diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/jina_ai/rerank/transformation.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/litellm/llms/jina_ai/rerank/transformation.py | 143 |
1 files changed, 143 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/jina_ai/rerank/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/jina_ai/rerank/transformation.py new file mode 100644 index 00000000..8d0a9b14 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/litellm/llms/jina_ai/rerank/transformation.py @@ -0,0 +1,143 @@ +""" +Transformation logic from Cohere's /v1/rerank format to Jina AI's `/v1/rerank` format. + +Why separate file? Make it easy to see how transformation works + +Docs - https://jina.ai/reranker +""" + +import uuid +from typing import Any, Dict, List, Optional, Tuple, Union + +from httpx import URL, Response + +from litellm.llms.base_llm.chat.transformation import LiteLLMLoggingObj +from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig +from litellm.types.rerank import ( + OptionalRerankParams, + RerankBilledUnits, + RerankResponse, + RerankResponseMeta, + RerankTokens, +) +from litellm.types.utils import ModelInfo + + +class JinaAIRerankConfig(BaseRerankConfig): + def get_supported_cohere_rerank_params(self, model: str) -> list: + return [ + "query", + "top_n", + "documents", + "return_documents", + ] + + def map_cohere_rerank_params( + self, + non_default_params: dict, + model: str, + drop_params: bool, + query: str, + documents: List[Union[str, Dict[str, Any]]], + custom_llm_provider: Optional[str] = None, + top_n: Optional[int] = None, + rank_fields: Optional[List[str]] = None, + return_documents: Optional[bool] = True, + max_chunks_per_doc: Optional[int] = None, + max_tokens_per_doc: Optional[int] = None, + ) -> OptionalRerankParams: + optional_params = {} + supported_params = self.get_supported_cohere_rerank_params(model) + for k, v in non_default_params.items(): + if k in supported_params: + optional_params[k] = v + return OptionalRerankParams( + **optional_params, + ) + + def get_complete_url(self, api_base: Optional[str], model: str) -> str: + base_path = "/v1/rerank" + + if api_base is None: + return "https://api.jina.ai/v1/rerank" + base = URL(api_base) + # Reconstruct URL with cleaned path + cleaned_base = str(base.copy_with(path=base_path)) + + return cleaned_base + + def transform_rerank_request( + self, model: str, optional_rerank_params: OptionalRerankParams, headers: Dict + ) -> Dict: + return {"model": model, **optional_rerank_params} + + def transform_rerank_response( + self, + model: str, + raw_response: Response, + model_response: RerankResponse, + logging_obj: LiteLLMLoggingObj, + api_key: Optional[str] = None, + request_data: Dict = {}, + optional_params: Dict = {}, + litellm_params: Dict = {}, + ) -> RerankResponse: + if raw_response.status_code != 200: + raise Exception(raw_response.text) + + logging_obj.post_call(original_response=raw_response.text) + + _json_response = raw_response.json() + + _billed_units = RerankBilledUnits(**_json_response.get("usage", {})) + _tokens = RerankTokens(**_json_response.get("usage", {})) + rerank_meta = RerankResponseMeta(billed_units=_billed_units, tokens=_tokens) + + _results: Optional[List[dict]] = _json_response.get("results") + + if _results is None: + raise ValueError(f"No results found in the response={_json_response}") + + return RerankResponse( + id=_json_response.get("id") or str(uuid.uuid4()), + results=_results, # type: ignore + meta=rerank_meta, + ) # Return response + + def validate_environment( + self, headers: Dict, model: str, api_key: Optional[str] = None + ) -> Dict: + if api_key is None: + raise ValueError( + "api_key is required. Set via `api_key` parameter or `JINA_API_KEY` environment variable." + ) + return { + "accept": "application/json", + "content-type": "application/json", + "authorization": f"Bearer {api_key}", + } + + def calculate_rerank_cost( + self, + model: str, + custom_llm_provider: Optional[str] = None, + billed_units: Optional[RerankBilledUnits] = None, + model_info: Optional[ModelInfo] = None, + ) -> Tuple[float, float]: + """ + Jina AI reranker is priced at $0.000000018 per token. + """ + if ( + model_info is None + or "input_cost_per_token" not in model_info + or model_info["input_cost_per_token"] is None + or billed_units is None + ): + return 0.0, 0.0 + + total_tokens = billed_units.get("total_tokens") + if total_tokens is None: + return 0.0, 0.0 + + input_cost = model_info["input_cost_per_token"] * total_tokens + return input_cost, 0.0 |