aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/handler.py92
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/transformation.py63
2 files changed, 155 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/handler.py
new file mode 100644
index 00000000..c5b02731
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/handler.py
@@ -0,0 +1,92 @@
+"""
+Re rank api
+
+LiteLLM supports the re rank API format, no paramter transformation occurs
+"""
+
+from typing import Any, Dict, List, Optional, Union
+
+import litellm
+from litellm.llms.base import BaseLLM
+from litellm.llms.custom_httpx.http_handler import (
+ _get_httpx_client,
+ get_async_httpx_client,
+)
+from litellm.llms.together_ai.rerank.transformation import TogetherAIRerankConfig
+from litellm.types.rerank import RerankRequest, RerankResponse
+
+
+class TogetherAIRerank(BaseLLM):
+ def rerank(
+ self,
+ model: str,
+ api_key: str,
+ query: str,
+ documents: List[Union[str, Dict[str, Any]]],
+ top_n: Optional[int] = None,
+ rank_fields: Optional[List[str]] = None,
+ return_documents: Optional[bool] = True,
+ max_chunks_per_doc: Optional[int] = None,
+ _is_async: Optional[bool] = False,
+ ) -> RerankResponse:
+ client = _get_httpx_client()
+
+ request_data = RerankRequest(
+ model=model,
+ query=query,
+ top_n=top_n,
+ documents=documents,
+ rank_fields=rank_fields,
+ return_documents=return_documents,
+ )
+
+ # exclude None values from request_data
+ request_data_dict = request_data.dict(exclude_none=True)
+ if max_chunks_per_doc is not None:
+ raise ValueError("TogetherAI does not support max_chunks_per_doc")
+
+ if _is_async:
+ return self.async_rerank(request_data_dict, api_key) # type: ignore # Call async method
+
+ response = client.post(
+ "https://api.together.xyz/v1/rerank",
+ headers={
+ "accept": "application/json",
+ "content-type": "application/json",
+ "authorization": f"Bearer {api_key}",
+ },
+ json=request_data_dict,
+ )
+
+ if response.status_code != 200:
+ raise Exception(response.text)
+
+ _json_response = response.json()
+
+ return TogetherAIRerankConfig()._transform_response(_json_response)
+
+ async def async_rerank( # New async method
+ self,
+ request_data_dict: Dict[str, Any],
+ api_key: str,
+ ) -> RerankResponse:
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.TOGETHER_AI
+ ) # Use async client
+
+ response = await client.post(
+ "https://api.together.xyz/v1/rerank",
+ headers={
+ "accept": "application/json",
+ "content-type": "application/json",
+ "authorization": f"Bearer {api_key}",
+ },
+ json=request_data_dict,
+ )
+
+ if response.status_code != 200:
+ raise Exception(response.text)
+
+ _json_response = response.json()
+
+ return TogetherAIRerankConfig()._transform_response(_json_response)
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/transformation.py
new file mode 100644
index 00000000..47143769
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/together_ai/rerank/transformation.py
@@ -0,0 +1,63 @@
+"""
+Transformation logic from Cohere's /v1/rerank format to Together AI's `/v1/rerank` format.
+
+Why separate file? Make it easy to see how transformation works
+"""
+
+import uuid
+from typing import List, Optional
+
+from litellm.types.rerank import (
+ RerankBilledUnits,
+ RerankResponse,
+ RerankResponseDocument,
+ RerankResponseMeta,
+ RerankResponseResult,
+ RerankTokens,
+)
+
+
+class TogetherAIRerankConfig:
+ def _transform_response(self, response: dict) -> RerankResponse:
+
+ _billed_units = RerankBilledUnits(**response.get("usage", {}))
+ _tokens = RerankTokens(**response.get("usage", {}))
+ rerank_meta = RerankResponseMeta(billed_units=_billed_units, tokens=_tokens)
+
+ _results: Optional[List[dict]] = response.get("results")
+
+ if _results is None:
+ raise ValueError(f"No results found in the response={response}")
+
+ rerank_results: List[RerankResponseResult] = []
+
+ for result in _results:
+ # Validate required fields exist
+ if not all(key in result for key in ["index", "relevance_score"]):
+ raise ValueError(f"Missing required fields in the result={result}")
+
+ # Get document data if it exists
+ document_data = result.get("document", {})
+ document = (
+ RerankResponseDocument(text=str(document_data.get("text", "")))
+ if document_data
+ else None
+ )
+
+ # Create typed result
+ rerank_result = RerankResponseResult(
+ index=int(result["index"]),
+ relevance_score=float(result["relevance_score"]),
+ )
+
+ # Only add document if it exists
+ if document:
+ rerank_result["document"] = document
+
+ rerank_results.append(rerank_result)
+
+ return RerankResponse(
+ id=response.get("id") or str(uuid.uuid4()),
+ results=rerank_results,
+ meta=rerank_meta,
+ ) # Return response