diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/proxy/anthropic_endpoints/endpoints.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/litellm/proxy/anthropic_endpoints/endpoints.py | 252 |
1 files changed, 252 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/proxy/anthropic_endpoints/endpoints.py b/.venv/lib/python3.12/site-packages/litellm/proxy/anthropic_endpoints/endpoints.py new file mode 100644 index 00000000..78078b93 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/litellm/proxy/anthropic_endpoints/endpoints.py @@ -0,0 +1,252 @@ +""" +Unified /v1/messages endpoint - (Anthropic Spec) +""" + +import asyncio +import json +import time +import traceback + +from fastapi import APIRouter, Depends, HTTPException, Request, Response, status +from fastapi.responses import StreamingResponse + +import litellm +from litellm._logging import verbose_proxy_logger +from litellm.proxy._types import * +from litellm.proxy.auth.user_api_key_auth import user_api_key_auth +from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing +from litellm.proxy.common_utils.http_parsing_utils import _read_request_body +from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request +from litellm.proxy.utils import ProxyLogging + +router = APIRouter() + + +async def async_data_generator_anthropic( + response, + user_api_key_dict: UserAPIKeyAuth, + request_data: dict, + proxy_logging_obj: ProxyLogging, +): + verbose_proxy_logger.debug("inside generator") + try: + time.time() + async for chunk in response: + verbose_proxy_logger.debug( + "async_data_generator: received streaming chunk - {}".format(chunk) + ) + ### CALL HOOKS ### - modify outgoing data + chunk = await proxy_logging_obj.async_post_call_streaming_hook( + user_api_key_dict=user_api_key_dict, response=chunk + ) + + yield chunk + except Exception as e: + verbose_proxy_logger.exception( + "litellm.proxy.proxy_server.async_data_generator(): Exception occured - {}".format( + str(e) + ) + ) + await proxy_logging_obj.post_call_failure_hook( + user_api_key_dict=user_api_key_dict, + original_exception=e, + request_data=request_data, + ) + verbose_proxy_logger.debug( + f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`" + ) + + if isinstance(e, HTTPException): + raise e + else: + error_traceback = traceback.format_exc() + error_msg = f"{str(e)}\n\n{error_traceback}" + + proxy_exception = ProxyException( + message=getattr(e, "message", error_msg), + type=getattr(e, "type", "None"), + param=getattr(e, "param", "None"), + code=getattr(e, "status_code", 500), + ) + error_returned = json.dumps({"error": proxy_exception.to_dict()}) + yield f"data: {error_returned}\n\n" + + +@router.post( + "/v1/messages", + tags=["[beta] Anthropic `/v1/messages`"], + dependencies=[Depends(user_api_key_auth)], + include_in_schema=False, +) +async def anthropic_response( # noqa: PLR0915 + fastapi_response: Response, + request: Request, + user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), +): + """ + Use `{PROXY_BASE_URL}/anthropic/v1/messages` instead - [Docs](https://docs.litellm.ai/docs/anthropic_completion). + + This was a BETA endpoint that calls 100+ LLMs in the anthropic format. + """ + from litellm.proxy.proxy_server import ( + general_settings, + llm_router, + proxy_config, + proxy_logging_obj, + user_api_base, + user_max_tokens, + user_model, + user_request_timeout, + user_temperature, + version, + ) + + request_data = await _read_request_body(request=request) + data: dict = {**request_data} + try: + data["model"] = ( + general_settings.get("completion_model", None) # server default + or user_model # model name passed via cli args + or data.get("model", None) # default passed in http request + ) + if user_model: + data["model"] = user_model + + data = await add_litellm_data_to_request( + data=data, # type: ignore + request=request, + general_settings=general_settings, + user_api_key_dict=user_api_key_dict, + version=version, + proxy_config=proxy_config, + ) + + # override with user settings, these are params passed via cli + if user_temperature: + data["temperature"] = user_temperature + if user_request_timeout: + data["request_timeout"] = user_request_timeout + if user_max_tokens: + data["max_tokens"] = user_max_tokens + if user_api_base: + data["api_base"] = user_api_base + + ### MODEL ALIAS MAPPING ### + # check if model name in model alias map + # get the actual model name + if data["model"] in litellm.model_alias_map: + data["model"] = litellm.model_alias_map[data["model"]] + + ### CALL HOOKS ### - modify incoming data before calling the model + data = await proxy_logging_obj.pre_call_hook( # type: ignore + user_api_key_dict=user_api_key_dict, data=data, call_type="text_completion" + ) + + ### ROUTE THE REQUESTs ### + router_model_names = llm_router.model_names if llm_router is not None else [] + + # skip router if user passed their key + if ( + llm_router is not None and data["model"] in router_model_names + ): # model in router model list + llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data)) + elif ( + llm_router is not None + and llm_router.model_group_alias is not None + and data["model"] in llm_router.model_group_alias + ): # model set in model_group_alias + llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data)) + elif ( + llm_router is not None and data["model"] in llm_router.deployment_names + ): # model in router deployments, calling a specific deployment on the router + llm_response = asyncio.create_task( + llm_router.aanthropic_messages(**data, specific_deployment=True) + ) + elif ( + llm_router is not None and data["model"] in llm_router.get_model_ids() + ): # model in router model list + llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data)) + elif ( + llm_router is not None + and data["model"] not in router_model_names + and ( + llm_router.default_deployment is not None + or len(llm_router.pattern_router.patterns) > 0 + ) + ): # model in router deployments, calling a specific deployment on the router + llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data)) + elif user_model is not None: # `litellm --model <your-model-name>` + llm_response = asyncio.create_task(litellm.anthropic_messages(**data)) + else: + raise HTTPException( + status_code=status.HTTP_400_BAD_REQUEST, + detail={ + "error": "completion: Invalid model name passed in model=" + + data.get("model", "") + }, + ) + + # Await the llm_response task + response = await llm_response + + hidden_params = getattr(response, "_hidden_params", {}) or {} + model_id = hidden_params.get("model_id", None) or "" + cache_key = hidden_params.get("cache_key", None) or "" + api_base = hidden_params.get("api_base", None) or "" + response_cost = hidden_params.get("response_cost", None) or "" + + ### ALERTING ### + asyncio.create_task( + proxy_logging_obj.update_request_status( + litellm_call_id=data.get("litellm_call_id", ""), status="success" + ) + ) + + verbose_proxy_logger.debug("final response: %s", response) + + fastapi_response.headers.update( + ProxyBaseLLMRequestProcessing.get_custom_headers( + user_api_key_dict=user_api_key_dict, + model_id=model_id, + cache_key=cache_key, + api_base=api_base, + version=version, + response_cost=response_cost, + request_data=data, + hidden_params=hidden_params, + ) + ) + + if ( + "stream" in data and data["stream"] is True + ): # use generate_responses to stream responses + selected_data_generator = async_data_generator_anthropic( + response=response, + user_api_key_dict=user_api_key_dict, + request_data=data, + proxy_logging_obj=proxy_logging_obj, + ) + + return StreamingResponse( + selected_data_generator, # type: ignore + media_type="text/event-stream", + ) + + verbose_proxy_logger.info("\nResponse from Litellm:\n{}".format(response)) + return response + except Exception as e: + await proxy_logging_obj.post_call_failure_hook( + user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data + ) + verbose_proxy_logger.exception( + "litellm.proxy.proxy_server.anthropic_response(): Exception occured - {}".format( + str(e) + ) + ) + error_msg = f"{str(e)}" + raise ProxyException( + message=getattr(e, "message", error_msg), + type=getattr(e, "type", "None"), + param=getattr(e, "param", "None"), + code=getattr(e, "status_code", 500), + ) |