supports_prompt_caching=None,
+                supports_pdf_input=None,
+            )
+        elif custom_llm_provider == "ollama" or custom_llm_provider == "ollama_chat":
+            return litellm.OllamaConfig().get_model_info(model)
+        else:
+            """
+            Check if: (in order of specificity)
+            1. 'custom_llm_provider/model' in litellm.model_cost. Checks "groq/llama3-8b-8192" if model="llama3-8b-8192" and custom_llm_provider="groq"
+            2. 'model' in litellm.model_cost. Checks "gemini-1.5-pro-002" in  litellm.model_cost if model="gemini-1.5-pro-002" and custom_llm_provider=None
+            3. 'combined_stripped_model_name' in litellm.model_cost. Checks if 'gemini/gemini-1.5-flash' in model map, if 'gemini/gemini-1.5-flash-001' given.
+            4. 'stripped_model_name' in litellm.model_cost. Checks if 'ft:gpt-3.5-turbo' in model map, if 'ft:gpt-3.5-turbo:my-org:custom_suffix:id' given.
+            5. 'split_model' in litellm.model_cost. Checks "llama3-8b-8192" in litellm.model_cost if model="groq/llama3-8b-8192"
+            """
+
+            _model_info: Optional[Dict[str, Any]] = None
+            key: Optional[str] = None
+
+            if combined_model_name in litellm.model_cost:
+                key = combined_model_name
+                _model_info = _get_model_info_from_model_cost(key=key)
+                if not _check_provider_match(
+                    model_info=_model_info, custom_llm_provider=custom_llm_provider
+                ):
+                    _model_info = None
+            if _model_info is None and model in litellm.model_cost:
+
+                key = model
+                _model_info = _get_model_info_from_model_cost(key=key)
+                if not _check_provider_match(
+                    model_info=_model_info, custom_llm_provider=custom_llm_provider
+                ):
+                    _model_info = None
+            if (
+                _model_info is None
+                and combined_stripped_model_name in litellm.model_cost
+            ):
+
+                key = combined_stripped_model_name
+                _model_info = _get_model_info_from_model_cost(key=key)
+                if not _check_provider_match(
+                    model_info=_model_info, custom_llm_provider=custom_llm_provider
+                ):
+                    _model_info = None
+            if _model_info is None and stripped_model_name in litellm.model_cost:
+
+                key = stripped_model_name
+                _model_info = _get_model_info_from_model_cost(key=key)
+                if not _check_provider_match(
+                    model_info=_model_info, custom_llm_provider=custom_llm_provider
+                ):
+                    _model_info = None
+            if _model_info is None and split_model in litellm.model_cost:
+
+                key = split_model
+                _model_info = _get_model_info_from_model_cost(key=key)
+                if not _check_provider_match(
+                    model_info=_model_info, custom_llm_provider=custom_llm_provider
+                ):
+                    _model_info = None
+
+            if _model_info is None or key is None:
+                raise ValueError(
+                    "This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
+                )
+
+            _input_cost_per_token: Optional[float] = _model_info.get(
+                "input_cost_per_token"
+            )
+            if _input_cost_per_token is None:
+                # default value to 0, be noisy about this
+                verbose_logger.debug(
+                    "model={}, custom_llm_provider={} has no input_cost_per_token in model_cost_map. Defaulting to 0.".format(
+                        model, custom_llm_provider
+                    )
+                )
+                _input_cost_per_token = 0
+
+            _output_cost_per_token: Optional[float] = _model_info.get(
+                "output_cost_per_token"
+            )
+            if _output_cost_per_token is None:
+                # default value to 0, be noisy about this
+                verbose_logger.debug(
+                    "model={}, custom_llm_provider={} has no output_cost_per_token in model_cost_map. Defaulting to 0.".format(
+                        model, custom_llm_provider
+                    )
+                )
+                _output_cost_per_token = 0
+
+            return ModelInfoBase(
+                key=key,
+                max_tokens=_model_info.get("max_tokens", None),
+                max_input_tokens=_model_info.get("max_input_tokens", None),
+                max_output_tokens=_model_info.get("max_output_tokens", None),
+                input_cost_per_token=_input_cost_per_token,
+                cache_creation_input_token_cost=_model_info.get(
+                    "cache_creation_input_token_cost", None
+                ),
+                cache_read_input_token_cost=_model_info.get(
+                    "cache_read_input_token_cost", None
+                ),
+                input_cost_per_character=_model_info.get(
+                    "input_cost_per_character", None
+                ),
+                input_cost_per_token_above_128k_tokens=_model_info.get(
+                    "input_cost_per_token_above_128k_tokens", None
+                ),
+                input_cost_per_query=_model_info.get("input_cost_per_query", None),
+                input_cost_per_second=_model_info.get("input_cost_per_second", None),
+                input_cost_per_audio_token=_model_info.get(
+                    "input_cost_per_audio_token", None
+                ),
+                input_cost_per_token_batches=_model_info.get(
+                    "input_cost_per_token_batches"
+                ),
+                output_cost_per_token_batches=_model_info.get(
+                    "output_cost_per_token_batches"
+                ),
+                output_cost_per_token=_output_cost_per_token,
+                output_cost_per_audio_token=_model_info.get(
+                    "output_cost_per_audio_token", None
+                ),
+                output_cost_per_character=_model_info.get(
+                    "output_cost_per_character", None
+                ),
+                output_cost_per_token_above_128k_tokens=_model_info.get(
+                    "output_cost_per_token_above_128k_tokens", None
+                ),
+                output_cost_per_character_above_128k_tokens=_model_info.get(
+                    "output_cost_per_character_above_128k_tokens", None
+                ),
+                output_cost_per_second=_model_info.get("output_cost_per_second", None),
+                output_cost_per_image=_model_info.get("output_cost_per_image", None),
+                output_vector_size=_model_info.get("output_vector_size", None),
+                litellm_provider=_model_info.get(
+                    "litellm_provider", custom_llm_provider
+                ),
+                mode=_model_info.get("mode"),  # type: ignore
+                supports_system_messages=_model_info.get(
+                    "supports_system_messages", None
+                ),
+                supports_response_schema=_model_info.get(
+                    "supports_response_schema", None
+                ),
+                supports_vision=_model_info.get("supports_vision", False),
+                supports_function_calling=_model_info.get(
+                    "supports_function_calling", False
+                ),
+                supports_tool_choice=_model_info.get("supports_tool_choice", False),
+                supports_assistant_prefill=_model_info.get(
+                    "supports_assistant_prefill", False
+                ),
+                supports_prompt_caching=_model_info.get(
+                    "supports_prompt_caching", False
+                ),
+                supports_audio_input=_model_info.get("supports_audio_input", False),
+                supports_audio_output=_model_info.get("supports_audio_output", False),
+                supports_pdf_input=_model_info.get("supports_pdf_input", False),
+                supports_embedding_image_input=_model_info.get(
+                    "supports_embedding_image_input", False
+                ),
+                supports_native_streaming=_model_info.get(
+                    "supports_native_streaming", None
+                ),
+                tpm=_model_info.get("tpm", None),
+                rpm=_model_info.get("rpm", None),
+            )
+    except Exception as e:
+        verbose_logger.debug(f"Error getting model info: {e}")
+        if "OllamaError" in str(e):
+            raise e
+        raise Exception(
+            "This model isn't mapped yet. model={}, custom_llm_provider={}. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json.".format(
+                model, custom_llm_provider
+            )
+        )
+
+
+def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> ModelInfo:
+    """
+    Get a dict for the maximum tokens (context window), input_cost_per_token, output_cost_per_token  for a given model.
+
+    Parameters:
+    - model (str): The name of the model.
+    - custom_llm_provider (str | null): the provider used for the model. If provided, used to check if the litellm model info is for that provider.
+
+    Returns:
+        dict: A dictionary containing the following information:
+            key: Required[str] # the key in litellm.model_cost which is returned
+            max_tokens: Required[Optional[int]]
+            max_input_tokens: Required[Optional[int]]
+            max_output_tokens: Required[Optional[int]]
+            input_cost_per_token: Required[float]
+            input_cost_per_character: Optional[float]  # only for vertex ai models
+            input_cost_per_token_above_128k_tokens: Optional[float]  # only for vertex ai models
+            input_cost_per_character_above_128k_tokens: Optional[
+                float
+            ]  # only for vertex ai models
+            input_cost_per_query: Optional[float] # only for rerank models
+            input_cost_per_image: Optional[float]  # only for vertex ai models
+            input_cost_per_audio_token: Optional[float]
+            input_cost_per_audio_per_second: Optional[float]  # only for vertex ai models
+            input_cost_per_video_per_second: Optional[float]  # only for vertex ai models
+            output_cost_per_token: Required[float]
+            output_cost_per_audio_token: Optional[float]
+            output_cost_per_character: Optional[float]  # only for vertex ai models
+            output_cost_per_token_above_128k_tokens: Optional[
+                float
+            ]  # only for vertex ai models
+            output_cost_per_character_above_128k_tokens: Optional[
+                float
+            ]  # only for vertex ai models
+            output_cost_per_image: Optional[float]
+            output_vector_size: Optional[int]
+            output_cost_per_video_per_second: Optional[float]  # only for vertex ai models
+            output_cost_per_audio_per_second: Optional[float]  # only for vertex ai models
+            litellm_provider: Required[str]
+            mode: Required[
+                Literal[
+                    "completion", "embedding", "image_generation", "chat", "audio_transcription"
+                ]
+            ]
+            supported_openai_params: Required[Optional[List[str]]]
+            supports_system_messages: Optional[bool]
+            supports_response_schema: Optional[bool]
+            supports_vision: Optional[bool]
+            supports_function_calling: Optional[bool]
+            supports_tool_choice: Optional[bool]
+            supports_prompt_caching: Optional[bool]
+            supports_audio_input: Optional[bool]
+            supports_audio_output: Optional[bool]
+            supports_pdf_input: Optional[bool]
+    Raises:
+        Exception: If the model is not mapped yet.
+
+    Example:
+        >>> get_model_info("gpt-4")
+        {
+            "max_tokens": 8192,
+            "input_cost_per_token": 0.00003,
+            "output_cost_per_token": 0.00006,
+            "litellm_provider": "openai",
+            "mode": "chat",
+            "supported_openai_params": ["temperature", "max_tokens", "top_p", "frequency_penalty", "presence_penalty"]
+        }
+    """
+    supported_openai_params = litellm.get_supported_openai_params(
+        model=model, custom_llm_provider=custom_llm_provider
+    )
+
+    _model_info = _get_model_info_helper(
+        model=model,
+        custom_llm_provider=custom_llm_provider,
+    )
+
+    verbose_logger.debug(f"model_info: {_model_info}")
+
+    returned_model_info = ModelInfo(
+        **_model_info, supported_openai_params=supported_openai_params
+    )
+
+    return returned_model_info
+
+
+def json_schema_type(python_type_name: str):
+    """Converts standard python types to json schema types
+
+    Parameters
+    ----------
+    python_type_name : str
+        __name__ of type
+
+    Returns
+    -------
+    str
+        a standard JSON schema type, "string" if not recognized.
+    """
+    python_to_json_schema_types = {
+        str.__name__: "string",
+        int.__name__: "integer",
+        float.__name__: "number",
+        bool.__name__: "boolean",
+        list.__name__: "array",
+        dict.__name__: "object",
+        "NoneType": "null",
+    }
+
+    return python_to_json_schema_types.get(python_type_name, "string")
+
+
+def function_to_dict(input_function):  # noqa: C901
+    """Using type hints and numpy-styled docstring,
+    produce a dictionnary usable for OpenAI function calling
+
+    Parameters
+    ----------
+    input_function : function
+        A function with a numpy-style docstring
+
+    Returns
+    -------
+    dictionnary
+        A dictionnary to add to the list passed to `functions` parameter of `litellm.completion`
+    """
+    # Get function name and docstring
+    try:
+        import inspect
+        from ast import literal_eval
+
+        from numpydoc.docscrape import NumpyDocString
+    except Exception as e:
+        raise e
+
+    name = input_function.__name__
+    docstring = inspect.getdoc(input_function)
+    numpydoc = NumpyDocString(docstring)
+    description = "\n".join([s.strip() for s in numpydoc["Summary"]])
+
+    # Get function parameters and their types from annotations and docstring
+    parameters = {}
+    required_params = []
+    param_info = inspect.signature(input_function).parameters
+
+    for param_name, param in param_info.items():
+        if hasattr(param, "annotation"):
+            param_type = json_schema_type(param.annotation.__name__)
+        else:
+            param_type = None
+        param_description = None
+        param_enum = None
+
+        # Try to extract param description from docstring using numpydoc
+        for param_data in numpydoc["Parameters"]:
+            if param_data.name == param_name:
+                if hasattr(param_data, "type"):
+                    # replace type from docstring rather than annotation
+                    param_type = param_data.type
+                    if "optional" in param_type:
+                        param_type = param_type.split(",")[0]
+                    elif "{" in param_type:
+                        # may represent a set of acceptable values
+                        # translating as enum for function calling
+                        try:
+                            param_enum = str(list(literal_eval(param_type)))
+                            param_type = "string"
+                        except Exception:
+                            pass
+                    param_type = json_schema_type(param_type)
+                param_description = "\n".join([s.strip() for s in param_data.desc])
+
+        param_dict = {
+            "type": param_type,
+            "description": param_description,
+            "enum": param_enum,
+        }
+
+        parameters[param_name] = dict(
+            [(k, v) for k, v in param_dict.items() if isinstance(v, str)]
+        )
+
+        # Check if the parameter has no default value (i.e., it's required)
+        if param.default == param.empty:
+            required_params.append(param_name)
+
+    # Create the dictionary
+    result = {
+        "name": name,
+        "description": description,
+        "parameters": {
+            "type": "object",
+            "properties": parameters,
+        },
+    }
+
+    # Add "required" key if there are required parameters
+    if required_params:
+        result["parameters"]["required"] = required_params
+
+    return result
+
+
+def modify_url(original_url, new_path):
+    url = httpx.URL(original_url)
+    modified_url = url.copy_with(path=new_path)
+    return str(modified_url)
+
+
+def load_test_model(
+    model: str,
+    custom_llm_provider: str = "",
+    api_base: str = "",
+    prompt: str = "",
+    num_calls: int = 0,
+    force_timeout: int = 0,
+):
+    test_prompt = "Hey, how's it going"
+    test_calls = 100
+    if prompt:
+        test_prompt = prompt
+    if num_calls:
+        test_calls = num_calls
+    messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)]
+    start_time = time.time()
+    try:
+        litellm.batch_completion(
+            model=model,
+            messages=messages,
+            custom_llm_provider=custom_llm_provider,
+            api_base=api_base,
+            force_timeout=force_timeout,
+        )
+        end_time = time.time()
+        response_time = end_time - start_time
+        return {
+            "total_response_time": response_time,
+            "calls_made": 100,
+            "status": "success",
+            "exception": None,
+        }
+    except Exception as e:
+        end_time = time.time()
+        response_time = end_time - start_time
+        return {
+            "total_response_time": response_time,
+            "calls_made": 100,
+            "status": "failed",
+            "exception": e,
+        }
+
+
+def get_provider_fields(custom_llm_provider: str) -> List[ProviderField]:
+    """Return the fields required for each provider"""
+
+    if custom_llm_provider == "databricks":
+        return litellm.DatabricksConfig().get_required_params()
+
+    elif custom_llm_provider == "ollama":
+        return litellm.OllamaConfig().get_required_params()
+
+    elif custom_llm_provider == "azure_ai":
+        return litellm.AzureAIStudioConfig().get_required_params()
+
+    else:
+        return []
+
+
+def create_proxy_transport_and_mounts():
+    proxies = {
+        key: None if url is None else Proxy(url=url)
+        for key, url in get_environment_proxies().items()
+    }
+
+    sync_proxy_mounts = {}
+    async_proxy_mounts = {}
+
+    # Retrieve NO_PROXY environment variable
+    no_proxy = os.getenv("NO_PROXY", None)
+    no_proxy_urls = no_proxy.split(",") if no_proxy else []
+
+    for key, proxy in proxies.items():
+        if proxy is None:
+            sync_proxy_mounts[key] = httpx.HTTPTransport()
+            async_proxy_mounts[key] = httpx.AsyncHTTPTransport()
+        else:
+            sync_proxy_mounts[key] = httpx.HTTPTransport(proxy=proxy)
+            async_proxy_mounts[key] = httpx.AsyncHTTPTransport(proxy=proxy)
+
+    for url in no_proxy_urls:
+        sync_proxy_mounts[url] = httpx.HTTPTransport()
+        async_proxy_mounts[url] = httpx.AsyncHTTPTransport()
+
+    return sync_proxy_mounts, async_proxy_mounts
+
+
+def validate_environment(  # noqa: PLR0915
+    model: Optional[str] = None,
+    api_key: Optional[str] = None,
+    api_base: Optional[str] = None,
+) -> dict:
+    """
+    Checks if the environment variables are valid for the given model.
+
+    Args:
+        model (Optional[str]): The name of the model. Defaults to None.
+        api_key (Optional[str]): If the user passed in an api key, of their own.
+
+    Returns:
+        dict: A dictionary containing the following keys:
+            - keys_in_environment (bool): True if all the required keys are present in the environment, False otherwise.
+            - missing_keys (List[str]): A list of missing keys in the environment.
+    """
+    keys_in_environment = False
+    missing_keys: List[str] = []
+
+    if model is None:
+        return {
+            "keys_in_environment": keys_in_environment,
+            "missing_keys": missing_keys,
+        }
+    ## EXTRACT LLM PROVIDER - if model name provided
+    try:
+        _, custom_llm_provider, _, _ = get_llm_provider(model=model)
+    except Exception:
+        custom_llm_provider = None
+
+    if custom_llm_provider:
+        if custom_llm_provider == "openai":
+            if "OPENAI_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("OPENAI_API_KEY")
+        elif custom_llm_provider == "azure":
+            if (
+                "AZURE_API_BASE" in os.environ
+                and "AZURE_API_VERSION" in os.environ
+                and "AZURE_API_KEY" in os.environ
+            ):
+                keys_in_environment = True
+            else:
+                missing_keys.extend(
+                    ["AZURE_API_BASE", "AZURE_API_VERSION", "AZURE_API_KEY"]
+                )
+        elif custom_llm_provider == "anthropic":
+            if "ANTHROPIC_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("ANTHROPIC_API_KEY")
+        elif custom_llm_provider == "cohere":
+            if "COHERE_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("COHERE_API_KEY")
+        elif custom_llm_provider == "replicate":
+            if "REPLICATE_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("REPLICATE_API_KEY")
+        elif custom_llm_provider == "openrouter":
+            if "OPENROUTER_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("OPENROUTER_API_KEY")
+        elif custom_llm_provider == "vertex_ai":
+            if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"])
+        elif custom_llm_provider == "huggingface":
+            if "HUGGINGFACE_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("HUGGINGFACE_API_KEY")
+        elif custom_llm_provider == "ai21":
+            if "AI21_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("AI21_API_KEY")
+        elif custom_llm_provider == "together_ai":
+            if "TOGETHERAI_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("TOGETHERAI_API_KEY")
+        elif custom_llm_provider == "aleph_alpha":
+            if "ALEPH_ALPHA_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("ALEPH_ALPHA_API_KEY")
+        elif custom_llm_provider == "baseten":
+            if "BASETEN_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("BASETEN_API_KEY")
+        elif custom_llm_provider == "nlp_cloud":
+            if "NLP_CLOUD_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("NLP_CLOUD_API_KEY")
+        elif custom_llm_provider == "bedrock" or custom_llm_provider == "sagemaker":
+            if (
+                "AWS_ACCESS_KEY_ID" in os.environ
+                and "AWS_SECRET_ACCESS_KEY" in os.environ
+            ):
+                keys_in_environment = True
+            else:
+                missing_keys.append("AWS_ACCESS_KEY_ID")
+                missing_keys.append("AWS_SECRET_ACCESS_KEY")
+        elif custom_llm_provider in ["ollama", "ollama_chat"]:
+            if "OLLAMA_API_BASE" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("OLLAMA_API_BASE")
+        elif custom_llm_provider == "anyscale":
+            if "ANYSCALE_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("ANYSCALE_API_KEY")
+        elif custom_llm_provider == "deepinfra":
+            if "DEEPINFRA_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("DEEPINFRA_API_KEY")
+        elif custom_llm_provider == "gemini":
+            if "GEMINI_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("GEMINI_API_KEY")
+        elif custom_llm_provider == "groq":
+            if "GROQ_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("GROQ_API_KEY")
+        elif custom_llm_provider == "nvidia_nim":
+            if "NVIDIA_NIM_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("NVIDIA_NIM_API_KEY")
+        elif custom_llm_provider == "cerebras":
+            if "CEREBRAS_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("CEREBRAS_API_KEY")
+        elif custom_llm_provider == "xai":
+            if "XAI_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("XAI_API_KEY")
+        elif custom_llm_provider == "ai21_chat":
+            if "AI21_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("AI21_API_KEY")
+        elif custom_llm_provider == "volcengine":
+            if "VOLCENGINE_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("VOLCENGINE_API_KEY")
+        elif (
+            custom_llm_provider == "codestral"
+            or custom_llm_provider == "text-completion-codestral"
+        ):
+            if "CODESTRAL_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("CODESTRAL_API_KEY")
+        elif custom_llm_provider == "deepseek":
+            if "DEEPSEEK_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("DEEPSEEK_API_KEY")
+        elif custom_llm_provider == "mistral":
+            if "MISTRAL_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("MISTRAL_API_KEY")
+        elif custom_llm_provider == "palm":
+            if "PALM_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("PALM_API_KEY")
+        elif custom_llm_provider == "perplexity":
+            if "PERPLEXITYAI_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("PERPLEXITYAI_API_KEY")
+        elif custom_llm_provider == "voyage":
+            if "VOYAGE_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("VOYAGE_API_KEY")
+        elif custom_llm_provider == "fireworks_ai":
+            if (
+                "FIREWORKS_AI_API_KEY" in os.environ
+                or "FIREWORKS_API_KEY" in os.environ
+                or "FIREWORKSAI_API_KEY" in os.environ
+                or "FIREWORKS_AI_TOKEN" in os.environ
+            ):
+                keys_in_environment = True
+            else:
+                missing_keys.append("FIREWORKS_AI_API_KEY")
+        elif custom_llm_provider == "cloudflare":
+            if "CLOUDFLARE_API_KEY" in os.environ and (
+                "CLOUDFLARE_ACCOUNT_ID" in os.environ
+                or "CLOUDFLARE_API_BASE" in os.environ
+            ):
+                keys_in_environment = True
+            else:
+                missing_keys.append("CLOUDFLARE_API_KEY")
+                missing_keys.append("CLOUDFLARE_API_BASE")
+    else:
+        ## openai - chatcompletion + text completion
+        if (
+            model in litellm.open_ai_chat_completion_models
+            or model in litellm.open_ai_text_completion_models
+            or model in litellm.open_ai_embedding_models
+            or model in litellm.openai_image_generation_models
+        ):
+            if "OPENAI_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("OPENAI_API_KEY")
+        ## anthropic
+        elif model in litellm.anthropic_models:
+            if "ANTHROPIC_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("ANTHROPIC_API_KEY")
+        ## cohere
+        elif model in litellm.cohere_models:
+            if "COHERE_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("COHERE_API_KEY")
+        ## replicate
+        elif model in litellm.replicate_models:
+            if "REPLICATE_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("REPLICATE_API_KEY")
+        ## openrouter
+        elif model in litellm.openrouter_models:
+            if "OPENROUTER_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("OPENROUTER_API_KEY")
+        ## vertex - text + chat models
+        elif (
+            model in litellm.vertex_chat_models
+            or model in litellm.vertex_text_models
+            or model in litellm.models_by_provider["vertex_ai"]
+        ):
+            if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"])
+        ## huggingface
+        elif model in litellm.huggingface_models:
+            if "HUGGINGFACE_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("HUGGINGFACE_API_KEY")
+        ## ai21
+        elif model in litellm.ai21_models:
+            if "AI21_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("AI21_API_KEY")
+        ## together_ai
+        elif model in litellm.together_ai_models:
+            if "TOGETHERAI_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("TOGETHERAI_API_KEY")
+        ## aleph_alpha
+        elif model in litellm.aleph_alpha_models:
+            if "ALEPH_ALPHA_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("ALEPH_ALPHA_API_KEY")
+        ## baseten
+        elif model in litellm.baseten_models:
+            if "BASETEN_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("BASETEN_API_KEY")
+        ## nlp_cloud
+        elif model in litellm.nlp_cloud_models:
+            if "NLP_CLOUD_API_KEY" in os.environ:
+                keys_in_environment = True
+            else:
+                missing_keys.append("NLP_CLOUD_API_KEY")
+
+    if api_key is not None:
+        new_missing_keys = []
+        for key in missing_keys:
+            if "api_key" not in key.lower():
+                new_missing_keys.append(key)
+        missing_keys = new_missing_keys
+
+    if api_base is not None:
+        new_missing_keys = []
+        for key in missing_keys:
+            if "api_base" not in key.lower():
+                new_missing_keys.append(key)
+        missing_keys = new_missing_keys
+
+    if len(missing_keys) == 0:  # no missing keys
+        keys_in_environment = True
+
+    return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys}
+
+
+def acreate(*args, **kwargs):  ## Thin client to handle the acreate langchain call
+    return litellm.acompletion(*args, **kwargs)
+
+
+def prompt_token_calculator(model, messages):
+    # use tiktoken or anthropic's tokenizer depending on the model
+    text = " ".join(message["content"] for message in messages)
+    num_tokens = 0
+    if "claude" in model:
+        try:
+            import anthropic
+        except Exception:
+            Exception("Anthropic import failed please run `pip install anthropic`")
+        from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
+
+        anthropic_obj = Anthropic()
+        num_tokens = anthropic_obj.count_tokens(text)  # type: ignore
+    else:
+        num_tokens = len(encoding.encode(text))
+    return num_tokens
+
+
+def valid_model(model):
+    try:
+        # for a given model name, check if the user has the right permissions to access the model
+        if (
+            model in litellm.open_ai_chat_completion_models
+            or model in litellm.open_ai_text_completion_models
+        ):
+            openai.models.retrieve(model)
+        else:
+            messages = [{"role": "user", "content": "Hello World"}]
+            litellm.completion(model=model, messages=messages)
+    except Exception:
+        raise BadRequestError(message="", model=model, llm_provider="")
+
+
+def check_valid_key(model: str, api_key: str):
+    """
+    Checks if a given API key is valid for a specific model by making a litellm.completion call with max_tokens=10
+
+    Args:
+        model (str): The name of the model to check the API key against.
+        api_key (str): The API key to be checked.
+
+    Returns:
+        bool: True if the API key is valid for the model, False otherwise.
+    """
+    messages = [{"role": "user", "content": "Hey, how's it going?"}]
+    try:
+        litellm.completion(
+            model=model, messages=messages, api_key=api_key, max_tokens=10
+        )
+        return True
+    except AuthenticationError:
+        return False
+    except Exception:
+        return False
+
+
+def _should_retry(status_code: int):
+    """
+    Retries on 408, 409, 429 and 500 errors.
+
+    Any client error in the 400-499 range that isn't explicitly handled (such as 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, etc.) would not trigger a retry.
+
+    Reimplementation of openai's should retry logic, since that one can't be imported.
+    https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L639
+    """
+    # If the server explicitly says whether or not to retry, obey.
+    # Retry on request timeouts.
+    if status_code == 408:
+        return True
+
+    # Retry on lock timeouts.
+    if status_code == 409:
+        return True
+
+    # Retry on rate limits.
+    if status_code == 429:
+        return True
+
+    # Retry internal errors.
+    if status_code >= 500:
+        return True
+
+    return False
+
+
+def _get_retry_after_from_exception_header(
+    response_headers: Optional[httpx.Headers] = None,
+):
+    """
+    Reimplementation of openai's calculate retry after, since that one can't be imported.
+    https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L631
+    """
+    try:
+        import email  # openai import
+
+        # About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After
+        #
+        # <http-date>". See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax for
+        # details.
+        if response_headers is not None:
+            retry_header = response_headers.get("retry-after")
+            try:
+                retry_after = int(retry_header)
+            except Exception:
+                retry_date_tuple = email.utils.parsedate_tz(retry_header)  # type: ignore
+                if retry_date_tuple is None:
+                    retry_after = -1
+                else:
+                    retry_date = email.utils.mktime_tz(retry_date_tuple)  # type: ignore
+                    retry_after = int(retry_date - time.time())
+        else:
+            retry_after = -1
+
+        return retry_after
+
+    except Exception:
+        retry_after = -1
+
+
+def _calculate_retry_after(
+    remaining_retries: int,
+    max_retries: int,
+    response_headers: Optional[httpx.Headers] = None,
+    min_timeout: int = 0,
+) -> Union[float, int]:
+    retry_after = _get_retry_after_from_exception_header(response_headers)
+
+    # If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says.
+    if retry_after is not None and 0 < retry_after <= 60:
+        return retry_after
+
+    initial_retry_delay = 0.5
+    max_retry_delay = 8.0
+    nb_retries = max_retries - remaining_retries
+
+    # Apply exponential backoff, but not more than the max.
+    sleep_seconds = min(initial_retry_delay * pow(2.0, nb_retries), max_retry_delay)
+
+    # Apply some jitter, plus-or-minus half a second.
+    jitter = 1 - 0.25 * random.random()
+    timeout = sleep_seconds * jitter
+    return timeout if timeout >= min_timeout else min_timeout
+
+
+# custom prompt helper function
+def register_prompt_template(
+    model: str,
+    roles: dict = {},
+    initial_prompt_value: str = "",
+    final_prompt_value: str = "",
+    tokenizer_config: dict = {},
+):
+    """
+    Register a prompt template to follow your custom format for a given model
+
+    Args:
+        model (str): The name of the model.
+        roles (dict): A dictionary mapping roles to their respective prompt values.
+        initial_prompt_value (str, optional): The initial prompt value. Defaults to "".
+        final_prompt_value (str, optional): The final prompt value. Defaults to "".
+
+    Returns:
+        dict: The updated custom prompt dictionary.
+    Example usage:
+    ```
+    import litellm
+    litellm.register_prompt_template(
+            model="llama-2",
+        initial_prompt_value="You are a good assistant" # [OPTIONAL]
+            roles={
+            "system": {
+                "pre_message": "[INST] <<SYS>>\n", # [OPTIONAL]
+                "post_message": "\n<</SYS>>\n [/INST]\n" # [OPTIONAL]
+            },
+            "user": {
+                "pre_message": "[INST] ", # [OPTIONAL]
+                "post_message": " [/INST]" # [OPTIONAL]
+            },
+            "assistant": {
+                "pre_message": "\n" # [OPTIONAL]
+                "post_message": "\n" # [OPTIONAL]
+            }
+        }
+        final_prompt_value="Now answer as best you can:" # [OPTIONAL]
+    )
+    ```
+    """
+    complete_model = model
+    potential_models = [complete_model]
+    try:
+        model = get_llm_provider(model=model)[0]
+        potential_models.append(model)
+    except Exception:
+        pass
+    if tokenizer_config:
+        for m in potential_models:
+            litellm.known_tokenizer_config[m] = {
+                "tokenizer": tokenizer_config,
+                "status": "success",
+            }
+    else:
+        for m in potential_models:
+            litellm.custom_prompt_dict[m] = {
+                "roles": roles,
+                "initial_prompt_value": initial_prompt_value,
+                "final_prompt_value": final_prompt_value,
+            }
+
+    return litellm.custom_prompt_dict
+
+
+class TextCompletionStreamWrapper:
+    def __init__(
+        self,
+        completion_stream,
+        model,
+        stream_options: Optional[dict] = None,
+        custom_llm_provider: Optional[str] = None,
+    ):
+        self.completion_stream = completion_stream
+        self.model = model
+        self.stream_options = stream_options
+        self.custom_llm_provider = custom_llm_provider
+
+    def __iter__(self):
+        return self
+
+    def __aiter__(self):
+        return self
+
+    def convert_to_text_completion_object(self, chunk: ModelResponse):
+        try:
+            response = TextCompletionResponse()
+            response["id"] = chunk.get("id", None)
+            response["object"] = "text_completion"
+            response["created"] = chunk.get("created", None)
+            response["model"] = chunk.get("model", None)
+            text_choices = TextChoices()
+            if isinstance(
+                chunk, Choices
+            ):  # chunk should always be of type StreamingChoices
+                raise Exception
+            text_choices["text"] = chunk["choices"][0]["delta"]["content"]
+            text_choices["index"] = chunk["choices"][0]["index"]
+            text_choices["finish_reason"] = chunk["choices"][0]["finish_reason"]
+            response["choices"] = [text_choices]
+
+            # only pass usage when stream_options["include_usage"] is True
+            if (
+                self.stream_options
+                and self.stream_options.get("include_usage", False) is True
+            ):
+                response["usage"] = chunk.get("usage", None)
+
+            return response
+        except Exception as e:
+            raise Exception(
+                f"Error occurred converting to text completion object - chunk: {chunk}; Error: {str(e)}"
+            )
+
+    def __next__(self):
+        # model_response = ModelResponse(stream=True, model=self.model)
+        TextCompletionResponse()
+        try:
+            for chunk in self.completion_stream:
+                if chunk == "None" or chunk is None:
+                    raise Exception
+                processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
+                return processed_chunk
+            raise StopIteration
+        except StopIteration:
+            raise StopIteration
+        except Exception as e:
+            raise exception_type(
+                model=self.model,
+                custom_llm_provider=self.custom_llm_provider or "",
+                original_exception=e,
+                completion_kwargs={},
+                extra_kwargs={},
+            )
+
+    async def __anext__(self):
+        try:
+            async for chunk in self.completion_stream:
+                if chunk == "None" or chunk is None:
+                    raise Exception
+                processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
+                return processed_chunk
+            raise StopIteration
+        except StopIteration:
+            raise StopAsyncIteration
+
+
+def mock_completion_streaming_obj(
+    model_response, mock_response, model, n: Optional[int] = None
+):
+    if isinstance(mock_response, litellm.MockException):
+        raise mock_response
+    for i in range(0, len(mock_response), 3):
+        completion_obj = Delta(role="assistant", content=mock_response[i : i + 3])
+        if n is None:
+            model_response.choices[0].delta = completion_obj
+        else:
+            _all_choices = []
+            for j in range(n):
+                _streaming_choice = litellm.utils.StreamingChoices(
+                    index=j,
+                    delta=litellm.utils.Delta(
+                        role="assistant", content=mock_response[i : i + 3]
+                    ),
+                )
+                _all_choices.append(_streaming_choice)
+            model_response.choices = _all_choices
+        yield model_response
+
+
+async def async_mock_completion_streaming_obj(
+    model_response, mock_response, model, n: Optional[int] = None
+):
+    if isinstance(mock_response, litellm.MockException):
+        raise mock_response
+    for i in range(0, len(mock_response), 3):
+        completion_obj = Delta(role="assistant", content=mock_response[i : i + 3])
+        if n is None:
+            model_response.choices[0].delta = completion_obj
+        else:
+            _all_choices = []
+            for j in range(n):
+                _streaming_choice = litellm.utils.StreamingChoices(
+                    index=j,
+                    delta=litellm.utils.Delta(
+                        role="assistant", content=mock_response[i : i + 3]
+                    ),
+                )
+                _all_choices.append(_streaming_choice)
+            model_response.choices = _all_choices
+        yield model_response
+
+
+########## Reading Config File ############################
+def read_config_args(config_path) -> dict:
+    try:
+        import os
+
+        os.getcwd()
+        with open(config_path, "r") as config_file:
+            config = json.load(config_file)
+
+        # read keys/ values from config file and return them
+        return config
+    except Exception as e:
+        raise e
+
+
+########## experimental completion variants ############################
+
+
+def process_system_message(system_message, max_tokens, model):
+    system_message_event = {"role": "system", "content": system_message}
+    system_message_tokens = get_token_count([system_message_event], model)
+
+    if system_message_tokens > max_tokens:
+        print_verbose(
+            "`tokentrimmer`: Warning, system message exceeds token limit. Trimming..."
+        )
+        # shorten system message to fit within max_tokens
+        new_system_message = shorten_message_to_fit_limit(
+            system_message_event, max_tokens, model
+        )
+        system_message_tokens = get_token_count([new_system_message], model)
+
+    return system_message_event, max_tokens - system_message_tokens
+
+
+def process_messages(messages, max_tokens, model):
+    # Process messages from older to more recent
+    messages = messages[::-1]
+    final_messages = []
+
+    for message in messages:
+        used_tokens = get_token_count(final_messages, model)
+        available_tokens = max_tokens - used_tokens
+        if available_tokens <= 3:
+            break
+        final_messages = attempt_message_addition(
+            final_messages=final_messages,
+            message=message,
+            available_tokens=available_tokens,
+            max_tokens=max_tokens,
+            model=model,
+        )
+
+    return final_messages
+
+
+def attempt_message_addition(
+    final_messages, message, available_tokens, max_tokens, model
+):
+    temp_messages = [message] + final_messages
+    temp_message_tokens = get_token_count(messages=temp_messages, model=model)
+
+    if temp_message_tokens <= max_tokens:
+        return temp_messages
+
+    # if temp_message_tokens > max_tokens, try shortening temp_messages
+    elif "function_call" not in message:
+        # fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens)
+        updated_message = shorten_message_to_fit_limit(message, available_tokens, model)
+        if can_add_message(updated_message, final_messages, max_tokens, model):
+            return [updated_message] + final_messages
+
+    return final_messages
+
+
+def can_add_message(message, messages, max_tokens, model):
+    if get_token_count(messages + [message], model) <= max_tokens:
+        return True
+    return False
+
+
+def get_token_count(messages, model):
+    return token_counter(model=model, messages=messages)
+
+
+def shorten_message_to_fit_limit(message, tokens_needed, model: Optional[str]):
+    """
+    Shorten a message to fit within a token limit by removing characters from the middle.
+    """
+
+    # For OpenAI models, even blank messages cost 7 token,
+    # and if the buffer is less than 3, the while loop will never end,
+    # hence the value 10.
+    if model is not None and "gpt" in model and tokens_needed <= 10:
+        return message
+
+    content = message["content"]
+
+    while True:
+        total_tokens = get_token_count([message], model)
+
+        if total_tokens <= tokens_needed:
+            break
+
+        ratio = (tokens_needed) / total_tokens
+
+        new_length = int(len(content) * ratio) - 1
+        new_length = max(0, new_length)
+
+        half_length = new_length // 2
+        left_half = content[:half_length]
+        right_half = content[-half_length:]
+
+        trimmed_content = left_half + ".." + right_half
+        message["content"] = trimmed_content
+        content = trimmed_content
+
+    return message
+
+
+# LiteLLM token trimmer
+# this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py
+# Credits for this code go to Killian Lucas
+def trim_messages(
+    messages,
+    model: Optional[str] = None,
+    trim_ratio: float = 0.75,
+    return_response_tokens: bool = False,
+    max_tokens=None,
+):
+    """
+    Trim a list of messages to fit within a model's token limit.
+
+    Args:
+        messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'.
+        model: The LiteLLM model being used (determines the token limit).
+        trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit.
+        return_response_tokens: If True, also return the number of tokens left available for the response after trimming.
+        max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly.
+
+    Returns:
+        Trimmed messages and optionally the number of tokens available for response.
+    """
+    # Initialize max_tokens
+    # if users pass in max tokens, trim to this amount
+    messages = copy.deepcopy(messages)
+    try:
+        if max_tokens is None:
+            # Check if model is valid
+            if model in litellm.model_cost:
+                max_tokens_for_model = litellm.model_cost[model].get(
+                    "max_input_tokens", litellm.model_cost[model]["max_tokens"]
+                )
+                max_tokens = int(max_tokens_for_model * trim_ratio)
+            else:
+                # if user did not specify max (input) tokens
+                # or passed an llm litellm does not know
+                # do nothing, just return messages
+                return messages
+
+        system_message = ""
+        for message in messages:
+            if message["role"] == "system":
+                system_message += "\n" if system_message else ""
+                system_message += message["content"]
+
+        ## Handle Tool Call ## - check if last message is a tool response, return as is - https://github.com/BerriAI/litellm/issues/4931
+        tool_messages = []
+
+        for message in reversed(messages):
+            if message["role"] != "tool":
+                break
+            tool_messages.append(message)
+        # # Remove the collected tool messages from the original list
+        if len(tool_messages):
+            messages = messages[: -len(tool_messages)]
+
+        current_tokens = token_counter(model=model or "", messages=messages)
+        print_verbose(f"Current tokens: {current_tokens}, max tokens: {max_tokens}")
+
+        # Do nothing if current tokens under messages
+        if current_tokens < max_tokens:
+            return messages
+
+        #### Trimming messages if current_tokens > max_tokens
+        print_verbose(
+            f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}"
+        )
+        system_message_event: Optional[dict] = None
+        if system_message:
+            system_message_event, max_tokens = process_system_message(
+                system_message=system_message, max_tokens=max_tokens, model=model
+            )
+
+            if max_tokens == 0:  # the system messages are too long
+                return [system_message_event]
+
+            # Since all system messages are combined and trimmed to fit the max_tokens,
+            # we remove all system messages from the messages list
+            messages = [message for message in messages if message["role"] != "system"]
+
+        final_messages = process_messages(
+            messages=messages, max_tokens=max_tokens, model=model
+        )
+
+        # Add system message to the beginning of the final messages
+        if system_message_event:
+            final_messages = [system_message_event] + final_messages
+
+        if len(tool_messages) > 0:
+            final_messages.extend(tool_messages)
+
+        if (
+            return_response_tokens
+        ):  # if user wants token count with new trimmed messages
+            response_tokens = max_tokens - get_token_count(final_messages, model)
+            return final_messages, response_tokens
+        return final_messages
+    except Exception as e:  # [NON-Blocking, if error occurs just return final_messages
+        verbose_logger.exception(
+            "Got exception while token trimming - {}".format(str(e))
+        )
+        return messages
+
+
+def get_valid_models(check_provider_endpoint: bool = False) -> List[str]:
+    """
+    Returns a list of valid LLMs based on the set environment variables
+
+    Args:
+        check_provider_endpoint: If True, will check the provider's endpoint for valid models.
+
+    Returns:
+        A list of valid LLMs
+    """
+    try:
+        # get keys set in .env
+        environ_keys = os.environ.keys()
+        valid_providers = []
+        # for all valid providers, make a list of supported llms
+        valid_models = []
+
+        for provider in litellm.provider_list:
+            # edge case litellm has together_ai as a provider, it should be togetherai
+            env_provider_1 = provider.replace("_", "")
+            env_provider_2 = provider
+
+            # litellm standardizes expected provider keys to
+            # PROVIDER_API_KEY. Example: OPENAI_API_KEY, COHERE_API_KEY
+            expected_provider_key_1 = f"{env_provider_1.upper()}_API_KEY"
+            expected_provider_key_2 = f"{env_provider_2.upper()}_API_KEY"
+            if (
+                expected_provider_key_1 in environ_keys
+                or expected_provider_key_2 in environ_keys
+            ):
+                # key is set
+                valid_providers.append(provider)
+
+        for provider in valid_providers:
+            provider_config = ProviderConfigManager.get_provider_model_info(
+                model=None,
+                provider=LlmProviders(provider),
+            )
+
+            if provider == "azure":
+                valid_models.append("Azure-LLM")
+            elif provider_config is not None and check_provider_endpoint:
+                valid_models.extend(provider_config.get_models())
+            else:
+                models_for_provider = litellm.models_by_provider.get(provider, [])
+                valid_models.extend(models_for_provider)
+        return valid_models
+    except Exception as e:
+        verbose_logger.debug(f"Error getting valid models: {e}")
+        return []  # NON-Blocking
+
+
+def print_args_passed_to_litellm(original_function, args, kwargs):
+    if not _is_debugging_on():
+        return
+    try:
+        # we've already printed this for acompletion, don't print for completion
+        if (
+            "acompletion" in kwargs
+            and kwargs["acompletion"] is True
+            and original_function.__name__ == "completion"
+        ):
+            return
+        elif (
+            "aembedding" in kwargs
+            and kwargs["aembedding"] is True
+            and original_function.__name__ == "embedding"
+        ):
+            return
+        elif (
+            "aimg_generation" in kwargs
+            and kwargs["aimg_generation"] is True
+            and original_function.__name__ == "img_generation"
+        ):
+            return
+
+        args_str = ", ".join(map(repr, args))
+        kwargs_str = ", ".join(f"{key}={repr(value)}" for key, value in kwargs.items())
+        print_verbose(
+            "\n",
+        )  # new line before
+        print_verbose(
+            "\033[92mRequest to litellm:\033[0m",
+        )
+        if args and kwargs:
+            print_verbose(
+                f"\033[92mlitellm.{original_function.__name__}({args_str}, {kwargs_str})\033[0m"
+            )
+        elif args:
+            print_verbose(
+                f"\033[92mlitellm.{original_function.__name__}({args_str})\033[0m"
+            )
+        elif kwargs:
+            print_verbose(
+                f"\033[92mlitellm.{original_function.__name__}({kwargs_str})\033[0m"
+            )
+        else:
+            print_verbose(f"\033[92mlitellm.{original_function.__name__}()\033[0m")
+        print_verbose("\n")  # new line after
+    except Exception:
+        # This should always be non blocking
+        pass
+
+
+def get_logging_id(start_time, response_obj):
+    try:
+        response_id = (
+            "time-" + start_time.strftime("%H-%M-%S-%f") + "_" + response_obj.get("id")
+        )
+        return response_id
+    except Exception:
+        return None
+
+
+def _get_base_model_from_metadata(model_call_details=None):
+    if model_call_details is None:
+        return None
+    litellm_params = model_call_details.get("litellm_params", {})
+    if litellm_params is not None:
+        _base_model = litellm_params.get("base_model", None)
+        if _base_model is not None:
+            return _base_model
+        metadata = litellm_params.get("metadata", {})
+
+        return _get_base_model_from_litellm_call_metadata(metadata=metadata)
+    return None
+
+
+class ModelResponseIterator:
+    def __init__(self, model_response: ModelResponse, convert_to_delta: bool = False):
+        if convert_to_delta is True:
+            self.model_response = ModelResponse(stream=True)
+            _delta = self.model_response.choices[0].delta  # type: ignore
+            _delta.content = model_response.choices[0].message.content  # type: ignore
+        else:
+            self.model_response = model_response
+        self.is_done = False
+
+    # Sync iterator
+    def __iter__(self):
+        return self
+
+    def __next__(self):
+        if self.is_done:
+            raise StopIteration
+        self.is_done = True
+        return self.model_response
+
+    # Async iterator
+    def __aiter__(self):
+        return self
+
+    async def __anext__(self):
+        if self.is_done:
+            raise StopAsyncIteration
+        self.is_done = True
+        return self.model_response
+
+
+class ModelResponseListIterator:
+    def __init__(self, model_responses):
+        self.model_responses = model_responses
+        self.index = 0
+
+    # Sync iterator
+    def __iter__(self):
+        return self
+
+    def __next__(self):
+        if self.index >= len(self.model_responses):
+            raise StopIteration
+        model_response = self.model_responses[self.index]
+        self.index += 1
+        return model_response
+
+    # Async iterator
+    def __aiter__(self):
+        return self
+
+    async def __anext__(self):
+        if self.index >= len(self.model_responses):
+            raise StopAsyncIteration
+        model_response = self.model_responses[self.index]
+        self.index += 1
+        return model_response
+
+
+class CustomModelResponseIterator(Iterable):
+    def __init__(self) -> None:
+        super().__init__()
+
+
+def is_cached_message(message: AllMessageValues) -> bool:
+    """
+    Returns true, if message is marked as needing to be cached.
+
+    Used for anthropic/gemini context caching.
+
+    Follows the anthropic format {"cache_control": {"type": "ephemeral"}}
+    """
+    if "content" not in message:
+        return False
+    if message["content"] is None or isinstance(message["content"], str):
+        return False
+
+    for content in message["content"]:
+        if (
+            content["type"] == "text"
+            and content.get("cache_control") is not None
+            and content["cache_control"]["type"] == "ephemeral"  # type: ignore
+        ):
+            return True
+
+    return False
+
+
+def is_base64_encoded(s: str) -> bool:
+    try:
+        # Strip out the prefix if it exists
+        if not s.startswith(
+            "data:"
+        ):  # require `data:` for base64 str, like openai. Prevents false positives like s='Dog'
+            return False
+
+        s = s.split(",")[1]
+
+        # Try to decode the string
+        decoded_bytes = base64.b64decode(s, validate=True)
+
+        # Check if the original string can be re-encoded to the same string
+        return base64.b64encode(decoded_bytes).decode("utf-8") == s
+    except Exception:
+        return False
+
+
+def get_base64_str(s: str) -> str:
+    """
+    s: b64str OR 
+    """
+    if "," in s:
+        return s.split(",")[1]
+    return s
+
+
+def has_tool_call_blocks(messages: List[AllMessageValues]) -> bool:
+    """
+    Returns true, if messages has tool call blocks.
+
+    Used for anthropic/bedrock message validation.
+    """
+    for message in messages:
+        if message.get("tool_calls") is not None:
+            return True
+    return False
+
+
+def add_dummy_tool(custom_llm_provider: str) -> List[ChatCompletionToolParam]:
+    """
+    Prevent Anthropic from raising error when tool_use block exists but no tools are provided.
+
+    Relevent Issues: https://github.com/BerriAI/litellm/issues/5388, https://github.com/BerriAI/litellm/issues/5747
+    """
+    return [
+        ChatCompletionToolParam(
+            type="function",
+            function=ChatCompletionToolParamFunctionChunk(
+                name="dummy_tool",
+                description="This is a dummy tool call",  # provided to satisfy bedrock constraint.
+                parameters={
+                    "type": "object",
+                    "properties": {},
+                },
+            ),
+        )
+    ]
+
+
+from litellm.types.llms.openai import (
+    ChatCompletionAudioObject,
+    ChatCompletionImageObject,
+    ChatCompletionTextObject,
+    ChatCompletionUserMessage,
+    OpenAIMessageContent,
+    ValidUserMessageContentTypes,
+)
+
+
+def convert_to_dict(message: Union[BaseModel, dict]) -> dict:
+    """
+    Converts a message to a dictionary if it's a Pydantic model.
+
+    Args:
+        message: The message, which may be a Pydantic model or a dictionary.
+
+    Returns:
+        dict: The converted message.
+    """
+    if isinstance(message, BaseModel):
+        return message.model_dump(exclude_none=True)
+    elif isinstance(message, dict):
+        return message
+    else:
+        raise TypeError(
+            f"Invalid message type: {type(message)}. Expected dict or Pydantic model."
+        )
+
+
+def validate_and_fix_openai_messages(messages: List):
+    """
+    Ensures all messages are valid OpenAI chat completion messages.
+
+    Handles missing role for assistant messages.
+    """
+    for message in messages:
+        if not message.get("role"):
+            message["role"] = "assistant"
+    return validate_chat_completion_messages(messages=messages)
+
+
+def validate_chat_completion_messages(messages: List[AllMessageValues]):
+    """
+    Ensures all messages are valid OpenAI chat completion messages.
+    """
+    # 1. convert all messages to dict
+    messages = [
+        cast(AllMessageValues, convert_to_dict(cast(dict, m))) for m in messages
+    ]
+    # 2. validate user messages
+    return validate_chat_completion_user_messages(messages=messages)
+
+
+def validate_chat_completion_user_messages(messages: List[AllMessageValues]):
+    """
+    Ensures all user messages are valid OpenAI chat completion messages.
+
+    Args:
+        messages: List of message dictionaries
+        message_content_type: Type to validate content against
+
+    Returns:
+        List[dict]: The validated messages
+
+    Raises:
+        ValueError: If any message is invalid
+    """
+    for idx, m in enumerate(messages):
+        try:
+            if m["role"] == "user":
+                user_content = m.get("content")
+                if user_content is not None:
+                    if isinstance(user_content, str):
+                        continue
+                    elif isinstance(user_content, list):
+                        for item in user_content:
+                            if isinstance(item, dict):
+                                if item.get("type") not in ValidUserMessageContentTypes:
+                                    raise Exception("invalid content type")
+        except Exception as e:
+            if isinstance(e, KeyError):
+                raise Exception(
+                    f"Invalid message={m} at index {idx}. Please ensure all messages are valid OpenAI chat completion messages."
+                )
+            if "invalid content type" in str(e):
+                raise Exception(
+                    f"Invalid user message={m} at index {idx}. Please ensure all user messages are valid OpenAI chat completion messages."
+                )
+            else:
+                raise e
+
+    return messages
+
+
+def validate_chat_completion_tool_choice(
+    tool_choice: Optional[Union[dict, str]]
+) -> Optional[Union[dict, str]]:
+    """
+    Confirm the tool choice is passed in the OpenAI format.
+
+    Prevents user errors like: https://github.com/BerriAI/litellm/issues/7483
+    """
+    from litellm.types.llms.openai import (
+        ChatCompletionToolChoiceObjectParam,
+        ChatCompletionToolChoiceStringValues,
+    )
+
+    if tool_choice is None:
+        return tool_choice
+    elif isinstance(tool_choice, str):
+        return tool_choice
+    elif isinstance(tool_choice, dict):
+        if tool_choice.get("type") is None or tool_choice.get("function") is None:
+            raise Exception(
+                f"Invalid tool choice, tool_choice={tool_choice}. Please ensure tool_choice follows the OpenAI spec"
+            )
+        return tool_choice
+    raise Exception(
+        f"Invalid tool choice, tool_choice={tool_choice}. Got={type(tool_choice)}. Expecting str, or dict. Please ensure tool_choice follows the OpenAI tool_choice spec"
+    )
+
+
+class ProviderConfigManager:
+    @staticmethod
+    def get_provider_chat_config(  # noqa: PLR0915
+        model: str, provider: LlmProviders
+    ) -> BaseConfig:
+        """
+        Returns the provider config for a given provider.
+        """
+        if (
+            provider == LlmProviders.OPENAI
+            and litellm.openaiOSeriesConfig.is_model_o_series_model(model=model)
+        ):
+            return litellm.openaiOSeriesConfig
+        elif litellm.LlmProviders.DEEPSEEK == provider:
+            return litellm.DeepSeekChatConfig()
+        elif litellm.LlmProviders.GROQ == provider:
+            return litellm.GroqChatConfig()
+        elif litellm.LlmProviders.DATABRICKS == provider:
+            return litellm.DatabricksConfig()
+        elif litellm.LlmProviders.XAI == provider:
+            return litellm.XAIChatConfig()
+        elif litellm.LlmProviders.TEXT_COMPLETION_OPENAI == provider:
+            return litellm.OpenAITextCompletionConfig()
+        elif litellm.LlmProviders.COHERE_CHAT == provider:
+            return litellm.CohereChatConfig()
+        elif litellm.LlmProviders.COHERE == provider:
+            return litellm.CohereConfig()
+        elif litellm.LlmProviders.SNOWFLAKE == provider:
+            return litellm.SnowflakeConfig()
+        elif litellm.LlmProviders.CLARIFAI == provider:
+            return litellm.ClarifaiConfig()
+        elif litellm.LlmProviders.ANTHROPIC == provider:
+            return litellm.AnthropicConfig()
+        elif litellm.LlmProviders.ANTHROPIC_TEXT == provider:
+            return litellm.AnthropicTextConfig()
+        elif litellm.LlmProviders.VERTEX_AI == provider:
+            if "claude" in model:
+                return litellm.VertexAIAnthropicConfig()
+        elif litellm.LlmProviders.CLOUDFLARE == provider:
+            return litellm.CloudflareChatConfig()
+        elif litellm.LlmProviders.SAGEMAKER_CHAT == provider:
+            return litellm.SagemakerChatConfig()
+        elif litellm.LlmProviders.SAGEMAKER == provider:
+            return litellm.SagemakerConfig()
+        elif litellm.LlmProviders.FIREWORKS_AI == provider:
+            return litellm.FireworksAIConfig()
+        elif litellm.LlmProviders.FRIENDLIAI == provider:
+            return litellm.FriendliaiChatConfig()
+        elif litellm.LlmProviders.WATSONX == provider:
+            return litellm.IBMWatsonXChatConfig()
+        elif litellm.LlmProviders.WATSONX_TEXT == provider:
+            return litellm.IBMWatsonXAIConfig()
+        elif litellm.LlmProviders.EMPOWER == provider:
+            return litellm.EmpowerChatConfig()
+        elif litellm.LlmProviders.GITHUB == provider:
+            return litellm.GithubChatConfig()
+        elif (
+            litellm.LlmProviders.CUSTOM == provider
+            or litellm.LlmProviders.CUSTOM_OPENAI == provider
+            or litellm.LlmProviders.OPENAI_LIKE == provider
+            or litellm.LlmProviders.LITELLM_PROXY == provider
+        ):
+            return litellm.OpenAILikeChatConfig()
+        elif litellm.LlmProviders.AIOHTTP_OPENAI == provider:
+            return litellm.AiohttpOpenAIChatConfig()
+        elif litellm.LlmProviders.HOSTED_VLLM == provider:
+            return litellm.HostedVLLMChatConfig()
+        elif litellm.LlmProviders.LM_STUDIO == provider:
+            return litellm.LMStudioChatConfig()
+        elif litellm.LlmProviders.GALADRIEL == provider:
+            return litellm.GaladrielChatConfig()
+        elif litellm.LlmProviders.REPLICATE == provider:
+            return litellm.ReplicateConfig()
+        elif litellm.LlmProviders.HUGGINGFACE == provider:
+            return litellm.HuggingfaceConfig()
+        elif litellm.LlmProviders.TOGETHER_AI == provider:
+            return litellm.TogetherAIConfig()
+        elif litellm.LlmProviders.OPENROUTER == provider:
+            return litellm.OpenrouterConfig()
+        elif litellm.LlmProviders.GEMINI == provider:
+            return litellm.GoogleAIStudioGeminiConfig()
+        elif (
+            litellm.LlmProviders.AI21 == provider
+            or litellm.LlmProviders.AI21_CHAT == provider
+        ):
+            return litellm.AI21ChatConfig()
+        elif litellm.LlmProviders.AZURE == provider:
+            if litellm.AzureOpenAIO1Config().is_o_series_model(model=model):
+                return litellm.AzureOpenAIO1Config()
+            return litellm.AzureOpenAIConfig()
+        elif litellm.LlmProviders.AZURE_AI == provider:
+            return litellm.AzureAIStudioConfig()
+        elif litellm.LlmProviders.AZURE_TEXT == provider:
+            return litellm.AzureOpenAITextConfig()
+        elif litellm.LlmProviders.HOSTED_VLLM == provider:
+            return litellm.HostedVLLMChatConfig()
+        elif litellm.LlmProviders.NLP_CLOUD == provider:
+            return litellm.NLPCloudConfig()
+        elif litellm.LlmProviders.OOBABOOGA == provider:
+            return litellm.OobaboogaConfig()
+        elif litellm.LlmProviders.OLLAMA_CHAT == provider:
+            return litellm.OllamaChatConfig()
+        elif litellm.LlmProviders.DEEPINFRA == provider:
+            return litellm.DeepInfraConfig()
+        elif litellm.LlmProviders.PERPLEXITY == provider:
+            return litellm.PerplexityChatConfig()
+        elif (
+            litellm.LlmProviders.MISTRAL == provider
+            or litellm.LlmProviders.CODESTRAL == provider
+        ):
+            return litellm.MistralConfig()
+        elif litellm.LlmProviders.NVIDIA_NIM == provider:
+            return litellm.NvidiaNimConfig()
+        elif litellm.LlmProviders.CEREBRAS == provider:
+            return litellm.CerebrasConfig()
+        elif litellm.LlmProviders.VOLCENGINE == provider:
+            return litellm.VolcEngineConfig()
+        elif litellm.LlmProviders.TEXT_COMPLETION_CODESTRAL == provider:
+            return litellm.CodestralTextCompletionConfig()
+        elif litellm.LlmProviders.SAMBANOVA == provider:
+            return litellm.SambanovaConfig()
+        elif litellm.LlmProviders.MARITALK == provider:
+            return litellm.MaritalkConfig()
+        elif litellm.LlmProviders.CLOUDFLARE == provider:
+            return litellm.CloudflareChatConfig()
+        elif litellm.LlmProviders.ANTHROPIC_TEXT == provider:
+            return litellm.AnthropicTextConfig()
+        elif litellm.LlmProviders.VLLM == provider:
+            return litellm.VLLMConfig()
+        elif litellm.LlmProviders.OLLAMA == provider:
+            return litellm.OllamaConfig()
+        elif litellm.LlmProviders.PREDIBASE == provider:
+            return litellm.PredibaseConfig()
+        elif litellm.LlmProviders.TRITON == provider:
+            return litellm.TritonConfig()
+        elif litellm.LlmProviders.PETALS == provider:
+            return litellm.PetalsConfig()
+        elif litellm.LlmProviders.BEDROCK == provider:
+            bedrock_route = BedrockModelInfo.get_bedrock_route(model)
+            bedrock_invoke_provider = litellm.BedrockLLM.get_bedrock_invoke_provider(
+                model=model
+            )
+            base_model = BedrockModelInfo.get_base_model(model)
+
+            if bedrock_route == "converse" or bedrock_route == "converse_like":
+                return litellm.AmazonConverseConfig()
+            elif bedrock_invoke_provider == "amazon":  # amazon titan llms
+                return litellm.AmazonTitanConfig()
+            elif bedrock_invoke_provider == "anthropic":
+                if base_model.startswith("anthropic.claude-3"):
+                    return litellm.AmazonAnthropicClaude3Config()
+                else:
+                    return litellm.AmazonAnthropicConfig()
+            elif (
+                bedrock_invoke_provider == "meta" or bedrock_invoke_provider == "llama"
+            ):  # amazon / meta llms
+                return litellm.AmazonLlamaConfig()
+            elif bedrock_invoke_provider == "ai21":  # ai21 llms
+                return litellm.AmazonAI21Config()
+            elif bedrock_invoke_provider == "cohere":  # cohere models on bedrock
+                return litellm.AmazonCohereConfig()
+            elif bedrock_invoke_provider == "mistral":  # mistral models on bedrock
+                return litellm.AmazonMistralConfig()
+            elif bedrock_invoke_provider == "deepseek_r1":  # deepseek models on bedrock
+                return litellm.AmazonDeepSeekR1Config()
+            else:
+                return litellm.AmazonInvokeConfig()
+        return litellm.OpenAIGPTConfig()
+
+    @staticmethod
+    def get_provider_embedding_config(
+        model: str,
+        provider: LlmProviders,
+    ) -> BaseEmbeddingConfig:
+        if litellm.LlmProviders.VOYAGE == provider:
+            return litellm.VoyageEmbeddingConfig()
+        elif litellm.LlmProviders.TRITON == provider:
+            return litellm.TritonEmbeddingConfig()
+        elif litellm.LlmProviders.WATSONX == provider:
+            return litellm.IBMWatsonXEmbeddingConfig()
+        raise ValueError(f"Provider {provider.value} does not support embedding config")
+
+    @staticmethod
+    def get_provider_rerank_config(
+        model: str,
+        provider: LlmProviders,
+        api_base: Optional[str],
+        present_version_params: List[str],
+    ) -> BaseRerankConfig:
+        if litellm.LlmProviders.COHERE == provider:
+            if should_use_cohere_v1_client(api_base, present_version_params):
+                return litellm.CohereRerankConfig()
+            else:
+                return litellm.CohereRerankV2Config()
+        elif litellm.LlmProviders.AZURE_AI == provider:
+            return litellm.AzureAIRerankConfig()
+        elif litellm.LlmProviders.INFINITY == provider:
+            return litellm.InfinityRerankConfig()
+        elif litellm.LlmProviders.JINA_AI == provider:
+            return litellm.JinaAIRerankConfig()
+        return litellm.CohereRerankConfig()
+
+    @staticmethod
+    def get_provider_anthropic_messages_config(
+        model: str,
+        provider: LlmProviders,
+    ) -> Optional[BaseAnthropicMessagesConfig]:
+        if litellm.LlmProviders.ANTHROPIC == provider:
+            return litellm.AnthropicMessagesConfig()
+        return None
+
+    @staticmethod
+    def get_provider_audio_transcription_config(
+        model: str,
+        provider: LlmProviders,
+    ) -> Optional[BaseAudioTranscriptionConfig]:
+        if litellm.LlmProviders.FIREWORKS_AI == provider:
+            return litellm.FireworksAIAudioTranscriptionConfig()
+        elif litellm.LlmProviders.DEEPGRAM == provider:
+            return litellm.DeepgramAudioTranscriptionConfig()
+        return None
+
+    @staticmethod
+    def get_provider_responses_api_config(
+        model: str,
+        provider: LlmProviders,
+    ) -> Optional[BaseResponsesAPIConfig]:
+        if litellm.LlmProviders.OPENAI == provider:
+            return litellm.OpenAIResponsesAPIConfig()
+        return None
+
+    @staticmethod
+    def get_provider_text_completion_config(
+        model: str,
+        provider: LlmProviders,
+    ) -> BaseTextCompletionConfig:
+        if LlmProviders.FIREWORKS_AI == provider:
+            return litellm.FireworksAITextCompletionConfig()
+        elif LlmProviders.TOGETHER_AI == provider:
+            return litellm.TogetherAITextCompletionConfig()
+        return litellm.OpenAITextCompletionConfig()
+
+    @staticmethod
+    def get_provider_model_info(
+        model: Optional[str],
+        provider: LlmProviders,
+    ) -> Optional[BaseLLMModelInfo]:
+        if LlmProviders.FIREWORKS_AI == provider:
+            return litellm.FireworksAIConfig()
+        elif LlmProviders.OPENAI == provider:
+            return litellm.OpenAIGPTConfig()
+        elif LlmProviders.LITELLM_PROXY == provider:
+            return litellm.LiteLLMProxyChatConfig()
+        elif LlmProviders.TOPAZ == provider:
+            return litellm.TopazModelInfo()
+
+        return None
+
+    @staticmethod
+    def get_provider_image_variation_config(
+        model: str,
+        provider: LlmProviders,
+    ) -> Optional[BaseImageVariationConfig]:
+        if LlmProviders.OPENAI == provider:
+            return litellm.OpenAIImageVariationConfig()
+        elif LlmProviders.TOPAZ == provider:
+            return litellm.TopazImageVariationConfig()
+        return None
+
+
+def get_end_user_id_for_cost_tracking(
+    litellm_params: dict,
+    service_type: Literal["litellm_logging", "prometheus"] = "litellm_logging",
+) -> Optional[str]:
+    """
+    Used for enforcing `disable_end_user_cost_tracking` param.
+
+    service_type: "litellm_logging" or "prometheus" - used to allow prometheus only disable cost tracking.
+    """
+    _metadata = cast(dict, litellm_params.get("metadata", {}) or {})
+
+    end_user_id = cast(
+        Optional[str],
+        litellm_params.get("user_api_key_end_user_id")
+        or _metadata.get("user_api_key_end_user_id"),
+    )
+    if litellm.disable_end_user_cost_tracking:
+        return None
+    if (
+        service_type == "prometheus"
+        and litellm.disable_end_user_cost_tracking_prometheus_only
+    ):
+        return None
+    return end_user_id
+
+
+def should_use_cohere_v1_client(
+    api_base: Optional[str], present_version_params: List[str]
+):
+    if not api_base:
+        return False
+    uses_v1_params = ("max_chunks_per_doc" in present_version_params) and (
+        "max_tokens_per_doc" not in present_version_params
+    )
+    return api_base.endswith("/v1/rerank") or (
+        uses_v1_params and not api_base.endswith("/v2/rerank")
+    )
+
+
+def is_prompt_caching_valid_prompt(
+    model: str,
+    messages: Optional[List[AllMessageValues]],
+    tools: Optional[List[ChatCompletionToolParam]] = None,
+    custom_llm_provider: Optional[str] = None,
+) -> bool:
+    """
+    Returns true if the prompt is valid for prompt caching.
+
+    OpenAI + Anthropic providers have a minimum token count of 1024 for prompt caching.
+    """
+    try:
+        if messages is None and tools is None:
+            return False
+        if custom_llm_provider is not None and not model.startswith(
+            custom_llm_provider
+        ):
+            model = custom_llm_provider + "/" + model
+        token_count = token_counter(
+            messages=messages,
+            tools=tools,
+            model=model,
+            use_default_image_token_count=True,
+        )
+        return token_count >= 1024
+    except Exception as e:
+        verbose_logger.error(f"Error in is_prompt_caching_valid_prompt: {e}")
+        return False
+
+
+def extract_duration_from_srt_or_vtt(srt_or_vtt_content: str) -> Optional[float]:
+    """
+    Extracts the total duration (in seconds) from SRT or VTT content.
+
+    Args:
+        srt_or_vtt_content (str): The content of an SRT or VTT file as a string.
+
+    Returns:
+        Optional[float]: The total duration in seconds, or None if no timestamps are found.
+    """
+    # Regular expression to match timestamps in the format "hh:mm:ss,ms" or "hh:mm:ss.ms"
+    timestamp_pattern = r"(\d{2}):(\d{2}):(\d{2})[.,](\d{3})"
+
+    timestamps = re.findall(timestamp_pattern, srt_or_vtt_content)
+
+    if not timestamps:
+        return None
+
+    # Convert timestamps to seconds and find the max (end time)
+    durations = []
+    for match in timestamps:
+        hours, minutes, seconds, milliseconds = map(int, match)
+        total_seconds = hours * 3600 + minutes * 60 + seconds + milliseconds / 1000.0
+        durations.append(total_seconds)
+
+    return max(durations) if durations else None
+
+
+import httpx
+
+
+def _add_path_to_api_base(api_base: str, ending_path: str) -> str:
+    """
+    Adds an ending path to an API base URL while preventing duplicate path segments.
+
+    Args:
+        api_base: Base URL string
+        ending_path: Path to append to the base URL
+
+    Returns:
+        Modified URL string with proper path handling
+    """
+    original_url = httpx.URL(api_base)
+    base_url = original_url.copy_with(params={})  # Removes query params
+    base_path = original_url.path.rstrip("/")
+    end_path = ending_path.lstrip("/")
+
+    # Split paths into segments
+    base_segments = [s for s in base_path.split("/") if s]
+    end_segments = [s for s in end_path.split("/") if s]
+
+    # Find overlapping segments from the end of base_path and start of ending_path
+    final_segments = []
+    for i in range(len(base_segments)):
+        if base_segments[i:] == end_segments[: len(base_segments) - i]:
+            final_segments = base_segments[:i] + end_segments
+            break
+    else:
+        # No overlap found, just combine all segments
+        final_segments = base_segments + end_segments
+
+    # Construct the new path
+    modified_path = "/" + "/".join(final_segments)
+    modified_url = base_url.copy_with(path=modified_path)
+
+    # Re-add the original query parameters
+    return str(modified_url.copy_with(params=original_url.params))
+
+
+def get_non_default_completion_params(kwargs: dict) -> dict:
+    openai_params = litellm.OPENAI_CHAT_COMPLETION_PARAMS
+    default_params = openai_params + all_litellm_params
+    non_default_params = {
+        k: v for k, v in kwargs.items() if k not in default_params
+    }  # model-specific params - pass them straight to the model/provider
+    return non_default_params
+
+
+def add_openai_metadata(metadata: dict) -> dict:
+    """
+    Add metadata to openai optional parameters, excluding hidden params.
+
+    OpenAI 'metadata' only supports string values.
+
+    Args:
+        params (dict): Dictionary of API parameters
+        metadata (dict, optional): Metadata to include in the request
+
+    Returns:
+        dict: Updated parameters dictionary with visible metadata only
+    """
+    if metadata is None:
+        return None
+    # Only include non-hidden parameters
+    visible_metadata = {
+        k: v
+        for k, v in metadata.items()
+        if k != "hidden_params" and isinstance(v, (str))
+    }
+
+    return visible_metadata.copy()
+
+
+def return_raw_request(endpoint: CallTypes, kwargs: dict) -> RawRequestTypedDict:
+    """
+    Return the json str of the request
+
+    This is currently in BETA, and tested for `/chat/completions` -> `litellm.completion` calls.
+    """
+    from datetime import datetime
+
+    from litellm.litellm_core_utils.litellm_logging import Logging
+
+    litellm_logging_obj = Logging(
+        model="gpt-3.5-turbo",
+        messages=[{"role": "user", "content": "hi"}],
+        stream=False,
+        call_type="acompletion",
+        litellm_call_id="1234",
+        start_time=datetime.now(),
+        function_id="1234",
+        log_raw_request_response=True,
+    )
+
+    llm_api_endpoint = getattr(litellm, endpoint.value)
+
+    received_exception = ""
+
+    try:
+        llm_api_endpoint(
+            **kwargs,
+            litellm_logging_obj=litellm_logging_obj,
+            api_key="my-fake-api-key",  # 👈 ensure the request fails
+        )
+    except Exception as e:
+        received_exception = str(e)
+
+    raw_request_typed_dict = litellm_logging_obj.model_call_details.get(
+        "raw_request_typed_dict"
+    )
+    if raw_request_typed_dict:
+        return cast(RawRequestTypedDict, raw_request_typed_dict)
+    else:
+        return RawRequestTypedDict(
+            error=received_exception,
+        )