about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py122
1 files changed, 122 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py
new file mode 100644
index 00000000..5955e91d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py
@@ -0,0 +1,122 @@
+import json
+from typing import Optional
+
+import litellm
+from litellm.llms.openai.completion.transformation import OpenAITextCompletionConfig
+from litellm.types.llms.databricks import GenericStreamingChunk
+
+
+class CodestralTextCompletionConfig(OpenAITextCompletionConfig):
+    """
+    Reference: https://docs.mistral.ai/api/#operation/createFIMCompletion
+    """
+
+    suffix: Optional[str] = None
+    temperature: Optional[int] = None
+    max_tokens: Optional[int] = None
+    min_tokens: Optional[int] = None
+    stream: Optional[bool] = None
+    random_seed: Optional[int] = None
+
+    def __init__(
+        self,
+        suffix: Optional[str] = None,
+        temperature: Optional[int] = None,
+        top_p: Optional[float] = None,
+        max_tokens: Optional[int] = None,
+        min_tokens: Optional[int] = None,
+        stream: Optional[bool] = None,
+        random_seed: Optional[int] = None,
+        stop: Optional[str] = None,
+    ) -> None:
+        locals_ = locals().copy()
+        for key, value in locals_.items():
+            if key != "self" and value is not None:
+                setattr(self.__class__, key, value)
+
+    @classmethod
+    def get_config(cls):
+        return super().get_config()
+
+    def get_supported_openai_params(self, model: str):
+        return [
+            "suffix",
+            "temperature",
+            "top_p",
+            "max_tokens",
+            "max_completion_tokens",
+            "stream",
+            "seed",
+            "stop",
+        ]
+
+    def map_openai_params(
+        self,
+        non_default_params: dict,
+        optional_params: dict,
+        model: str,
+        drop_params: bool,
+    ) -> dict:
+        for param, value in non_default_params.items():
+            if param == "suffix":
+                optional_params["suffix"] = value
+            if param == "temperature":
+                optional_params["temperature"] = value
+            if param == "top_p":
+                optional_params["top_p"] = value
+            if param == "max_tokens" or param == "max_completion_tokens":
+                optional_params["max_tokens"] = value
+            if param == "stream" and value is True:
+                optional_params["stream"] = value
+            if param == "stop":
+                optional_params["stop"] = value
+            if param == "seed":
+                optional_params["random_seed"] = value
+            if param == "min_tokens":
+                optional_params["min_tokens"] = value
+
+        return optional_params
+
+    def _chunk_parser(self, chunk_data: str) -> GenericStreamingChunk:
+
+        text = ""
+        is_finished = False
+        finish_reason = None
+        logprobs = None
+
+        chunk_data = (
+            litellm.CustomStreamWrapper._strip_sse_data_from_chunk(chunk_data) or ""
+        )
+        chunk_data = chunk_data.strip()
+        if len(chunk_data) == 0 or chunk_data == "[DONE]":
+            return {
+                "text": "",
+                "is_finished": is_finished,
+                "finish_reason": finish_reason,
+            }
+        try:
+            chunk_data_dict = json.loads(chunk_data)
+        except json.JSONDecodeError:
+            return {
+                "text": "",
+                "is_finished": is_finished,
+                "finish_reason": finish_reason,
+            }
+
+        original_chunk = litellm.ModelResponse(**chunk_data_dict, stream=True)
+        _choices = chunk_data_dict.get("choices", []) or []
+        _choice = _choices[0]
+        text = _choice.get("delta", {}).get("content", "")
+
+        if _choice.get("finish_reason") is not None:
+            is_finished = True
+            finish_reason = _choice.get("finish_reason")
+            logprobs = _choice.get("logprobs")
+
+        return GenericStreamingChunk(
+            text=text,
+            original_chunk=original_chunk,
+            is_finished=is_finished,
+            finish_reason=finish_reason,
+            logprobs=logprobs,
+        )