diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/petals/completion/handler.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/litellm/llms/petals/completion/handler.py | 149 |
1 files changed, 149 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/petals/completion/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/petals/completion/handler.py new file mode 100644 index 00000000..ae38baec --- /dev/null +++ b/.venv/lib/python3.12/site-packages/litellm/llms/petals/completion/handler.py @@ -0,0 +1,149 @@ +import time +from typing import Callable, Optional, Union + +import litellm +from litellm.litellm_core_utils.prompt_templates.factory import ( + custom_prompt, + prompt_factory, +) +from litellm.llms.custom_httpx.http_handler import ( + AsyncHTTPHandler, + HTTPHandler, + _get_httpx_client, +) +from litellm.utils import ModelResponse, Usage + +from ..common_utils import PetalsError + + +def completion( + model: str, + messages: list, + api_base: Optional[str], + model_response: ModelResponse, + print_verbose: Callable, + encoding, + logging_obj, + optional_params: dict, + stream=False, + litellm_params=None, + logger_fn=None, + client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, +): + ## Load Config + config = litellm.PetalsConfig.get_config() + for k, v in config.items(): + if ( + k not in optional_params + ): # completion(top_k=3) > petals_config(top_k=3) <- allows for dynamic variables to be passed in + optional_params[k] = v + + if model in litellm.custom_prompt_dict: + # check if the model has a registered custom prompt + model_prompt_details = litellm.custom_prompt_dict[model] + prompt = custom_prompt( + role_dict=model_prompt_details["roles"], + initial_prompt_value=model_prompt_details["initial_prompt_value"], + final_prompt_value=model_prompt_details["final_prompt_value"], + messages=messages, + ) + else: + prompt = prompt_factory(model=model, messages=messages) + + output_text: Optional[str] = None + if api_base: + ## LOGGING + logging_obj.pre_call( + input=prompt, + api_key="", + additional_args={ + "complete_input_dict": optional_params, + "api_base": api_base, + }, + ) + data = {"model": model, "inputs": prompt, **optional_params} + + ## COMPLETION CALL + if client is None or not isinstance(client, HTTPHandler): + client = _get_httpx_client() + response = client.post(api_base, data=data) + + ## LOGGING + logging_obj.post_call( + input=prompt, + api_key="", + original_response=response.text, + additional_args={"complete_input_dict": optional_params}, + ) + + ## RESPONSE OBJECT + try: + output_text = response.json()["outputs"] + except Exception as e: + PetalsError( + status_code=response.status_code, + message=str(e), + headers=response.headers, + ) + + else: + try: + from petals import AutoDistributedModelForCausalLM # type: ignore + from transformers import AutoTokenizer + except Exception: + raise Exception( + "Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals" + ) + + model = model + + tokenizer = AutoTokenizer.from_pretrained( + model, use_fast=False, add_bos_token=False + ) + model_obj = AutoDistributedModelForCausalLM.from_pretrained(model) + + ## LOGGING + logging_obj.pre_call( + input=prompt, + api_key="", + additional_args={"complete_input_dict": optional_params}, + ) + + ## COMPLETION CALL + inputs = tokenizer(prompt, return_tensors="pt")["input_ids"] + + # optional params: max_new_tokens=1,temperature=0.9, top_p=0.6 + outputs = model_obj.generate(inputs, **optional_params) + + ## LOGGING + logging_obj.post_call( + input=prompt, + api_key="", + original_response=outputs, + additional_args={"complete_input_dict": optional_params}, + ) + ## RESPONSE OBJECT + output_text = tokenizer.decode(outputs[0]) + + if output_text is not None and len(output_text) > 0: + model_response.choices[0].message.content = output_text # type: ignore + + prompt_tokens = len(encoding.encode(prompt)) + completion_tokens = len( + encoding.encode(model_response["choices"][0]["message"].get("content")) + ) + + model_response.created = int(time.time()) + model_response.model = model + usage = Usage( + prompt_tokens=prompt_tokens, + completion_tokens=completion_tokens, + total_tokens=prompt_tokens + completion_tokens, + ) + setattr(model_response, "usage", usage) + return model_response + + +def embedding(): + # logic for parsing in - calling - parsing out model embedding calls + pass |