aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py179
1 files changed, 179 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py
new file mode 100644
index 00000000..c827a8a5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py
@@ -0,0 +1,179 @@
+import json
+from copy import deepcopy
+from typing import Callable, Optional, Union
+
+import httpx
+
+from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM
+from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.utils import ModelResponse, get_secret
+
+from ..common_utils import AWSEventStreamDecoder
+from .transformation import SagemakerChatConfig
+
+
+class SagemakerChatHandler(BaseAWSLLM):
+
+ def _load_credentials(
+ self,
+ optional_params: dict,
+ ):
+ try:
+ from botocore.credentials import Credentials
+ except ImportError:
+ raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
+ ## CREDENTIALS ##
+ # pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
+ aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
+ aws_access_key_id = optional_params.pop("aws_access_key_id", None)
+ aws_session_token = optional_params.pop("aws_session_token", None)
+ aws_region_name = optional_params.pop("aws_region_name", None)
+ aws_role_name = optional_params.pop("aws_role_name", None)
+ aws_session_name = optional_params.pop("aws_session_name", None)
+ aws_profile_name = optional_params.pop("aws_profile_name", None)
+ optional_params.pop(
+ "aws_bedrock_runtime_endpoint", None
+ ) # https://bedrock-runtime.{region_name}.amazonaws.com
+ aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
+ aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
+
+ ### SET REGION NAME ###
+ if aws_region_name is None:
+ # check env #
+ litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
+
+ if litellm_aws_region_name is not None and isinstance(
+ litellm_aws_region_name, str
+ ):
+ aws_region_name = litellm_aws_region_name
+
+ standard_aws_region_name = get_secret("AWS_REGION", None)
+ if standard_aws_region_name is not None and isinstance(
+ standard_aws_region_name, str
+ ):
+ aws_region_name = standard_aws_region_name
+
+ if aws_region_name is None:
+ aws_region_name = "us-west-2"
+
+ credentials: Credentials = self.get_credentials(
+ aws_access_key_id=aws_access_key_id,
+ aws_secret_access_key=aws_secret_access_key,
+ aws_session_token=aws_session_token,
+ aws_region_name=aws_region_name,
+ aws_session_name=aws_session_name,
+ aws_profile_name=aws_profile_name,
+ aws_role_name=aws_role_name,
+ aws_web_identity_token=aws_web_identity_token,
+ aws_sts_endpoint=aws_sts_endpoint,
+ )
+ return credentials, aws_region_name
+
+ def _prepare_request(
+ self,
+ credentials,
+ model: str,
+ data: dict,
+ optional_params: dict,
+ aws_region_name: str,
+ extra_headers: Optional[dict] = None,
+ ):
+ try:
+ from botocore.auth import SigV4Auth
+ from botocore.awsrequest import AWSRequest
+ except ImportError:
+ raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
+
+ sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
+ if optional_params.get("stream") is True:
+ api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
+ else:
+ api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"
+
+ sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
+ if sagemaker_base_url is not None:
+ api_base = sagemaker_base_url
+
+ encoded_data = json.dumps(data).encode("utf-8")
+ headers = {"Content-Type": "application/json"}
+ if extra_headers is not None:
+ headers = {"Content-Type": "application/json", **extra_headers}
+ request = AWSRequest(
+ method="POST", url=api_base, data=encoded_data, headers=headers
+ )
+ sigv4.add_auth(request)
+ if (
+ extra_headers is not None and "Authorization" in extra_headers
+ ): # prevent sigv4 from overwriting the auth header
+ request.headers["Authorization"] = extra_headers["Authorization"]
+
+ prepped_request = request.prepare()
+
+ return prepped_request
+
+ def completion(
+ self,
+ model: str,
+ messages: list,
+ model_response: ModelResponse,
+ print_verbose: Callable,
+ encoding,
+ logging_obj,
+ optional_params: dict,
+ litellm_params: dict,
+ timeout: Optional[Union[float, httpx.Timeout]] = None,
+ custom_prompt_dict={},
+ logger_fn=None,
+ acompletion: bool = False,
+ headers: dict = {},
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+ ):
+
+ # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
+ credentials, aws_region_name = self._load_credentials(optional_params)
+ inference_params = deepcopy(optional_params)
+ stream = inference_params.pop("stream", None)
+
+ from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler
+
+ openai_like_chat_completions = OpenAILikeChatHandler()
+ inference_params["stream"] = True if stream is True else False
+ _data = SagemakerChatConfig().transform_request(
+ model=model,
+ messages=messages,
+ optional_params=inference_params,
+ litellm_params=litellm_params,
+ headers=headers,
+ )
+
+ prepared_request = self._prepare_request(
+ model=model,
+ data=_data,
+ optional_params=optional_params,
+ credentials=credentials,
+ aws_region_name=aws_region_name,
+ )
+
+ custom_stream_decoder = AWSEventStreamDecoder(model="", is_messages_api=True)
+
+ return openai_like_chat_completions.completion(
+ model=model,
+ messages=messages,
+ api_base=prepared_request.url,
+ api_key=None,
+ custom_prompt_dict=custom_prompt_dict,
+ model_response=model_response,
+ print_verbose=print_verbose,
+ logging_obj=logging_obj,
+ optional_params=inference_params,
+ acompletion=acompletion,
+ litellm_params=litellm_params,
+ logger_fn=logger_fn,
+ timeout=timeout,
+ encoding=encoding,
+ headers=prepared_request.headers, # type: ignore
+ custom_endpoint=True,
+ custom_llm_provider="sagemaker_chat",
+ streaming_decoder=custom_stream_decoder, # type: ignore
+ client=client,
+ )