aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py122
1 files changed, 122 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py
new file mode 100644
index 00000000..5955e91d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/codestral/completion/transformation.py
@@ -0,0 +1,122 @@
+import json
+from typing import Optional
+
+import litellm
+from litellm.llms.openai.completion.transformation import OpenAITextCompletionConfig
+from litellm.types.llms.databricks import GenericStreamingChunk
+
+
+class CodestralTextCompletionConfig(OpenAITextCompletionConfig):
+ """
+ Reference: https://docs.mistral.ai/api/#operation/createFIMCompletion
+ """
+
+ suffix: Optional[str] = None
+ temperature: Optional[int] = None
+ max_tokens: Optional[int] = None
+ min_tokens: Optional[int] = None
+ stream: Optional[bool] = None
+ random_seed: Optional[int] = None
+
+ def __init__(
+ self,
+ suffix: Optional[str] = None,
+ temperature: Optional[int] = None,
+ top_p: Optional[float] = None,
+ max_tokens: Optional[int] = None,
+ min_tokens: Optional[int] = None,
+ stream: Optional[bool] = None,
+ random_seed: Optional[int] = None,
+ stop: Optional[str] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ @classmethod
+ def get_config(cls):
+ return super().get_config()
+
+ def get_supported_openai_params(self, model: str):
+ return [
+ "suffix",
+ "temperature",
+ "top_p",
+ "max_tokens",
+ "max_completion_tokens",
+ "stream",
+ "seed",
+ "stop",
+ ]
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ for param, value in non_default_params.items():
+ if param == "suffix":
+ optional_params["suffix"] = value
+ if param == "temperature":
+ optional_params["temperature"] = value
+ if param == "top_p":
+ optional_params["top_p"] = value
+ if param == "max_tokens" or param == "max_completion_tokens":
+ optional_params["max_tokens"] = value
+ if param == "stream" and value is True:
+ optional_params["stream"] = value
+ if param == "stop":
+ optional_params["stop"] = value
+ if param == "seed":
+ optional_params["random_seed"] = value
+ if param == "min_tokens":
+ optional_params["min_tokens"] = value
+
+ return optional_params
+
+ def _chunk_parser(self, chunk_data: str) -> GenericStreamingChunk:
+
+ text = ""
+ is_finished = False
+ finish_reason = None
+ logprobs = None
+
+ chunk_data = (
+ litellm.CustomStreamWrapper._strip_sse_data_from_chunk(chunk_data) or ""
+ )
+ chunk_data = chunk_data.strip()
+ if len(chunk_data) == 0 or chunk_data == "[DONE]":
+ return {
+ "text": "",
+ "is_finished": is_finished,
+ "finish_reason": finish_reason,
+ }
+ try:
+ chunk_data_dict = json.loads(chunk_data)
+ except json.JSONDecodeError:
+ return {
+ "text": "",
+ "is_finished": is_finished,
+ "finish_reason": finish_reason,
+ }
+
+ original_chunk = litellm.ModelResponse(**chunk_data_dict, stream=True)
+ _choices = chunk_data_dict.get("choices", []) or []
+ _choice = _choices[0]
+ text = _choice.get("delta", {}).get("content", "")
+
+ if _choice.get("finish_reason") is not None:
+ is_finished = True
+ finish_reason = _choice.get("finish_reason")
+ logprobs = _choice.get("logprobs")
+
+ return GenericStreamingChunk(
+ text=text,
+ original_chunk=original_chunk,
+ is_finished=is_finished,
+ finish_reason=finish_reason,
+ logprobs=logprobs,
+ )