about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py589
1 files changed, 589 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py
new file mode 100644
index 00000000..858fda47
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py
@@ -0,0 +1,589 @@
+import json
+import os
+import time
+from copy import deepcopy
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.prompt_templates.common_utils import (
+    convert_content_list_to_str,
+)
+from litellm.litellm_core_utils.prompt_templates.factory import (
+    custom_prompt,
+    prompt_factory,
+)
+from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
+from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
+from litellm.secret_managers.main import get_secret_str
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import Choices, Message, ModelResponse, Usage
+from litellm.utils import token_counter
+
+from ..common_utils import HuggingfaceError, hf_task_list, hf_tasks, output_parser
+
+if TYPE_CHECKING:
+    from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+
+    LoggingClass = LiteLLMLoggingObj
+else:
+    LoggingClass = Any
+
+
+tgi_models_cache = None
+conv_models_cache = None
+
+
+class HuggingfaceChatConfig(BaseConfig):
+    """
+    Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate
+    """
+
+    hf_task: Optional[hf_tasks] = (
+        None  # litellm-specific param, used to know the api spec to use when calling huggingface api
+    )
+    best_of: Optional[int] = None
+    decoder_input_details: Optional[bool] = None
+    details: Optional[bool] = True  # enables returning logprobs + best of
+    max_new_tokens: Optional[int] = None
+    repetition_penalty: Optional[float] = None
+    return_full_text: Optional[bool] = (
+        False  # by default don't return the input as part of the output
+    )
+    seed: Optional[int] = None
+    temperature: Optional[float] = None
+    top_k: Optional[int] = None
+    top_n_tokens: Optional[int] = None
+    top_p: Optional[int] = None
+    truncate: Optional[int] = None
+    typical_p: Optional[float] = None
+    watermark: Optional[bool] = None
+
+    def __init__(
+        self,
+        best_of: Optional[int] = None,
+        decoder_input_details: Optional[bool] = None,
+        details: Optional[bool] = None,
+        max_new_tokens: Optional[int] = None,
+        repetition_penalty: Optional[float] = None,
+        return_full_text: Optional[bool] = None,
+        seed: Optional[int] = None,
+        temperature: Optional[float] = None,
+        top_k: Optional[int] = None,
+        top_n_tokens: Optional[int] = None,
+        top_p: Optional[int] = None,
+        truncate: Optional[int] = None,
+        typical_p: Optional[float] = None,
+        watermark: Optional[bool] = None,
+    ) -> None:
+        locals_ = locals().copy()
+        for key, value in locals_.items():
+            if key != "self" and value is not None:
+                setattr(self.__class__, key, value)
+
+    @classmethod
+    def get_config(cls):
+        return super().get_config()
+
+    def get_special_options_params(self):
+        return ["use_cache", "wait_for_model"]
+
+    def get_supported_openai_params(self, model: str):
+        return [
+            "stream",
+            "temperature",
+            "max_tokens",
+            "max_completion_tokens",
+            "top_p",
+            "stop",
+            "n",
+            "echo",
+        ]
+
+    def map_openai_params(
+        self,
+        non_default_params: Dict,
+        optional_params: Dict,
+        model: str,
+        drop_params: bool,
+    ) -> Dict:
+        for param, value in non_default_params.items():
+            # temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
+            if param == "temperature":
+                if value == 0.0 or value == 0:
+                    # hugging face exception raised when temp==0
+                    # Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
+                    value = 0.01
+                optional_params["temperature"] = value
+            if param == "top_p":
+                optional_params["top_p"] = value
+            if param == "n":
+                optional_params["best_of"] = value
+                optional_params["do_sample"] = (
+                    True  # Need to sample if you want best of for hf inference endpoints
+                )
+            if param == "stream":
+                optional_params["stream"] = value
+            if param == "stop":
+                optional_params["stop"] = value
+            if param == "max_tokens" or param == "max_completion_tokens":
+                # HF TGI raises the following exception when max_new_tokens==0
+                # Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
+                if value == 0:
+                    value = 1
+                optional_params["max_new_tokens"] = value
+            if param == "echo":
+                # https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details
+                #  Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False
+                optional_params["decoder_input_details"] = True
+
+        return optional_params
+
+    def get_hf_api_key(self) -> Optional[str]:
+        return get_secret_str("HUGGINGFACE_API_KEY")
+
+    def read_tgi_conv_models(self):
+        try:
+            global tgi_models_cache, conv_models_cache
+            # Check if the cache is already populated
+            # so we don't keep on reading txt file if there are 1k requests
+            if (tgi_models_cache is not None) and (conv_models_cache is not None):
+                return tgi_models_cache, conv_models_cache
+            # If not, read the file and populate the cache
+            tgi_models = set()
+            script_directory = os.path.dirname(os.path.abspath(__file__))
+            script_directory = os.path.dirname(script_directory)
+            # Construct the file path relative to the script's directory
+            file_path = os.path.join(
+                script_directory,
+                "huggingface_llms_metadata",
+                "hf_text_generation_models.txt",
+            )
+
+            with open(file_path, "r") as file:
+                for line in file:
+                    tgi_models.add(line.strip())
+
+            # Cache the set for future use
+            tgi_models_cache = tgi_models
+
+            # If not, read the file and populate the cache
+            file_path = os.path.join(
+                script_directory,
+                "huggingface_llms_metadata",
+                "hf_conversational_models.txt",
+            )
+            conv_models = set()
+            with open(file_path, "r") as file:
+                for line in file:
+                    conv_models.add(line.strip())
+            # Cache the set for future use
+            conv_models_cache = conv_models
+            return tgi_models, conv_models
+        except Exception:
+            return set(), set()
+
+    def get_hf_task_for_model(self, model: str) -> Tuple[hf_tasks, str]:
+        # read text file, cast it to set
+        # read the file called "huggingface_llms_metadata/hf_text_generation_models.txt"
+        if model.split("/")[0] in hf_task_list:
+            split_model = model.split("/", 1)
+            return split_model[0], split_model[1]  # type: ignore
+        tgi_models, conversational_models = self.read_tgi_conv_models()
+
+        if model in tgi_models:
+            return "text-generation-inference", model
+        elif model in conversational_models:
+            return "conversational", model
+        elif "roneneldan/TinyStories" in model:
+            return "text-generation", model
+        else:
+            return "text-generation-inference", model  # default to tgi
+
+    def transform_request(
+        self,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        headers: dict,
+    ) -> dict:
+        task = litellm_params.get("task", None)
+        ## VALIDATE API FORMAT
+        if task is None or not isinstance(task, str) or task not in hf_task_list:
+            raise Exception(
+                "Invalid hf task - {}. Valid formats - {}.".format(task, hf_tasks)
+            )
+
+        ## Load Config
+        config = litellm.HuggingfaceConfig.get_config()
+        for k, v in config.items():
+            if (
+                k not in optional_params
+            ):  # completion(top_k=3) > huggingfaceConfig(top_k=3) <- allows for dynamic variables to be passed in
+                optional_params[k] = v
+
+        ### MAP INPUT PARAMS
+        #### HANDLE SPECIAL PARAMS
+        special_params = self.get_special_options_params()
+        special_params_dict = {}
+        # Create a list of keys to pop after iteration
+        keys_to_pop = []
+
+        for k, v in optional_params.items():
+            if k in special_params:
+                special_params_dict[k] = v
+                keys_to_pop.append(k)
+
+        # Pop the keys from the dictionary after iteration
+        for k in keys_to_pop:
+            optional_params.pop(k)
+        if task == "conversational":
+            inference_params = deepcopy(optional_params)
+            inference_params.pop("details")
+            inference_params.pop("return_full_text")
+            past_user_inputs = []
+            generated_responses = []
+            text = ""
+            for message in messages:
+                if message["role"] == "user":
+                    if text != "":
+                        past_user_inputs.append(text)
+                    text = convert_content_list_to_str(message)
+                elif message["role"] == "assistant" or message["role"] == "system":
+                    generated_responses.append(convert_content_list_to_str(message))
+            data = {
+                "inputs": {
+                    "text": text,
+                    "past_user_inputs": past_user_inputs,
+                    "generated_responses": generated_responses,
+                },
+                "parameters": inference_params,
+            }
+
+        elif task == "text-generation-inference":
+            # always send "details" and "return_full_text" as params
+            if model in litellm.custom_prompt_dict:
+                # check if the model has a registered custom prompt
+                model_prompt_details = litellm.custom_prompt_dict[model]
+                prompt = custom_prompt(
+                    role_dict=model_prompt_details.get("roles", None),
+                    initial_prompt_value=model_prompt_details.get(
+                        "initial_prompt_value", ""
+                    ),
+                    final_prompt_value=model_prompt_details.get(
+                        "final_prompt_value", ""
+                    ),
+                    messages=messages,
+                )
+            else:
+                prompt = prompt_factory(model=model, messages=messages)
+            data = {
+                "inputs": prompt,  # type: ignore
+                "parameters": optional_params,
+                "stream": (  # type: ignore
+                    True
+                    if "stream" in optional_params
+                    and isinstance(optional_params["stream"], bool)
+                    and optional_params["stream"] is True  # type: ignore
+                    else False
+                ),
+            }
+        else:
+            # Non TGI and Conversational llms
+            # We need this branch, it removes 'details' and 'return_full_text' from params
+            if model in litellm.custom_prompt_dict:
+                # check if the model has a registered custom prompt
+                model_prompt_details = litellm.custom_prompt_dict[model]
+                prompt = custom_prompt(
+                    role_dict=model_prompt_details.get("roles", {}),
+                    initial_prompt_value=model_prompt_details.get(
+                        "initial_prompt_value", ""
+                    ),
+                    final_prompt_value=model_prompt_details.get(
+                        "final_prompt_value", ""
+                    ),
+                    bos_token=model_prompt_details.get("bos_token", ""),
+                    eos_token=model_prompt_details.get("eos_token", ""),
+                    messages=messages,
+                )
+            else:
+                prompt = prompt_factory(model=model, messages=messages)
+            inference_params = deepcopy(optional_params)
+            inference_params.pop("details")
+            inference_params.pop("return_full_text")
+            data = {
+                "inputs": prompt,  # type: ignore
+            }
+            if task == "text-generation-inference":
+                data["parameters"] = inference_params
+                data["stream"] = (  # type: ignore
+                    True  # type: ignore
+                    if "stream" in optional_params and optional_params["stream"] is True
+                    else False
+                )
+
+        ### RE-ADD SPECIAL PARAMS
+        if len(special_params_dict.keys()) > 0:
+            data.update({"options": special_params_dict})
+
+        return data
+
+    def get_api_base(self, api_base: Optional[str], model: str) -> str:
+        """
+        Get the API base for the Huggingface API.
+
+        Do not add the chat/embedding/rerank extension here. Let the handler do this.
+        """
+        if "https" in model:
+            completion_url = model
+        elif api_base is not None:
+            completion_url = api_base
+        elif "HF_API_BASE" in os.environ:
+            completion_url = os.getenv("HF_API_BASE", "")
+        elif "HUGGINGFACE_API_BASE" in os.environ:
+            completion_url = os.getenv("HUGGINGFACE_API_BASE", "")
+        else:
+            completion_url = f"https://api-inference.huggingface.co/models/{model}"
+
+        return completion_url
+
+    def validate_environment(
+        self,
+        headers: Dict,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: Dict,
+        api_key: Optional[str] = None,
+        api_base: Optional[str] = None,
+    ) -> Dict:
+        default_headers = {
+            "content-type": "application/json",
+        }
+        if api_key is not None:
+            default_headers["Authorization"] = (
+                f"Bearer {api_key}"  # Huggingface Inference Endpoint default is to accept bearer tokens
+            )
+
+        headers = {**headers, **default_headers}
+        return headers
+
+    def get_error_class(
+        self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+    ) -> BaseLLMException:
+        return HuggingfaceError(
+            status_code=status_code, message=error_message, headers=headers
+        )
+
+    def _convert_streamed_response_to_complete_response(
+        self,
+        response: httpx.Response,
+        logging_obj: LoggingClass,
+        model: str,
+        data: dict,
+        api_key: Optional[str] = None,
+    ) -> List[Dict[str, Any]]:
+        streamed_response = CustomStreamWrapper(
+            completion_stream=response.iter_lines(),
+            model=model,
+            custom_llm_provider="huggingface",
+            logging_obj=logging_obj,
+        )
+        content = ""
+        for chunk in streamed_response:
+            content += chunk["choices"][0]["delta"]["content"]
+        completion_response: List[Dict[str, Any]] = [{"generated_text": content}]
+        ## LOGGING
+        logging_obj.post_call(
+            input=data,
+            api_key=api_key,
+            original_response=completion_response,
+            additional_args={"complete_input_dict": data},
+        )
+        return completion_response
+
+    def convert_to_model_response_object(  # noqa: PLR0915
+        self,
+        completion_response: Union[List[Dict[str, Any]], Dict[str, Any]],
+        model_response: ModelResponse,
+        task: Optional[hf_tasks],
+        optional_params: dict,
+        encoding: Any,
+        messages: List[AllMessageValues],
+        model: str,
+    ):
+        if task is None:
+            task = "text-generation-inference"  # default to tgi
+
+        if task == "conversational":
+            if len(completion_response["generated_text"]) > 0:  # type: ignore
+                model_response.choices[0].message.content = completion_response[  # type: ignore
+                    "generated_text"
+                ]
+        elif task == "text-generation-inference":
+            if (
+                not isinstance(completion_response, list)
+                or not isinstance(completion_response[0], dict)
+                or "generated_text" not in completion_response[0]
+            ):
+                raise HuggingfaceError(
+                    status_code=422,
+                    message=f"response is not in expected format - {completion_response}",
+                    headers=None,
+                )
+
+            if len(completion_response[0]["generated_text"]) > 0:
+                model_response.choices[0].message.content = output_parser(  # type: ignore
+                    completion_response[0]["generated_text"]
+                )
+            ## GETTING LOGPROBS + FINISH REASON
+            if (
+                "details" in completion_response[0]
+                and "tokens" in completion_response[0]["details"]
+            ):
+                model_response.choices[0].finish_reason = completion_response[0][
+                    "details"
+                ]["finish_reason"]
+                sum_logprob = 0
+                for token in completion_response[0]["details"]["tokens"]:
+                    if token["logprob"] is not None:
+                        sum_logprob += token["logprob"]
+                setattr(model_response.choices[0].message, "_logprob", sum_logprob)  # type: ignore
+            if "best_of" in optional_params and optional_params["best_of"] > 1:
+                if (
+                    "details" in completion_response[0]
+                    and "best_of_sequences" in completion_response[0]["details"]
+                ):
+                    choices_list = []
+                    for idx, item in enumerate(
+                        completion_response[0]["details"]["best_of_sequences"]
+                    ):
+                        sum_logprob = 0
+                        for token in item["tokens"]:
+                            if token["logprob"] is not None:
+                                sum_logprob += token["logprob"]
+                        if len(item["generated_text"]) > 0:
+                            message_obj = Message(
+                                content=output_parser(item["generated_text"]),
+                                logprobs=sum_logprob,
+                            )
+                        else:
+                            message_obj = Message(content=None)
+                        choice_obj = Choices(
+                            finish_reason=item["finish_reason"],
+                            index=idx + 1,
+                            message=message_obj,
+                        )
+                        choices_list.append(choice_obj)
+                    model_response.choices.extend(choices_list)
+        elif task == "text-classification":
+            model_response.choices[0].message.content = json.dumps(  # type: ignore
+                completion_response
+            )
+        else:
+            if (
+                isinstance(completion_response, list)
+                and len(completion_response[0]["generated_text"]) > 0
+            ):
+                model_response.choices[0].message.content = output_parser(  # type: ignore
+                    completion_response[0]["generated_text"]
+                )
+        ## CALCULATING USAGE
+        prompt_tokens = 0
+        try:
+            prompt_tokens = token_counter(model=model, messages=messages)
+        except Exception:
+            # this should remain non blocking we should not block a response returning if calculating usage fails
+            pass
+        output_text = model_response["choices"][0]["message"].get("content", "")
+        if output_text is not None and len(output_text) > 0:
+            completion_tokens = 0
+            try:
+                completion_tokens = len(
+                    encoding.encode(
+                        model_response["choices"][0]["message"].get("content", "")
+                    )
+                )  ##[TODO] use the llama2 tokenizer here
+            except Exception:
+                # this should remain non blocking we should not block a response returning if calculating usage fails
+                pass
+        else:
+            completion_tokens = 0
+
+        model_response.created = int(time.time())
+        model_response.model = model
+        usage = Usage(
+            prompt_tokens=prompt_tokens,
+            completion_tokens=completion_tokens,
+            total_tokens=prompt_tokens + completion_tokens,
+        )
+        setattr(model_response, "usage", usage)
+        model_response._hidden_params["original_response"] = completion_response
+        return model_response
+
+    def transform_response(
+        self,
+        model: str,
+        raw_response: httpx.Response,
+        model_response: ModelResponse,
+        logging_obj: LoggingClass,
+        request_data: Dict,
+        messages: List[AllMessageValues],
+        optional_params: Dict,
+        litellm_params: Dict,
+        encoding: Any,
+        api_key: Optional[str] = None,
+        json_mode: Optional[bool] = None,
+    ) -> ModelResponse:
+        ## Some servers might return streaming responses even though stream was not set to true. (e.g. Baseten)
+        task = litellm_params.get("task", None)
+        is_streamed = False
+        if (
+            raw_response.__dict__["headers"].get("Content-Type", "")
+            == "text/event-stream"
+        ):
+            is_streamed = True
+
+        # iterate over the complete streamed response, and return the final answer
+        if is_streamed:
+            completion_response = self._convert_streamed_response_to_complete_response(
+                response=raw_response,
+                logging_obj=logging_obj,
+                model=model,
+                data=request_data,
+                api_key=api_key,
+            )
+        else:
+            ## LOGGING
+            logging_obj.post_call(
+                input=request_data,
+                api_key=api_key,
+                original_response=raw_response.text,
+                additional_args={"complete_input_dict": request_data},
+            )
+            ## RESPONSE OBJECT
+            try:
+                completion_response = raw_response.json()
+                if isinstance(completion_response, dict):
+                    completion_response = [completion_response]
+            except Exception:
+                raise HuggingfaceError(
+                    message=f"Original Response received: {raw_response.text}",
+                    status_code=raw_response.status_code,
+                )
+
+        if isinstance(completion_response, dict) and "error" in completion_response:
+            raise HuggingfaceError(
+                message=completion_response["error"],  # type: ignore
+                status_code=raw_response.status_code,
+            )
+        return self.convert_to_model_response_object(
+            completion_response=completion_response,
+            model_response=model_response,
+            task=task if task is not None and task in hf_task_list else None,
+            optional_params=optional_params,
+            encoding=encoding,
+            messages=messages,
+            model=model,
+        )