about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/predibase/chat/transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/predibase/chat/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/predibase/chat/transformation.py180
1 files changed, 180 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/predibase/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/predibase/chat/transformation.py
new file mode 100644
index 00000000..f5742386
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/predibase/chat/transformation.py
@@ -0,0 +1,180 @@
+from typing import TYPE_CHECKING, Any, List, Literal, Optional, Union
+
+from httpx import Headers, Response
+
+from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import ModelResponse
+
+from ..common_utils import PredibaseError
+
+if TYPE_CHECKING:
+    from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+    LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+    LiteLLMLoggingObj = Any
+
+
+class PredibaseConfig(BaseConfig):
+    """
+    Reference:  https://docs.predibase.com/user-guide/inference/rest_api
+    """
+
+    adapter_id: Optional[str] = None
+    adapter_source: Optional[Literal["pbase", "hub", "s3"]] = None
+    best_of: Optional[int] = None
+    decoder_input_details: Optional[bool] = None
+    details: bool = True  # enables returning logprobs + best of
+    max_new_tokens: int = (
+        256  # openai default - requests hang if max_new_tokens not given
+    )
+    repetition_penalty: Optional[float] = None
+    return_full_text: Optional[bool] = (
+        False  # by default don't return the input as part of the output
+    )
+    seed: Optional[int] = None
+    stop: Optional[List[str]] = None
+    temperature: Optional[float] = None
+    top_k: Optional[int] = None
+    top_p: Optional[int] = None
+    truncate: Optional[int] = None
+    typical_p: Optional[float] = None
+    watermark: Optional[bool] = None
+
+    def __init__(
+        self,
+        best_of: Optional[int] = None,
+        decoder_input_details: Optional[bool] = None,
+        details: Optional[bool] = None,
+        max_new_tokens: Optional[int] = None,
+        repetition_penalty: Optional[float] = None,
+        return_full_text: Optional[bool] = None,
+        seed: Optional[int] = None,
+        stop: Optional[List[str]] = None,
+        temperature: Optional[float] = None,
+        top_k: Optional[int] = None,
+        top_p: Optional[int] = None,
+        truncate: Optional[int] = None,
+        typical_p: Optional[float] = None,
+        watermark: Optional[bool] = None,
+    ) -> None:
+        locals_ = locals().copy()
+        for key, value in locals_.items():
+            if key != "self" and value is not None:
+                setattr(self.__class__, key, value)
+
+    @classmethod
+    def get_config(cls):
+        return super().get_config()
+
+    def get_supported_openai_params(self, model: str):
+        return [
+            "stream",
+            "temperature",
+            "max_completion_tokens",
+            "max_tokens",
+            "top_p",
+            "stop",
+            "n",
+            "response_format",
+        ]
+
+    def map_openai_params(
+        self,
+        non_default_params: dict,
+        optional_params: dict,
+        model: str,
+        drop_params: bool,
+    ) -> dict:
+        for param, value in non_default_params.items():
+            # temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
+            if param == "temperature":
+                if value == 0.0 or value == 0:
+                    # hugging face exception raised when temp==0
+                    # Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
+                    value = 0.01
+                optional_params["temperature"] = value
+            if param == "top_p":
+                optional_params["top_p"] = value
+            if param == "n":
+                optional_params["best_of"] = value
+                optional_params["do_sample"] = (
+                    True  # Need to sample if you want best of for hf inference endpoints
+                )
+            if param == "stream":
+                optional_params["stream"] = value
+            if param == "stop":
+                optional_params["stop"] = value
+            if param == "max_tokens" or param == "max_completion_tokens":
+                # HF TGI raises the following exception when max_new_tokens==0
+                # Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
+                if value == 0:
+                    value = 1
+                optional_params["max_new_tokens"] = value
+            if param == "echo":
+                # https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details
+                #  Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False
+                optional_params["decoder_input_details"] = True
+            if param == "response_format":
+                optional_params["response_format"] = value
+        return optional_params
+
+    def transform_response(
+        self,
+        model: str,
+        raw_response: Response,
+        model_response: ModelResponse,
+        logging_obj: LiteLLMLoggingObj,
+        request_data: dict,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        encoding: str,
+        api_key: Optional[str] = None,
+        json_mode: Optional[bool] = None,
+    ) -> ModelResponse:
+        raise NotImplementedError(
+            "Predibase transformation currently done in handler.py. Need to migrate to this file."
+        )
+
+    def transform_request(
+        self,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        headers: dict,
+    ) -> dict:
+        raise NotImplementedError(
+            "Predibase transformation currently done in handler.py. Need to migrate to this file."
+        )
+
+    def get_error_class(
+        self, error_message: str, status_code: int, headers: Union[dict, Headers]
+    ) -> BaseLLMException:
+        return PredibaseError(
+            status_code=status_code, message=error_message, headers=headers
+        )
+
+    def validate_environment(
+        self,
+        headers: dict,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        api_key: Optional[str] = None,
+        api_base: Optional[str] = None,
+    ) -> dict:
+        if api_key is None:
+            raise ValueError(
+                "Missing Predibase API Key - A call is being made to predibase but no key is set either in the environment variables or via params"
+            )
+
+        default_headers = {
+            "content-type": "application/json",
+            "Authorization": "Bearer {}".format(api_key),
+        }
+        if headers is not None and isinstance(headers, dict):
+            headers = {**default_headers, **headers}
+        return headers