diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py | 179 |
1 files changed, 179 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py new file mode 100644 index 00000000..c827a8a5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/chat/handler.py @@ -0,0 +1,179 @@ +import json +from copy import deepcopy +from typing import Callable, Optional, Union + +import httpx + +from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM +from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler +from litellm.utils import ModelResponse, get_secret + +from ..common_utils import AWSEventStreamDecoder +from .transformation import SagemakerChatConfig + + +class SagemakerChatHandler(BaseAWSLLM): + + def _load_credentials( + self, + optional_params: dict, + ): + try: + from botocore.credentials import Credentials + except ImportError: + raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") + ## CREDENTIALS ## + # pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them + aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) + aws_access_key_id = optional_params.pop("aws_access_key_id", None) + aws_session_token = optional_params.pop("aws_session_token", None) + aws_region_name = optional_params.pop("aws_region_name", None) + aws_role_name = optional_params.pop("aws_role_name", None) + aws_session_name = optional_params.pop("aws_session_name", None) + aws_profile_name = optional_params.pop("aws_profile_name", None) + optional_params.pop( + "aws_bedrock_runtime_endpoint", None + ) # https://bedrock-runtime.{region_name}.amazonaws.com + aws_web_identity_token = optional_params.pop("aws_web_identity_token", None) + aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None) + + ### SET REGION NAME ### + if aws_region_name is None: + # check env # + litellm_aws_region_name = get_secret("AWS_REGION_NAME", None) + + if litellm_aws_region_name is not None and isinstance( + litellm_aws_region_name, str + ): + aws_region_name = litellm_aws_region_name + + standard_aws_region_name = get_secret("AWS_REGION", None) + if standard_aws_region_name is not None and isinstance( + standard_aws_region_name, str + ): + aws_region_name = standard_aws_region_name + + if aws_region_name is None: + aws_region_name = "us-west-2" + + credentials: Credentials = self.get_credentials( + aws_access_key_id=aws_access_key_id, + aws_secret_access_key=aws_secret_access_key, + aws_session_token=aws_session_token, + aws_region_name=aws_region_name, + aws_session_name=aws_session_name, + aws_profile_name=aws_profile_name, + aws_role_name=aws_role_name, + aws_web_identity_token=aws_web_identity_token, + aws_sts_endpoint=aws_sts_endpoint, + ) + return credentials, aws_region_name + + def _prepare_request( + self, + credentials, + model: str, + data: dict, + optional_params: dict, + aws_region_name: str, + extra_headers: Optional[dict] = None, + ): + try: + from botocore.auth import SigV4Auth + from botocore.awsrequest import AWSRequest + except ImportError: + raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") + + sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name) + if optional_params.get("stream") is True: + api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream" + else: + api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations" + + sagemaker_base_url = optional_params.get("sagemaker_base_url", None) + if sagemaker_base_url is not None: + api_base = sagemaker_base_url + + encoded_data = json.dumps(data).encode("utf-8") + headers = {"Content-Type": "application/json"} + if extra_headers is not None: + headers = {"Content-Type": "application/json", **extra_headers} + request = AWSRequest( + method="POST", url=api_base, data=encoded_data, headers=headers + ) + sigv4.add_auth(request) + if ( + extra_headers is not None and "Authorization" in extra_headers + ): # prevent sigv4 from overwriting the auth header + request.headers["Authorization"] = extra_headers["Authorization"] + + prepped_request = request.prepare() + + return prepped_request + + def completion( + self, + model: str, + messages: list, + model_response: ModelResponse, + print_verbose: Callable, + encoding, + logging_obj, + optional_params: dict, + litellm_params: dict, + timeout: Optional[Union[float, httpx.Timeout]] = None, + custom_prompt_dict={}, + logger_fn=None, + acompletion: bool = False, + headers: dict = {}, + client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, + ): + + # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker + credentials, aws_region_name = self._load_credentials(optional_params) + inference_params = deepcopy(optional_params) + stream = inference_params.pop("stream", None) + + from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler + + openai_like_chat_completions = OpenAILikeChatHandler() + inference_params["stream"] = True if stream is True else False + _data = SagemakerChatConfig().transform_request( + model=model, + messages=messages, + optional_params=inference_params, + litellm_params=litellm_params, + headers=headers, + ) + + prepared_request = self._prepare_request( + model=model, + data=_data, + optional_params=optional_params, + credentials=credentials, + aws_region_name=aws_region_name, + ) + + custom_stream_decoder = AWSEventStreamDecoder(model="", is_messages_api=True) + + return openai_like_chat_completions.completion( + model=model, + messages=messages, + api_base=prepared_request.url, + api_key=None, + custom_prompt_dict=custom_prompt_dict, + model_response=model_response, + print_verbose=print_verbose, + logging_obj=logging_obj, + optional_params=inference_params, + acompletion=acompletion, + litellm_params=litellm_params, + logger_fn=logger_fn, + timeout=timeout, + encoding=encoding, + headers=prepared_request.headers, # type: ignore + custom_endpoint=True, + custom_llm_provider="sagemaker_chat", + streaming_decoder=custom_stream_decoder, # type: ignore + client=client, + ) |