aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/gemini
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/gemini')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/gemini/chat/transformation.py132
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/gemini/context_caching/README.md1
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/gemini/cost_calculator.py21
3 files changed, 154 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/gemini/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/gemini/chat/transformation.py
new file mode 100644
index 00000000..fbc1916d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/gemini/chat/transformation.py
@@ -0,0 +1,132 @@
+from typing import Dict, List, Optional
+
+import litellm
+from litellm.litellm_core_utils.prompt_templates.factory import (
+ convert_generic_image_chunk_to_openai_image_obj,
+ convert_to_anthropic_image_obj,
+)
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.llms.vertex_ai import ContentType, PartType
+
+from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history
+from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig
+
+
+class GoogleAIStudioGeminiConfig(VertexGeminiConfig):
+ """
+ Reference: https://ai.google.dev/api/rest/v1beta/GenerationConfig
+
+ The class `GoogleAIStudioGeminiConfig` provides configuration for the Google AI Studio's Gemini API interface. Below are the parameters:
+
+ - `temperature` (float): This controls the degree of randomness in token selection.
+
+ - `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
+
+ - `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
+
+ - `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
+
+ - `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'. Other values - `application/json`.
+
+ - `response_schema` (dict): Optional. Output response schema of the generated candidate text when response mime type can have schema. Schema can be objects, primitives or arrays and is a subset of OpenAPI schema. If set, a compatible response_mime_type must also be set. Compatible mimetypes: application/json: Schema for JSON response.
+
+ - `candidate_count` (int): Number of generated responses to return.
+
+ - `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
+
+ Note: Please make sure to modify the default parameters as required for your use case.
+ """
+
+ temperature: Optional[float] = None
+ max_output_tokens: Optional[int] = None
+ top_p: Optional[float] = None
+ top_k: Optional[int] = None
+ response_mime_type: Optional[str] = None
+ response_schema: Optional[dict] = None
+ candidate_count: Optional[int] = None
+ stop_sequences: Optional[list] = None
+
+ def __init__(
+ self,
+ temperature: Optional[float] = None,
+ max_output_tokens: Optional[int] = None,
+ top_p: Optional[float] = None,
+ top_k: Optional[int] = None,
+ response_mime_type: Optional[str] = None,
+ response_schema: Optional[dict] = None,
+ candidate_count: Optional[int] = None,
+ stop_sequences: Optional[list] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ @classmethod
+ def get_config(cls):
+ return super().get_config()
+
+ def get_supported_openai_params(self, model: str) -> List[str]:
+ return [
+ "temperature",
+ "top_p",
+ "max_tokens",
+ "max_completion_tokens",
+ "stream",
+ "tools",
+ "tool_choice",
+ "functions",
+ "response_format",
+ "n",
+ "stop",
+ "logprobs",
+ "frequency_penalty",
+ ]
+
+ def map_openai_params(
+ self,
+ non_default_params: Dict,
+ optional_params: Dict,
+ model: str,
+ drop_params: bool,
+ ) -> Dict:
+
+ if litellm.vertex_ai_safety_settings is not None:
+ optional_params["safety_settings"] = litellm.vertex_ai_safety_settings
+ return super().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=drop_params,
+ )
+
+ def _transform_messages(
+ self, messages: List[AllMessageValues]
+ ) -> List[ContentType]:
+ """
+ Google AI Studio Gemini does not support image urls in messages.
+ """
+ for message in messages:
+ _message_content = message.get("content")
+ if _message_content is not None and isinstance(_message_content, list):
+ _parts: List[PartType] = []
+ for element in _message_content:
+ if element.get("type") == "image_url":
+ img_element = element
+ _image_url: Optional[str] = None
+ format: Optional[str] = None
+ if isinstance(img_element.get("image_url"), dict):
+ _image_url = img_element["image_url"].get("url") # type: ignore
+ format = img_element["image_url"].get("format") # type: ignore
+ else:
+ _image_url = img_element.get("image_url") # type: ignore
+ if _image_url and "https://" in _image_url:
+ image_obj = convert_to_anthropic_image_obj(
+ _image_url, format=format
+ )
+ img_element["image_url"] = ( # type: ignore
+ convert_generic_image_chunk_to_openai_image_obj(
+ image_obj
+ )
+ )
+ return _gemini_convert_messages_with_history(messages=messages)
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/gemini/context_caching/README.md b/.venv/lib/python3.12/site-packages/litellm/llms/gemini/context_caching/README.md
new file mode 100644
index 00000000..fce0b9d4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/gemini/context_caching/README.md
@@ -0,0 +1 @@
+[Go here for the Gemini Context Caching code](../../vertex_ai/context_caching/) \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/gemini/cost_calculator.py b/.venv/lib/python3.12/site-packages/litellm/llms/gemini/cost_calculator.py
new file mode 100644
index 00000000..5497640d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/gemini/cost_calculator.py
@@ -0,0 +1,21 @@
+"""
+This file is used to calculate the cost of the Gemini API.
+
+Handles the context caching for Gemini API.
+"""
+
+from typing import Tuple
+
+from litellm.litellm_core_utils.llm_cost_calc.utils import generic_cost_per_token
+from litellm.types.utils import Usage
+
+
+def cost_per_token(model: str, usage: Usage) -> Tuple[float, float]:
+ """
+ Calculates the cost per token for a given model, prompt tokens, and completion tokens.
+
+ Follows the same logic as Anthropic's cost per token calculation.
+ """
+ return generic_cost_per_token(
+ model=model, usage=usage, custom_llm_provider="gemini"
+ )