aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files/handler.py97
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files/transformation.py163
2 files changed, 260 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files/handler.py
new file mode 100644
index 00000000..266169cd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files/handler.py
@@ -0,0 +1,97 @@
+from typing import Any, Coroutine, Optional, Union
+
+import httpx
+
+from litellm import LlmProviders
+from litellm.integrations.gcs_bucket.gcs_bucket_base import (
+ GCSBucketBase,
+ GCSLoggingConfig,
+)
+from litellm.llms.custom_httpx.http_handler import get_async_httpx_client
+from litellm.types.llms.openai import CreateFileRequest, FileObject
+from litellm.types.llms.vertex_ai import VERTEX_CREDENTIALS_TYPES
+
+from .transformation import VertexAIFilesTransformation
+
+vertex_ai_files_transformation = VertexAIFilesTransformation()
+
+
+class VertexAIFilesHandler(GCSBucketBase):
+ """
+ Handles Calling VertexAI in OpenAI Files API format v1/files/*
+
+ This implementation uploads files on GCS Buckets
+ """
+
+ def __init__(self):
+ super().__init__()
+ self.async_httpx_client = get_async_httpx_client(
+ llm_provider=LlmProviders.VERTEX_AI,
+ )
+
+ pass
+
+ async def async_create_file(
+ self,
+ create_file_data: CreateFileRequest,
+ api_base: Optional[str],
+ vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES],
+ vertex_project: Optional[str],
+ vertex_location: Optional[str],
+ timeout: Union[float, httpx.Timeout],
+ max_retries: Optional[int],
+ ):
+ gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
+ kwargs={}
+ )
+ headers = await self.construct_request_headers(
+ vertex_instance=gcs_logging_config["vertex_instance"],
+ service_account_json=gcs_logging_config["path_service_account"],
+ )
+ bucket_name = gcs_logging_config["bucket_name"]
+ logging_payload, object_name = (
+ vertex_ai_files_transformation.transform_openai_file_content_to_vertex_ai_file_content(
+ openai_file_content=create_file_data.get("file")
+ )
+ )
+ gcs_upload_response = await self._log_json_data_on_gcs(
+ headers=headers,
+ bucket_name=bucket_name,
+ object_name=object_name,
+ logging_payload=logging_payload,
+ )
+
+ return vertex_ai_files_transformation.transform_gcs_bucket_response_to_openai_file_object(
+ create_file_data=create_file_data,
+ gcs_upload_response=gcs_upload_response,
+ )
+
+ def create_file(
+ self,
+ _is_async: bool,
+ create_file_data: CreateFileRequest,
+ api_base: Optional[str],
+ vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES],
+ vertex_project: Optional[str],
+ vertex_location: Optional[str],
+ timeout: Union[float, httpx.Timeout],
+ max_retries: Optional[int],
+ ) -> Union[FileObject, Coroutine[Any, Any, FileObject]]:
+ """
+ Creates a file on VertexAI GCS Bucket
+
+ Only supported for Async litellm.acreate_file
+ """
+
+ if _is_async:
+ return self.async_create_file(
+ create_file_data=create_file_data,
+ api_base=api_base,
+ vertex_credentials=vertex_credentials,
+ vertex_project=vertex_project,
+ vertex_location=vertex_location,
+ timeout=timeout,
+ max_retries=max_retries,
+ )
+
+ return None # type: ignore
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files/transformation.py
new file mode 100644
index 00000000..a124e205
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/files/transformation.py
@@ -0,0 +1,163 @@
+import json
+import uuid
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+from litellm.llms.vertex_ai.common_utils import (
+ _convert_vertex_datetime_to_openai_datetime,
+)
+from litellm.llms.vertex_ai.gemini.transformation import _transform_request_body
+from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
+ VertexGeminiConfig,
+)
+from litellm.types.llms.openai import CreateFileRequest, FileObject, FileTypes, PathLike
+
+
+class VertexAIFilesTransformation(VertexGeminiConfig):
+ """
+ Transforms OpenAI /v1/files/* requests to VertexAI /v1/files/* requests
+ """
+
+ def transform_openai_file_content_to_vertex_ai_file_content(
+ self, openai_file_content: Optional[FileTypes] = None
+ ) -> Tuple[str, str]:
+ """
+ Transforms OpenAI FileContentRequest to VertexAI FileContentRequest
+ """
+
+ if openai_file_content is None:
+ raise ValueError("contents of file are None")
+ # Read the content of the file
+ file_content = self._get_content_from_openai_file(openai_file_content)
+
+ # Split into lines and parse each line as JSON
+ openai_jsonl_content = [
+ json.loads(line) for line in file_content.splitlines() if line.strip()
+ ]
+ vertex_jsonl_content = (
+ self._transform_openai_jsonl_content_to_vertex_ai_jsonl_content(
+ openai_jsonl_content
+ )
+ )
+ vertex_jsonl_string = "\n".join(
+ json.dumps(item) for item in vertex_jsonl_content
+ )
+ object_name = self._get_gcs_object_name(
+ openai_jsonl_content=openai_jsonl_content
+ )
+ return vertex_jsonl_string, object_name
+
+ def _transform_openai_jsonl_content_to_vertex_ai_jsonl_content(
+ self, openai_jsonl_content: List[Dict[str, Any]]
+ ):
+ """
+ Transforms OpenAI JSONL content to VertexAI JSONL content
+
+ jsonl body for vertex is {"request": <request_body>}
+ Example Vertex jsonl
+ {"request":{"contents": [{"role": "user", "parts": [{"text": "What is the relation between the following video and image samples?"}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/animals.mp4", "mimeType": "video/mp4"}}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/image/cricket.jpeg", "mimeType": "image/jpeg"}}]}]}}
+ {"request":{"contents": [{"role": "user", "parts": [{"text": "Describe what is happening in this video."}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/another_video.mov", "mimeType": "video/mov"}}]}]}}
+ """
+
+ vertex_jsonl_content = []
+ for _openai_jsonl_content in openai_jsonl_content:
+ openai_request_body = _openai_jsonl_content.get("body") or {}
+ vertex_request_body = _transform_request_body(
+ messages=openai_request_body.get("messages", []),
+ model=openai_request_body.get("model", ""),
+ optional_params=self._map_openai_to_vertex_params(openai_request_body),
+ custom_llm_provider="vertex_ai",
+ litellm_params={},
+ cached_content=None,
+ )
+ vertex_jsonl_content.append({"request": vertex_request_body})
+ return vertex_jsonl_content
+
+ def _get_gcs_object_name(
+ self,
+ openai_jsonl_content: List[Dict[str, Any]],
+ ) -> str:
+ """
+ Gets a unique GCS object name for the VertexAI batch prediction job
+
+ named as: litellm-vertex-{model}-{uuid}
+ """
+ _model = openai_jsonl_content[0].get("body", {}).get("model", "")
+ if "publishers/google/models" not in _model:
+ _model = f"publishers/google/models/{_model}"
+ object_name = f"litellm-vertex-files/{_model}/{uuid.uuid4()}"
+ return object_name
+
+ def _map_openai_to_vertex_params(
+ self,
+ openai_request_body: Dict[str, Any],
+ ) -> Dict[str, Any]:
+ """
+ wrapper to call VertexGeminiConfig.map_openai_params
+ """
+ _model = openai_request_body.get("model", "")
+ vertex_params = self.map_openai_params(
+ model=_model,
+ non_default_params=openai_request_body,
+ optional_params={},
+ drop_params=False,
+ )
+ return vertex_params
+
+ def _get_content_from_openai_file(self, openai_file_content: FileTypes) -> str:
+ """
+ Helper to extract content from various OpenAI file types and return as string.
+
+ Handles:
+ - Direct content (str, bytes, IO[bytes])
+ - Tuple formats: (filename, content, [content_type], [headers])
+ - PathLike objects
+ """
+ content: Union[str, bytes] = b""
+ # Extract file content from tuple if necessary
+ if isinstance(openai_file_content, tuple):
+ # Take the second element which is always the file content
+ file_content = openai_file_content[1]
+ else:
+ file_content = openai_file_content
+
+ # Handle different file content types
+ if isinstance(file_content, str):
+ # String content can be used directly
+ content = file_content
+ elif isinstance(file_content, bytes):
+ # Bytes content can be decoded
+ content = file_content
+ elif isinstance(file_content, PathLike): # PathLike
+ with open(str(file_content), "rb") as f:
+ content = f.read()
+ elif hasattr(file_content, "read"): # IO[bytes]
+ # File-like objects need to be read
+ content = file_content.read()
+
+ # Ensure content is string
+ if isinstance(content, bytes):
+ content = content.decode("utf-8")
+
+ return content
+
+ def transform_gcs_bucket_response_to_openai_file_object(
+ self, create_file_data: CreateFileRequest, gcs_upload_response: Dict[str, Any]
+ ) -> FileObject:
+ """
+ Transforms GCS Bucket upload file response to OpenAI FileObject
+ """
+ gcs_id = gcs_upload_response.get("id", "")
+ # Remove the last numeric ID from the path
+ gcs_id = "/".join(gcs_id.split("/")[:-1]) if gcs_id else ""
+
+ return FileObject(
+ purpose=create_file_data.get("purpose", "batch"),
+ id=f"gs://{gcs_id}",
+ filename=gcs_upload_response.get("name", ""),
+ created_at=_convert_vertex_datetime_to_openai_datetime(
+ vertex_datetime=gcs_upload_response.get("timeCreated", "")
+ ),
+ status="uploaded",
+ bytes=gcs_upload_response.get("size", 0),
+ object="file",
+ )