aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/together_ai
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/together_ai')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/together_ai/chat.py59
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/together_ai/completion/handler.py3
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/together_ai/completion/transformation.py61
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/together_ai/cost_calculator.py79
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/together_ai/embed.py7
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/handler.py92
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/transformation.py63
7 files changed, 364 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/chat.py b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/chat.py
new file mode 100644
index 00000000..06d33f69
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/chat.py
@@ -0,0 +1,59 @@
+"""
+Support for OpenAI's `/v1/chat/completions` endpoint.
+
+Calls done in OpenAI/openai.py as TogetherAI is openai-compatible.
+
+Docs: https://docs.together.ai/reference/completions-1
+"""
+
+from typing import Optional
+
+from litellm import get_model_info, verbose_logger
+
+from ..openai.chat.gpt_transformation import OpenAIGPTConfig
+
+
+class TogetherAIConfig(OpenAIGPTConfig):
+ def get_supported_openai_params(self, model: str) -> list:
+ """
+ Only some together models support response_format / tool calling
+
+ Docs: https://docs.together.ai/docs/json-mode
+ """
+ supports_function_calling: Optional[bool] = None
+ try:
+ model_info = get_model_info(model, custom_llm_provider="together_ai")
+ supports_function_calling = model_info.get(
+ "supports_function_calling", False
+ )
+ except Exception as e:
+ verbose_logger.debug(f"Error getting supported openai params: {e}")
+ pass
+
+ optional_params = super().get_supported_openai_params(model)
+ if supports_function_calling is not True:
+ verbose_logger.debug(
+ "Only some together models support function calling/response_format. Docs - https://docs.together.ai/docs/function-calling"
+ )
+ optional_params.remove("tools")
+ optional_params.remove("tool_choice")
+ optional_params.remove("function_call")
+ optional_params.remove("response_format")
+ return optional_params
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ mapped_openai_params = super().map_openai_params(
+ non_default_params, optional_params, model, drop_params
+ )
+
+ if "response_format" in mapped_openai_params and mapped_openai_params[
+ "response_format"
+ ] == {"type": "text"}:
+ mapped_openai_params.pop("response_format")
+ return mapped_openai_params
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/completion/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/completion/handler.py
new file mode 100644
index 00000000..180e3484
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/completion/handler.py
@@ -0,0 +1,3 @@
+"""
+Uses openai's `/completion` handler.py
+"""
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/completion/transformation.py
new file mode 100644
index 00000000..8b9dc750
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/completion/transformation.py
@@ -0,0 +1,61 @@
+"""
+Translates calls from OpenAI's `/v1/completions` endpoint to TogetherAI's `/v1/completions` endpoint.
+
+Calls done in OpenAI/openai.py as TogetherAI is openai-compatible.
+
+Docs: https://docs.together.ai/reference/completions-1
+"""
+
+from typing import List, Union, cast
+
+from litellm.llms.openai.completion.utils import is_tokens_or_list_of_tokens
+from litellm.types.llms.openai import (
+ AllMessageValues,
+ AllPromptValues,
+ OpenAITextCompletionUserMessage,
+)
+
+from ...openai.completion.transformation import OpenAITextCompletionConfig
+from ...openai.completion.utils import _transform_prompt
+
+
+class TogetherAITextCompletionConfig(OpenAITextCompletionConfig):
+ def _transform_prompt(
+ self,
+ messages: Union[List[AllMessageValues], List[OpenAITextCompletionUserMessage]],
+ ) -> AllPromptValues:
+ """
+ TogetherAI expects a string prompt.
+ """
+ initial_prompt: AllPromptValues = _transform_prompt(messages)
+ ## TOGETHER AI SPECIFIC VALIDATION ##
+ if isinstance(initial_prompt, list) and is_tokens_or_list_of_tokens(
+ value=initial_prompt
+ ):
+ raise ValueError("TogetherAI does not support integers as input")
+ if (
+ isinstance(initial_prompt, list)
+ and len(initial_prompt) == 1
+ and isinstance(initial_prompt[0], str)
+ ):
+ together_prompt = initial_prompt[0]
+ elif isinstance(initial_prompt, list):
+ raise ValueError("TogetherAI does not support multiple prompts.")
+ else:
+ together_prompt = cast(str, initial_prompt)
+
+ return together_prompt
+
+ def transform_text_completion_request(
+ self,
+ model: str,
+ messages: Union[List[AllMessageValues], List[OpenAITextCompletionUserMessage]],
+ optional_params: dict,
+ headers: dict,
+ ) -> dict:
+ prompt = self._transform_prompt(messages)
+ return {
+ "model": model,
+ "prompt": prompt,
+ **optional_params,
+ }
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/cost_calculator.py b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/cost_calculator.py
new file mode 100644
index 00000000..d3b0db8b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/cost_calculator.py
@@ -0,0 +1,79 @@
+"""
+Handles calculating cost for together ai models
+"""
+
+import re
+
+from litellm.types.utils import CallTypes
+
+
+# Extract the number of billion parameters from the model name
+# only used for together_computer LLMs
+def get_model_params_and_category(model_name, call_type: CallTypes) -> str:
+ """
+ Helper function for calculating together ai pricing.
+
+ Returns
+ - str - model pricing category if mapped else received model name
+ """
+ if call_type == CallTypes.embedding or call_type == CallTypes.aembedding:
+ return get_model_params_and_category_embeddings(model_name=model_name)
+ model_name = model_name.lower()
+ re_params_match = re.search(
+ r"(\d+b)", model_name
+ ) # catch all decimals like 3b, 70b, etc
+ category = None
+ if re_params_match is not None:
+ params_match = str(re_params_match.group(1))
+ params_match = params_match.replace("b", "")
+ if params_match is not None:
+ params_billion = float(params_match)
+ else:
+ return model_name
+ # Determine the category based on the number of parameters
+ if params_billion <= 4.0:
+ category = "together-ai-up-to-4b"
+ elif params_billion <= 8.0:
+ category = "together-ai-4.1b-8b"
+ elif params_billion <= 21.0:
+ category = "together-ai-8.1b-21b"
+ elif params_billion <= 41.0:
+ category = "together-ai-21.1b-41b"
+ elif params_billion <= 80.0:
+ category = "together-ai-41.1b-80b"
+ elif params_billion <= 110.0:
+ category = "together-ai-81.1b-110b"
+ if category is not None:
+ return category
+
+ return model_name
+
+
+def get_model_params_and_category_embeddings(model_name) -> str:
+ """
+ Helper function for calculating together ai embedding pricing.
+
+ Returns
+ - str - model pricing category if mapped else received model name
+ """
+ model_name = model_name.lower()
+ re_params_match = re.search(
+ r"(\d+m)", model_name
+ ) # catch all decimals like 100m, 200m, etc.
+ category = None
+ if re_params_match is not None:
+ params_match = str(re_params_match.group(1))
+ params_match = params_match.replace("m", "")
+ if params_match is not None:
+ params_million = float(params_match)
+ else:
+ return model_name
+ # Determine the category based on the number of parameters
+ if params_million <= 150:
+ category = "together-ai-embedding-up-to-150m"
+ elif params_million <= 350:
+ category = "together-ai-embedding-151m-to-350m"
+ if category is not None:
+ return category
+
+ return model_name
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/embed.py b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/embed.py
new file mode 100644
index 00000000..577df025
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/embed.py
@@ -0,0 +1,7 @@
+"""
+Support for OpenAI's `/v1/embeddings` endpoint.
+
+Calls done in OpenAI/openai.py as TogetherAI is openai-compatible.
+
+Docs: https://docs.together.ai/reference/completions-1
+"""
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/handler.py
new file mode 100644
index 00000000..c5b02731
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/handler.py
@@ -0,0 +1,92 @@
+"""
+Re rank api
+
+LiteLLM supports the re rank API format, no paramter transformation occurs
+"""
+
+from typing import Any, Dict, List, Optional, Union
+
+import litellm
+from litellm.llms.base import BaseLLM
+from litellm.llms.custom_httpx.http_handler import (
+ _get_httpx_client,
+ get_async_httpx_client,
+)
+from litellm.llms.together_ai.rerank.transformation import TogetherAIRerankConfig
+from litellm.types.rerank import RerankRequest, RerankResponse
+
+
+class TogetherAIRerank(BaseLLM):
+ def rerank(
+ self,
+ model: str,
+ api_key: str,
+ query: str,
+ documents: List[Union[str, Dict[str, Any]]],
+ top_n: Optional[int] = None,
+ rank_fields: Optional[List[str]] = None,
+ return_documents: Optional[bool] = True,
+ max_chunks_per_doc: Optional[int] = None,
+ _is_async: Optional[bool] = False,
+ ) -> RerankResponse:
+ client = _get_httpx_client()
+
+ request_data = RerankRequest(
+ model=model,
+ query=query,
+ top_n=top_n,
+ documents=documents,
+ rank_fields=rank_fields,
+ return_documents=return_documents,
+ )
+
+ # exclude None values from request_data
+ request_data_dict = request_data.dict(exclude_none=True)
+ if max_chunks_per_doc is not None:
+ raise ValueError("TogetherAI does not support max_chunks_per_doc")
+
+ if _is_async:
+ return self.async_rerank(request_data_dict, api_key) # type: ignore # Call async method
+
+ response = client.post(
+ "https://api.together.xyz/v1/rerank",
+ headers={
+ "accept": "application/json",
+ "content-type": "application/json",
+ "authorization": f"Bearer {api_key}",
+ },
+ json=request_data_dict,
+ )
+
+ if response.status_code != 200:
+ raise Exception(response.text)
+
+ _json_response = response.json()
+
+ return TogetherAIRerankConfig()._transform_response(_json_response)
+
+ async def async_rerank( # New async method
+ self,
+ request_data_dict: Dict[str, Any],
+ api_key: str,
+ ) -> RerankResponse:
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.TOGETHER_AI
+ ) # Use async client
+
+ response = await client.post(
+ "https://api.together.xyz/v1/rerank",
+ headers={
+ "accept": "application/json",
+ "content-type": "application/json",
+ "authorization": f"Bearer {api_key}",
+ },
+ json=request_data_dict,
+ )
+
+ if response.status_code != 200:
+ raise Exception(response.text)
+
+ _json_response = response.json()
+
+ return TogetherAIRerankConfig()._transform_response(_json_response)
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/transformation.py
new file mode 100644
index 00000000..47143769
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/transformation.py
@@ -0,0 +1,63 @@
+"""
+Transformation logic from Cohere's /v1/rerank format to Together AI's `/v1/rerank` format.
+
+Why separate file? Make it easy to see how transformation works
+"""
+
+import uuid
+from typing import List, Optional
+
+from litellm.types.rerank import (
+ RerankBilledUnits,
+ RerankResponse,
+ RerankResponseDocument,
+ RerankResponseMeta,
+ RerankResponseResult,
+ RerankTokens,
+)
+
+
+class TogetherAIRerankConfig:
+ def _transform_response(self, response: dict) -> RerankResponse:
+
+ _billed_units = RerankBilledUnits(**response.get("usage", {}))
+ _tokens = RerankTokens(**response.get("usage", {}))
+ rerank_meta = RerankResponseMeta(billed_units=_billed_units, tokens=_tokens)
+
+ _results: Optional[List[dict]] = response.get("results")
+
+ if _results is None:
+ raise ValueError(f"No results found in the response={response}")
+
+ rerank_results: List[RerankResponseResult] = []
+
+ for result in _results:
+ # Validate required fields exist
+ if not all(key in result for key in ["index", "relevance_score"]):
+ raise ValueError(f"Missing required fields in the result={result}")
+
+ # Get document data if it exists
+ document_data = result.get("document", {})
+ document = (
+ RerankResponseDocument(text=str(document_data.get("text", "")))
+ if document_data
+ else None
+ )
+
+ # Create typed result
+ rerank_result = RerankResponseResult(
+ index=int(result["index"]),
+ relevance_score=float(result["relevance_score"]),
+ )
+
+ # Only add document if it exists
+ if document:
+ rerank_result["document"] = document
+
+ rerank_results.append(rerank_result)
+
+ return RerankResponse(
+ id=response.get("id") or str(uuid.uuid4()),
+ results=rerank_results,
+ meta=rerank_meta,
+ ) # Return response