aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/clarifai/chat/transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/clarifai/chat/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/clarifai/chat/transformation.py261
1 files changed, 261 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/clarifai/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/clarifai/chat/transformation.py
new file mode 100644
index 00000000..916da738
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/clarifai/chat/transformation.py
@@ -0,0 +1,261 @@
+import json
+from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
+
+import httpx
+
+from litellm.litellm_core_utils.prompt_templates.common_utils import (
+ convert_content_list_to_str,
+)
+from litellm.llms.base_llm.base_model_iterator import FakeStreamResponseIterator
+from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import (
+ ChatCompletionToolCallChunk,
+ ChatCompletionUsageBlock,
+ Choices,
+ GenericStreamingChunk,
+ Message,
+ ModelResponse,
+ Usage,
+)
+from litellm.utils import token_counter
+
+from ..common_utils import ClarifaiError
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+
+ LoggingClass = LiteLLMLoggingObj
+else:
+ LoggingClass = Any
+
+
+class ClarifaiConfig(BaseConfig):
+ """
+ Reference: https://clarifai.com/meta/Llama-2/models/llama2-70b-chat
+ """
+
+ max_tokens: Optional[int] = None
+ temperature: Optional[int] = None
+ top_k: Optional[int] = None
+
+ def __init__(
+ self,
+ max_tokens: Optional[int] = None,
+ temperature: Optional[int] = None,
+ top_k: Optional[int] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ @classmethod
+ def get_config(cls):
+ return super().get_config()
+
+ def get_supported_openai_params(self, model: str) -> list:
+ return [
+ "temperature",
+ "max_tokens",
+ ]
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ for param, value in non_default_params.items():
+ if param == "temperature":
+ optional_params["temperature"] = value
+ elif param == "max_tokens":
+ optional_params["max_tokens"] = value
+
+ return optional_params
+
+ def _completions_to_model(self, prompt: str, optional_params: dict) -> dict:
+ params = {}
+ if temperature := optional_params.get("temperature"):
+ params["temperature"] = temperature
+ if max_tokens := optional_params.get("max_tokens"):
+ params["max_tokens"] = max_tokens
+ return {
+ "inputs": [{"data": {"text": {"raw": prompt}}}],
+ "model": {"output_info": {"params": params}},
+ }
+
+ def _convert_model_to_url(self, model: str, api_base: str):
+ user_id, app_id, model_id = model.split(".")
+ return f"{api_base}/users/{user_id}/apps/{app_id}/models/{model_id}/outputs"
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ prompt = " ".join(convert_content_list_to_str(message) for message in messages)
+
+ ## Load Config
+ config = self.get_config()
+ for k, v in config.items():
+ if k not in optional_params:
+ optional_params[k] = v
+
+ data = self._completions_to_model(
+ prompt=prompt, optional_params=optional_params
+ )
+
+ return data
+
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> dict:
+ headers = {
+ "accept": "application/json",
+ "content-type": "application/json",
+ }
+
+ if api_key:
+ headers["Authorization"] = f"Bearer {api_key}"
+ return headers
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+ ) -> BaseLLMException:
+ return ClarifaiError(message=error_message, status_code=status_code)
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LoggingClass,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: str,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ logging_obj.post_call(
+ input=messages,
+ api_key=api_key,
+ original_response=raw_response.text,
+ additional_args={"complete_input_dict": request_data},
+ )
+ ## RESPONSE OBJECT
+ try:
+ completion_response = raw_response.json()
+ except httpx.HTTPStatusError as e:
+ raise ClarifaiError(
+ message=str(e),
+ status_code=raw_response.status_code,
+ )
+ except Exception as e:
+ raise ClarifaiError(
+ message=str(e),
+ status_code=422,
+ )
+ # print(completion_response)
+ try:
+ choices_list = []
+ for idx, item in enumerate(completion_response["outputs"]):
+ if len(item["data"]["text"]["raw"]) > 0:
+ message_obj = Message(content=item["data"]["text"]["raw"])
+ else:
+ message_obj = Message(content=None)
+ choice_obj = Choices(
+ finish_reason="stop",
+ index=idx + 1, # check
+ message=message_obj,
+ )
+ choices_list.append(choice_obj)
+ model_response.choices = choices_list # type: ignore
+
+ except Exception as e:
+ raise ClarifaiError(
+ message=str(e),
+ status_code=422,
+ )
+
+ # Calculate Usage
+ prompt_tokens = token_counter(model=model, messages=messages)
+ completion_tokens = len(
+ encoding.encode(model_response["choices"][0]["message"].get("content"))
+ )
+ model_response.model = model
+ setattr(
+ model_response,
+ "usage",
+ Usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=prompt_tokens + completion_tokens,
+ ),
+ )
+ return model_response
+
+ def get_model_response_iterator(
+ self,
+ streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+ sync_stream: bool,
+ json_mode: Optional[bool] = False,
+ ) -> Any:
+ return ClarifaiModelResponseIterator(
+ model_response=streaming_response,
+ json_mode=json_mode,
+ )
+
+
+class ClarifaiModelResponseIterator(FakeStreamResponseIterator):
+ def __init__(
+ self,
+ model_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+ json_mode: Optional[bool] = False,
+ ):
+ super().__init__(
+ model_response=model_response,
+ json_mode=json_mode,
+ )
+
+ def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
+ try:
+ text = ""
+ tool_use: Optional[ChatCompletionToolCallChunk] = None
+ is_finished = False
+ finish_reason = ""
+ usage: Optional[ChatCompletionUsageBlock] = None
+ provider_specific_fields = None
+
+ text = (
+ chunk.get("outputs", "")[0]
+ .get("data", "")
+ .get("text", "")
+ .get("raw", "")
+ )
+
+ index: int = 0
+
+ return GenericStreamingChunk(
+ text=text,
+ tool_use=tool_use,
+ is_finished=is_finished,
+ finish_reason=finish_reason,
+ usage=usage,
+ index=index,
+ provider_specific_fields=provider_specific_fields,
+ )
+ except json.JSONDecodeError:
+ raise ValueError(f"Failed to decode JSON from chunk: {chunk}")