about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/openai/common_utils.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/openai/common_utils.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/openai/common_utils.py208
1 files changed, 208 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/openai/common_utils.py b/.venv/lib/python3.12/site-packages/litellm/llms/openai/common_utils.py
new file mode 100644
index 00000000..55da16d6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/openai/common_utils.py
@@ -0,0 +1,208 @@
+"""
+Common helpers / utils across al OpenAI endpoints
+"""
+
+import hashlib
+import json
+from typing import Any, Dict, List, Literal, Optional, Union
+
+import httpx
+import openai
+from openai import AsyncAzureOpenAI, AsyncOpenAI, AzureOpenAI, OpenAI
+
+import litellm
+from litellm.llms.base_llm.chat.transformation import BaseLLMException
+from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
+
+
+class OpenAIError(BaseLLMException):
+    def __init__(
+        self,
+        status_code: int,
+        message: str,
+        request: Optional[httpx.Request] = None,
+        response: Optional[httpx.Response] = None,
+        headers: Optional[Union[dict, httpx.Headers]] = None,
+        body: Optional[dict] = None,
+    ):
+        self.status_code = status_code
+        self.message = message
+        self.headers = headers
+        if request:
+            self.request = request
+        else:
+            self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
+        if response:
+            self.response = response
+        else:
+            self.response = httpx.Response(
+                status_code=status_code, request=self.request
+            )
+        super().__init__(
+            status_code=status_code,
+            message=self.message,
+            headers=self.headers,
+            request=self.request,
+            response=self.response,
+            body=body,
+        )
+
+
+####### Error Handling Utils for OpenAI API #######################
+###################################################################
+def drop_params_from_unprocessable_entity_error(
+    e: Union[openai.UnprocessableEntityError, httpx.HTTPStatusError],
+    data: Dict[str, Any],
+) -> Dict[str, Any]:
+    """
+    Helper function to read OpenAI UnprocessableEntityError and drop the params that raised an error from the error message.
+
+    Args:
+    e (UnprocessableEntityError): The UnprocessableEntityError exception
+    data (Dict[str, Any]): The original data dictionary containing all parameters
+
+    Returns:
+    Dict[str, Any]: A new dictionary with invalid parameters removed
+    """
+    invalid_params: List[str] = []
+    if isinstance(e, httpx.HTTPStatusError):
+        error_json = e.response.json()
+        error_message = error_json.get("error", {})
+        error_body = error_message
+    else:
+        error_body = e.body
+    if (
+        error_body is not None
+        and isinstance(error_body, dict)
+        and error_body.get("message")
+    ):
+        message = error_body.get("message", {})
+        if isinstance(message, str):
+            try:
+                message = json.loads(message)
+            except json.JSONDecodeError:
+                message = {"detail": message}
+        detail = message.get("detail")
+
+        if isinstance(detail, List) and len(detail) > 0 and isinstance(detail[0], dict):
+            for error_dict in detail:
+                if (
+                    error_dict.get("loc")
+                    and isinstance(error_dict.get("loc"), list)
+                    and len(error_dict.get("loc")) == 2
+                ):
+                    invalid_params.append(error_dict["loc"][1])
+
+    new_data = {k: v for k, v in data.items() if k not in invalid_params}
+
+    return new_data
+
+
+class BaseOpenAILLM:
+    """
+    Base class for OpenAI LLMs for getting their httpx clients and SSL verification settings
+    """
+
+    @staticmethod
+    def get_cached_openai_client(
+        client_initialization_params: dict, client_type: Literal["openai", "azure"]
+    ) -> Optional[Union[OpenAI, AsyncOpenAI, AzureOpenAI, AsyncAzureOpenAI]]:
+        """Retrieves the OpenAI client from the in-memory cache based on the client initialization parameters"""
+        _cache_key = BaseOpenAILLM.get_openai_client_cache_key(
+            client_initialization_params=client_initialization_params,
+            client_type=client_type,
+        )
+        _cached_client = litellm.in_memory_llm_clients_cache.get_cache(_cache_key)
+        return _cached_client
+
+    @staticmethod
+    def set_cached_openai_client(
+        openai_client: Union[OpenAI, AsyncOpenAI, AzureOpenAI, AsyncAzureOpenAI],
+        client_type: Literal["openai", "azure"],
+        client_initialization_params: dict,
+    ):
+        """Stores the OpenAI client in the in-memory cache for _DEFAULT_TTL_FOR_HTTPX_CLIENTS SECONDS"""
+        _cache_key = BaseOpenAILLM.get_openai_client_cache_key(
+            client_initialization_params=client_initialization_params,
+            client_type=client_type,
+        )
+        litellm.in_memory_llm_clients_cache.set_cache(
+            key=_cache_key,
+            value=openai_client,
+            ttl=_DEFAULT_TTL_FOR_HTTPX_CLIENTS,
+        )
+
+    @staticmethod
+    def get_openai_client_cache_key(
+        client_initialization_params: dict, client_type: Literal["openai", "azure"]
+    ) -> str:
+        """Creates a cache key for the OpenAI client based on the client initialization parameters"""
+        hashed_api_key = None
+        if client_initialization_params.get("api_key") is not None:
+            hash_object = hashlib.sha256(
+                client_initialization_params.get("api_key", "").encode()
+            )
+            # Hexadecimal representation of the hash
+            hashed_api_key = hash_object.hexdigest()
+
+        # Create a more readable cache key using a list of key-value pairs
+        key_parts = [
+            f"hashed_api_key={hashed_api_key}",
+            f"is_async={client_initialization_params.get('is_async')}",
+        ]
+
+        LITELLM_CLIENT_SPECIFIC_PARAMS = [
+            "timeout",
+            "max_retries",
+            "organization",
+            "api_base",
+        ]
+        openai_client_fields = (
+            BaseOpenAILLM.get_openai_client_initialization_param_fields(
+                client_type=client_type
+            )
+            + LITELLM_CLIENT_SPECIFIC_PARAMS
+        )
+
+        for param in openai_client_fields:
+            key_parts.append(f"{param}={client_initialization_params.get(param)}")
+
+        _cache_key = ",".join(key_parts)
+        return _cache_key
+
+    @staticmethod
+    def get_openai_client_initialization_param_fields(
+        client_type: Literal["openai", "azure"]
+    ) -> List[str]:
+        """Returns a list of fields that are used to initialize the OpenAI client"""
+        import inspect
+
+        from openai import AzureOpenAI, OpenAI
+
+        if client_type == "openai":
+            signature = inspect.signature(OpenAI.__init__)
+        else:
+            signature = inspect.signature(AzureOpenAI.__init__)
+
+        # Extract parameter names, excluding 'self'
+        param_names = [param for param in signature.parameters if param != "self"]
+        return param_names
+
+    @staticmethod
+    def _get_async_http_client() -> Optional[httpx.AsyncClient]:
+        if litellm.aclient_session is not None:
+            return litellm.aclient_session
+
+        return httpx.AsyncClient(
+            limits=httpx.Limits(max_connections=1000, max_keepalive_connections=100),
+            verify=litellm.ssl_verify,
+        )
+
+    @staticmethod
+    def _get_sync_http_client() -> Optional[httpx.Client]:
+        if litellm.client_session is not None:
+            return litellm.client_session
+        return httpx.Client(
+            limits=httpx.Limits(max_connections=1000, max_keepalive_connections=100),
+            verify=litellm.ssl_verify,
+        )