about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/openai/cost_calculation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/openai/cost_calculation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/openai/cost_calculation.py120
1 files changed, 120 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/openai/cost_calculation.py b/.venv/lib/python3.12/site-packages/litellm/llms/openai/cost_calculation.py
new file mode 100644
index 00000000..0c26fd74
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/openai/cost_calculation.py
@@ -0,0 +1,120 @@
+"""
+Helper util for handling openai-specific cost calculation
+- e.g.: prompt caching
+"""
+
+from typing import Literal, Optional, Tuple
+
+from litellm._logging import verbose_logger
+from litellm.types.utils import CallTypes, Usage
+from litellm.utils import get_model_info
+
+
+def cost_router(call_type: CallTypes) -> Literal["cost_per_token", "cost_per_second"]:
+    if call_type == CallTypes.atranscription or call_type == CallTypes.transcription:
+        return "cost_per_second"
+    else:
+        return "cost_per_token"
+
+
+def cost_per_token(model: str, usage: Usage) -> Tuple[float, float]:
+    """
+    Calculates the cost per token for a given model, prompt tokens, and completion tokens.
+
+    Input:
+        - model: str, the model name without provider prefix
+        - usage: LiteLLM Usage block, containing anthropic caching information
+
+    Returns:
+        Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
+    """
+    ## GET MODEL INFO
+    model_info = get_model_info(model=model, custom_llm_provider="openai")
+    ## CALCULATE INPUT COST
+    ### Non-cached text tokens
+    non_cached_text_tokens = usage.prompt_tokens
+    cached_tokens: Optional[int] = None
+    if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens:
+        cached_tokens = usage.prompt_tokens_details.cached_tokens
+        non_cached_text_tokens = non_cached_text_tokens - cached_tokens
+    prompt_cost: float = non_cached_text_tokens * model_info["input_cost_per_token"]
+    ## Prompt Caching cost calculation
+    if model_info.get("cache_read_input_token_cost") is not None and cached_tokens:
+        # Note: We read ._cache_read_input_tokens from the Usage - since cost_calculator.py standardizes the cache read tokens on usage._cache_read_input_tokens
+        prompt_cost += cached_tokens * (
+            model_info.get("cache_read_input_token_cost", 0) or 0
+        )
+
+    _audio_tokens: Optional[int] = (
+        usage.prompt_tokens_details.audio_tokens
+        if usage.prompt_tokens_details is not None
+        else None
+    )
+    _audio_cost_per_token: Optional[float] = model_info.get(
+        "input_cost_per_audio_token"
+    )
+    if _audio_tokens is not None and _audio_cost_per_token is not None:
+        audio_cost: float = _audio_tokens * _audio_cost_per_token
+        prompt_cost += audio_cost
+
+    ## CALCULATE OUTPUT COST
+    completion_cost: float = (
+        usage["completion_tokens"] * model_info["output_cost_per_token"]
+    )
+    _output_cost_per_audio_token: Optional[float] = model_info.get(
+        "output_cost_per_audio_token"
+    )
+    _output_audio_tokens: Optional[int] = (
+        usage.completion_tokens_details.audio_tokens
+        if usage.completion_tokens_details is not None
+        else None
+    )
+    if _output_cost_per_audio_token is not None and _output_audio_tokens is not None:
+        audio_cost = _output_audio_tokens * _output_cost_per_audio_token
+        completion_cost += audio_cost
+
+    return prompt_cost, completion_cost
+
+
+def cost_per_second(
+    model: str, custom_llm_provider: Optional[str], duration: float = 0.0
+) -> Tuple[float, float]:
+    """
+    Calculates the cost per second for a given model, prompt tokens, and completion tokens.
+
+    Input:
+        - model: str, the model name without provider prefix
+        - custom_llm_provider: str, the custom llm provider
+        - duration: float, the duration of the response in seconds
+
+    Returns:
+        Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
+    """
+    ## GET MODEL INFO
+    model_info = get_model_info(
+        model=model, custom_llm_provider=custom_llm_provider or "openai"
+    )
+    prompt_cost = 0.0
+    completion_cost = 0.0
+    ## Speech / Audio cost calculation
+    if (
+        "output_cost_per_second" in model_info
+        and model_info["output_cost_per_second"] is not None
+    ):
+        verbose_logger.debug(
+            f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; duration: {duration}"
+        )
+        ## COST PER SECOND ##
+        completion_cost = model_info["output_cost_per_second"] * duration
+    elif (
+        "input_cost_per_second" in model_info
+        and model_info["input_cost_per_second"] is not None
+    ):
+        verbose_logger.debug(
+            f"For model={model} - input_cost_per_second: {model_info.get('input_cost_per_second')}; duration: {duration}"
+        )
+        ## COST PER SECOND ##
+        prompt_cost = model_info["input_cost_per_second"] * duration
+        completion_cost = 0.0
+
+    return prompt_cost, completion_cost